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Abstract
The ImageCLEFmedical 2025 Caption task follows challenges held from 2017–2024 and comprises three subtasks:
concept detection, caption prediction, and a newly introduced explainability task. The goal is to extract Unified
Medical Language System (UMLS) concepts, generate fluent captions from medical images, and provide human-
interpretable justifications for the outputs. This year’s edition used an enlarged version of the Radiology Objects
in COntext version 2 (ROCOv2) dataset, which was expanded with new articles and the inclusion of the optical
coherence tomography (OCT) imaging modality. For concept detection, the F1-score was used to evaluate
predictions against UMLS terms. For caption prediction, evaluation was updated to a composite score averaging
six metrics to assess both relevance and factuality. The new explainability submissions were manually judged by a
radiologist. The 2025 task attracted 80 registered research groups, with 11 teams submitting a total of 149 graded
runs across the three subtasks. Top-performing systems for concept detection were predominantly based on
ensembles of Convolutional Neural Networks (CNNs). For caption prediction, a general shift towards fine-tuning
Vision-Language Models (VLMs) was observed, with adapted architectures like BLIP leading to strong results
across the new composite metrics. Finally, the inaugural explainability task saw initial submissions of post-hoc
visualizations, establishing a baseline and clarifying the need for model-intrinsic explanations in future editions.
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1. Introduction

ImageCLEF1 [1] is the image–retrieval and –classification lab of the Conference and Labs of the
Evaluation Forum (CLEF) conference [2]. ImageCLEF 2025 [3] consists of the ImageCLEFmedical,
ImageCLEFrecommending, Image Retrieval for Arguments (Touché) and ImageCLEFToPicto labs, with
the ImageCLEFmedical lab being divided into the subtasks Caption (image–captioning), VQA (text-to-
image generation), MEDIQA-MAGIC (Multimodal And Generative TelemedICine) and GANs (generation
of medical images).

The Caption task was first proposed as part of the ImageCLEFmedical [4] in 2016. In 2017 and
2018 [5, 6] it comprised two subtasks: concept detection and caption prediction. From 2019 [7] to
2020 [8] the focus shifted to concept detection, extracting Unified Medical Language System® (UMLS) [9]
Concept Unique Identifiers (CUIs) from radiology images. Since 2021 [10] both subtasks have run in
parallel again, with gradually higher-quality, manually annotated data and—in 2023—a switch from
BLEU [11] to BERTScore [12] as the primary caption-prediction metric [13]. The 2024 edition introduced
a small-scale explainability trial and an enlarged metric set.

2025 marks the 9th edition of the ImageCLEFmedical Caption task. Building on the lessons of previous
years, the task now comprises three components:

1. Concept Detection – identification of UMLS concepts in radiology images;
2. Caption Prediction – generation of coherent captions for full images;
3. Explainability – newly promoted to an official subtask: participants must provide human-

interpretable explanations for a designated subset of images, which are manually judged by
a radiologist for interpretability, relevance and creativity.

For caption prediction, the overall ranking is now based on the average across these six metrics,
reflecting both relevance and factuality aspects of the generated captions.

Manual creation of structured knowledge from medical images is slow and error-prone. By bench-
marking automatic systems that detect clinical concepts, compose fluent radiology captions and justify
their outputs, ImageCLEFmedical 2025 continues to stimulate research toward scalable, trustworthy
radiology-image understanding.

As in 2024, the development data are drawn from an extended version of the Radiology Objects in
COntext Version 2 (ROCOv2) dataset [14]. For 2025, this release has been enlarged with additional,
newly released PubMed Central® Open-Access articles whose images and captions were again manually
annotated with modalities. A novelty to this year’s dataset is the inclusion of the imaging modality
optical coherence tomography (OCT), which has been retrospectively annotated for every existing
ROCOv2 image and prospectively annotated for all new articles. The final split now comprises 80 091
training, 17 277 validation, and 19 267 test radiology images, all with updated licensing curation and
UMLS (2022 AB) concept filtering.

This paper presents an overview of the ImageCLEFmedical 2025 Caption task: the task design and
participation (Section 2), data creation (Section 3), evaluation methodology (Section 4), results (Section
5) and conclusions (Section 6). Further information on the other ImageCLEF 2025 tasks can be found in
Ionescu et al. [3].

2. Task and Participation

For the 9th edition, the ImageCLEFmedical Caption task builds on two familiar subtasks:

• T1Concept Detection. Systems predict Unified Medical Language System® (UMLS) Concept
Unique Identifiers (CUIs) [9] directly from radiology images, following the format introduced in
2017 [5].

1https://www.imageclef.org/ [last accessed: 2025-06-01]

https://www.imageclef.org/


• T2Caption Prediction. Systems generate full-sentence captions for each image, a subtask that
returned in 2021 after a pause in 2019–2020.

and introduces a third, officially-graded component:

• ExpExplainability. For a small radiologist-selected subset, each team provides one human-
interpretable explanation (for example a heat-map, bounding boxes or a textual rationale) that
relates the image to the generated caption. This explanation is intended to clarify the model’s
decision-making process and thereby support clinicians in building trust in the model. Explana-
tions are judged manually by a radiologist for interpretability, clinical relevance and creativity.

The 2025 edition also adds six evaluation metrics for caption prediction (see Section 4) and ret-
rospectively annotates the complete ROCOv2 corpus with the new optical coherence tomography
(OCT) modality. To compensate for the greater computational effort and occasional Docker-induced
submission problems, the limit for graded runs per team was raised to 30 for T1 and T2; previously, it
had been set at 10 runs. The Explainability Task (Exp) only allowed one submission, due to manual
evaluation effort.

2.1. Participation Statistics

Eighty research groups signed the End-User Agreement and downloaded the development data. Eleven
of them submitted runs and ten provided accompanying working-note papers. The submissions were
distributed across the tasks as follows:

• Concept Detection (T1): 9 teams, 51 graded runs.
• Caption Prediction (T2): 8 teams, 98 graded runs.
• Explainability (Exp): 2 teams, 2 graded runs.
• Total: 149 graded runs.

Six groups took part in both T1 and T2. Three teams (DeepLens, mapan and LekshmiscopeVIT)
focused on concept detection only, and two (CSMorgan and AI Stat Lab) entered just the caption-
prediction track. Five teams, AUEB NLP Group, UIT-Oggy, CS_Morgan, sakthiii and LekshmiscopeVIT,
had already participated in 2024 and are marked with an asterisk in Table 1.

The 2025 task therefore attracted a participant pool similar in size to earlier editions but generated
more graded submissions, while also promoting explainability to a fully assessed subtask.

3. Data Creation

Figure 1 illustrates a typical sample from this year’s collection. The following subsections describe
the process of data collection, preprocessing, and annotation in detail, highlighting key decisions and
challenges encountered during the creation of the dataset.

3.1. Source and Split

All data originate from articles in the PubMed Central® (PMC) Open-Access subset2 [25]. The devel-
opment data correspond to an extended release of ROCOv2 [14], enlarged with all papers published
between October 2022 and December 2024. Captions were only stripped of URLs and non-English
captions were dropped.

The final dataset is split into 80 091 training, 17 277 validation and 19 267 test images (116 635 in
total).

2https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/ [last accessed: 2025-06-01]

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/


Table 1
Participating groups in the ImageCLEFmedical 2025 Caption task and their graded runs submitted to the three
subtasks.

Team Institution Runs T1 Runs T2 Runs
Exp

AUEB NLP
Group* [15]

Athens University of Economics and Business,
Greece

16 26 1

DeepLens* [16] Iran University of Science and Technology,
Tehran, Iran

14 – –

mapan - 4 – –
UIT-Oggy* [17] University of Information Technology, Ho Chi

Minh City, Vietnam
8 23 –

DS4DH [18] Hunan City University, China 1 11 –
sakthiii* [19] Rajalakshmi Engineering College, Chennai,

India
1 1 –

JJ-VMed [20] Universidad Europea de Valencia, Spain 1 2 1
UMUTeam [21] University of Murcia, Spain 2 2 –
LekshmiscopeVIT* [22] Vellore Institute of Technology, Chennai, India 4 – –
CSMorgan* [23] Morgan State University, Baltimore, USA – 5 –
AI Stat Lab [24] Chung-Ang University, Seoul, Republic of Korea – 28 –

Caption: Computed tomography images after treatment. 
Thoracic SMARCA4‐deficient undifferentiated tumor showing 
osteolytic changes in the ribs (asterisk) is noted. However, pleural 
thickening (yellow arrow) disappears and pleural effusion (yellow 
arrowhead) decreases in the mediastinal window setting.

Concepts:

X-Ray Computed 
Tomography 
(CUI C0040405);

Computed 
tomography 
imaging - action
(CUI C0729619); 

Chest 
(CUI C0817096);

Neoplasms 
(CUI C0027651); 

Pleural effusion 
(disorder) 
(CUI C0032227);

Mediastinum 
(CUI C0025066);

CC BY Utsumi et al. (2022)

Figure 1: Example image, caption and UMLS® CUIs from the ImageCLEFmedical Caption 2025 task (CC-BY,
Utsumi et al. 2022).

3.2. Concept Extraction

Concepts were extracted with MedCAT [26] trained on MIMIC-III [27] and mapped to UMLS 2022AB
CUIs. Only concepts occurring at least ten times and belonging to semantically “visible” TUI groups
were kept; ambiguous or spurious concepts were merged or removed through manual curation.

3.3. Modality and Region Concepts

Each image is manually labelled with an imaging-modality concept. In addition to the five modalities
used in previous editions (X-ray, CT, MRI, ultrasound, PET/PET-CT) the 2025 corpus introduces optical
coherence tomography (OCT, CUI C0920367). OCT was annotated retrospectively for the entire



archive and prospectively for new articles.
Table 2 lists the modality distribution, while Table 3 details the image retrieval in medical applications

(IRMA) region counts.

Table 2
Number of images per modality.

Modality Images

CT 40 913
X-ray 31 827
MRI 18 570
Ultrasound 17 147
Angiography 6 055
PET 1 134
PET/CT 580
OCT 409

Table 3
Distribution of IRMA body-region concepts in X-ray images.

Region CUI Images

Chest C0817096 10 931
Cranium C0037303 5 436
Lower extremity (leg) C0023216 4 563
Abdomen C0000726 3 490
Upper extremity (arm) C1140618 2 188
Pelvis C0030797 1 923
Spine C0037949 1 823
Other / unclear — 1 145
Breast (mamma) C0006141 210

3.4. Concept Statistics

Table 4 compares the concept inventory of the 2025 corpus with the preceding three editions. While
the total image count has increased substantially, the number of unique concepts has grown only
moderately. This reflects the effectiveness of concept pruning and semantic filtering in keeping the
label space manageable.

3.5. Released Sets

• Training set: 80 091 images, 252 772 concept occurrences, 1 949 unique concepts.
• Validation set: 17 277 images, 48 761 concept occurrences, 716 unique concepts.
• Test set: 19 267 images, 24 242 concept occurrences, 702 unique concepts.
• Explainability set: 16 images (two from each modality, including two OCT cases) were selected by

a radiologist based on the clinical relevance of both the images and their corresponding captions
for manual assessment. In addition, examples of how such explanations might look like are
provided, which can be found in Figure 2.

4. Evaluation Methodology

This year, the evaluation procedure was revised to reflect improved methodology and the incorporation
of new tools and metrics. As in previous editions, the subtasks were evaluated independently.



Table 4
Unique concepts and average concepts per image by split for the ImageCLEFmedical Caption datasets
2022–2025.

Year Split Unique concepts Concepts / image

2022
Train 17 210 4.90
Valid 5 126 4.85
Test 4 403 4.97

2023
Train 2 126 3.73
Valid 1 946 3.84
Test 1 936 3.86

2024
Train 1 946 3.15
Valid 1 752 3.21
Test 700 2.82

2025
Train 1 973 3.17
Valid 716 2.83
Test 702 3.06

Figure 2: Example image, to demonstrate how explanations for captions might look like.

In 2025, the AI4MediaBench3 by AIMultimediaLab4 was used as the challenge platform.
For the concept detection subtask, the balanced precision and recall trade-off were measured in terms

of F1-scores. Like last year, a secondary F1-score is computed using a subset of concepts that was
manually curated. On the one hand, this involves the different image modalities (X-ray, Angiography,
Ultrasound, CT, MRI, PET, OCT, and Combined such as PET/CT). On the other hand, if applicable, for
X-ray also the anatomical code for body region examined of IRMA (cranium, chest, upper extremity,
spine, abdomen, pelvis, and lower extremity) was involved.

For caption prediction, system outputs were assessed using a composite score, averaging across six
complementary metrics to jointly capture aspects of relevance and factuality. All individual scores for
each caption are summed and averaged over the number of captions, resulting in the final score.

Relevance was evaluated using four different methods. The first of these is BERTScore [12], which is
a metric that computes a similarity score for each token in the generated text with each token in the
reference text. It uses the pre-trained contextual embeddings from Bidirectional Encoder Representations
from Transformers (BERT) [28]-based models and matches words by cosine similarity. In this work, the

3https://ai4media-bench.aimultimedialab.ro/ [last accessed: 2025-06-02]
4https://www.aimultimedialab.ro/ [last accessed: 2025-06-02]

https://ai4media-bench.aimultimedialab.ro/
https://www.aimultimedialab.ro/


pre-trained model microsoft/deberta-xlarge-mnli5 was used because it is the model that correlates best
with human scoring according to the authors6. Following best practices for caption evaluation reported
by [12], we computed Recall-based BERTScore with inverse document frequency (idf) weighting, using
idf scores derived from the test set to emphasize informative terms. The second metric, ROUGE (Recall-
Oriented Understudy for Gisting Evaluation [29]) score, counts the number of overlapping units such
as n-grams, word sequences, and word pairs between the generated text and the reference. Specifically,
the ROUGE-1 (F-measure) score was calculated, which measures the number of matching unigrams
between the model-generated text and a reference. The third relevance metric BLEURT (BiLingual
Evaluation Understudy with Representations from Transformers) [30] is designed to assess the quality
of natural language generation in English by leveraging a pre-trained model that has been fine-tuned to
emulate human judgments about the quality of the generated text. The strength of BLEURT lies in its
end-to-end training, which enables it to model human judgments effectively and makes it robust to
domain and quality variations. For this evaluation, the BLEURT-20 model was used.

All of the above-mentioned metrics were computed using preprocessed captions that were lowercased
and had punctuation stripped. Numeric values were replaced with the token "number." The captions
were treated as single sentences, regardless of actual sentence boundaries. This step ensures uniformity
and focuses the evaluation on linguistic content.

In addition to the text-based metrics a reference free metric was implemented. The methodology
is based on CLIPScore [31], an innovative metric that diverges from the traditional reference-based
evaluations of image captions. Instead, it aligns with the human approach of evaluating caption quality
without references by evaluating the alignment between text and image content. The original metric
employs Contrastive Language-Image Pretraining (CLIP) [32], a cross-modal model that has been
pre-trained on a massive dataset of image-caption pairs sourced from the web. For this year’s evaluation
the MedImageInsight [33] model was used instead. It is trained using medical images with associated
text and labels from a variety of domains, including X-ray, CT, MRI, OCT, and ultrasound. The model is
used to compute similarity scores between images and text.

To assess the factuality of the generated captions, two complementary metrics were employed. The
UMLS Concept F1-scoreevaluates the overlap of medical entities between the generated and reference
captions. Specifically, medical concepts were extracted using MedCAT [34], with a focus on semantic
types relevant to clinical accuracy as also defined for the MEDCON [35] metric whereas MEDCON
relies on QuickUMLS [36] for concept extraction from both texts. This is followed by calculation
of the F1-score to quantify concept-level agreement. The other factuality metric, AlignScore [37],
employs a deep learning approach based on RoBERTa [38] to measure factual consistency. It involves
the decomposition of extensive texts into more manageable segments and aligning the claims in the
generated caption with the supporting evidence in the reference caption, thereby producing an average
alignment score across all claims.

For the explainability extension, a radiologist was asked to rate both, the caption and the visualisation
of each image in the explainability subset on a 1-5 Likert scale, with 5 being the best score.

The captions were ranked in terms of readability, clinical appropriateness, level of detail, and focus.
The readability scale ranks whether the predicted captions are readable and coherently formulated.
The clinical appropriateness evaluates whether the predicted captions match ground-truth captions
or are clinically plausible. The level of detail is used to assess whether the captions merely describe
visual findings or also interpret underlying clinical concepts. The focus validates the appropriateness of
the scope of the caption and thus penalizes short captions that lack essential observations as well as
excessively long captions that are not focused on the essentials.

The visualisation was assessed based on visual-text coherence, completeness, and focus. The visual-
text coherence measures, if the visualisation is comprehensible in relation to the predicted caption. The
completeness scale assesses, whether the visualisations meet all relevant concepts. The focus validates
the appropriateness of the visualisation.

5https://huggingface.co/microsoft/deberta-xlarge-mnli [last accessed: 2025-06-05]
6https://github.com/Tiiiger/bert_score [last accessed: 2025-06-05]

https://huggingface.co/microsoft/deberta-xlarge-mnli
https://github.com/Tiiiger/bert_score


Each image was rated individually and an average score across categories was reported. In addition,
the radiologist rates the meaningfulness of the overall methodology. The final score was calculated as
the average of all criteria.

5. Results

For the concept detection and caption prediction subtasks, Tables 5 and 6 show the best results from
each of the participating teams. The results will be discussed in this section. The full list of results are
shown in Appendix A in Tables 12, 13 and 15. Finally, Table 9 presents the results for the explainability
subtask.

5.1. Results for the Concept Detection Subtask

In 2025, 9 teams participated in the concept prediction subtask, submitting 51 graded runs. Table 5
presents the best results for each team achieved in the submissions.

Table 5
Performance of the participating teams in the ImageCLEFmedical 2025 Caption concept detection
subtask. Only the best run based on the achieved F1-score is listed for each team, together with the
corresponding secondary F1-score based on manual annotations as well as the team rankings based on
the primary and secondary F1-score. The full results are shown in Table 12 in Appendix A.

Group Name Best Run F1 Secondary F1 Rank (secondary)

AUEB NLP Group 1980 0.5888 0.9484 1 (1)
DeepLens 1725 0.5766 0.9299 2 (2)
mapan 1505 0.5660 0.9298 3 (3)
UIT-Oggy 1892 0.5613 0.9104 4 (4)
DS4DH 1508 0.5225 0.8672 5 (6)
sakthiii 1774 0.4003 0.9082 6 (5)
JJ-VMed 1903 0.3982 0.8329 7 (7)
UMUTeam 1807 0.2398 0.5377 8 (8)
LekshmiscopeVIT 1942 0.1494 0.2298 9 (9)

AUEB NLP Group [15] The AUEB NLP Group based their approach on their past work, which
won the competition many years, but reached second place in the last year. The approach
combined CNNs (EfficientNet-B0 [39], DenseNet-121 [40], and ConvNeXt-Tiny [41]) with per-
label threshold optimization and ensembling strategies, including dual threshold aggregation,
and partial intersection aggregation. The team won the first place with a primary F1-score of
0.5888 and a secondary F1-score of 0.9484.

DeepLens [16] The DeepLens team tackled the concept detection task with an ensemble model
pipeline which combined EfficientNet-B0 [39] and DenseNet-121 [40] under a simple union
ensemble. Both networks were optimized with the ADAM optimizer using the Binary Cross
Entropy with Logits loss function. The output layers of the models were replaced either with
a three-layer feed-forward head or a single linear classifier to finetune the models for multi-
label prediction. The ensemble with the best micro-F1-scorevalidation score was frozen for test
inference. This method delivered the team’s best submission, securing a primary F1-scoreof 0.5766
and a secondary F1-scoreof 0.9299, which placed second overall in the competition. Furthermore,
the DeepLeans team experimented with a K-Nearest Concept-Language-Image Pre-training to
improve image-concept alignment in their ensemble strategy. Although it did not yield the best
quantitative results, it might hold interesting directions for future research.

UIT-Oggy [17] For the concept detection task, the team designed MedCSRA, a novel architecture
featuring a dual-branch design that combines global semantic understanding through global



average pooling with localized class-specific residual attention (CSRA) mechanisms. Four CNN
backbones were evaluated: ResNet-101, DenseNet121, EfficientNet-B4 and EfficientNet-B5. All
were pre-trained on ImageNet and fine-tuned for medical multi-label classification using Binary
Cross Entropy Loss. The final prediction uses a weighted combination of the outputs from the
global and CSRA branches. ResNet-101 achieved the highest F1-score of 0.5613, demonstrating
that specialized attention mechanisms can effectively identify multiple medical concepts in
biomedical images.

DS4DH [18] reformulated concept detection as an image-to-sequence task to leverage transformer-
based models capable of capturing the inherent order of UMLS codes (e.g., modality before anatomy
or pathology). They proposed a compact architecture combining a convolutional neural network
to extract low-dimensional image embeddings (as small as 16 dimensions) with a lightweight
transformer decoder (1 head, 2 layers) that autoregressively generates UMLS code sequences via
cross-attention. Beam search (width = 3) was used during decoding and improved performance.
This approach achieved an F1-score of 0.5225 and a secondary F1-score of 0.8672, ranking the
team fifth and sixth, respectively. To address class imbalance, the team experimented with
focal loss, label smoothing, and pre-trained embeddings (MedCPT [42], CUI2Vec [43]), but none
outperformed their baseline model.

They observed that their model tended to produce short sequences (average length 1.3 CUIs) with
low diversity (15 unique predicted CUIs), which they attributed to dataset bias toward short and
imbalanced annotations. Applying loss masking strategies during training increased the average
sequence length to 3.0 CUIs and raised diversity to 103 unique CUIs. However, this revised model
underperformed in terms of F1-score compared to their baseline submission. The team suggested
this discrepancy may result from the challenge’s F1-score evaluation design, which potentially
favors shorter CUI sequences and penalizes longer, yet possibly correct predictions not aligned
with the ground-truth test data.

sakthiii [19] For the concept detection task, team sakthiii employed a MedCLIP-based transformer
model, which was pre-trained on medical image-caption pairs. In the first stage of their dual-stage
training pipeline, they fine-tuned this MedCLIP model specifically for concept detection. This
process involved training for 11 epochs with a batch size of 32, using the Adam optimizer and
a learning rate of 1e-5. The dataset for this stage consisted of radiology images paired with
UMLS concepts, allowing the model to learn the mappings between visual features and structured
medical terms. Their best model for concept detection achieved an F1-score of 0.4003 and a
secondary F1-score of 0.9082 , placing them eighth in this subtask.

JJ-VMed [20] The JJ-VMed team employed a fine-tuned LLaVA-LLaMA 3 8B model, processing inputs
through a CLIP ViT-Large encoder. Training used prompt-based instruction tuning, and two
output formats were explored: one generating concepts independent from the caption, while the
second embedded them within full-text captions. They achieved a primary F1-score of 0.3982 and
a secondary F1-score of 0.8329, ranking them seventh in this subtask.

UMUTeam [21] Based on the captions generated by a fine-tuned BLIP model, the UMUTeam employed
named entity recognition (SciSpacy), concept retrieval (SapBERT), followed by a BERT-based
reranking classifier, to extract the medical concepts for the concept detection subtask. They
achieved an F1-score of 0.2398 with a secondary F1-score of 0.5377, putting them in eighth place,
showing that this caption-based approach is inferior to multi-label classification systems.

LekshmiscopeVIT [22] Team LekshmiscopeVIT focused on a broader evaluation of different deep
learning architectures to approach the concept detection subtask. The team employed the standard
architectures InceptionV3, DenseNet, and ResNet as well as a custom approach. Randomly
initialized and ImageNet [44] pre-trained models of each of the standard architectures were
fine-tuned on the ROCOv2 dataset for 10 epochs and then compared. Part of each training



pipeline was a uniform pre-processing step during which a multi-label binarizer was applied to
create a binary label matrix for training. The team further experimented with reduction of label
space complexity by limiting predictions to the most frequent concepts. The pre-trained ResNet
approach achieved the team’s best results of 0.1494 in the primary, and 0.2298 in the secondary
F1-score.

The Concept Detection task this year revealed several methodological trends among the participating
teams. The top-performing approaches relied on convolutional neural network (CNN) ensembles,
combining multiple pre-trained architectures, such as EfficientNet, DenseNet, and ResNet. These
ensembles used fine-tuned classification heads and per-label threshold optimization to improve multi-
label prediction accuracy. Both simple and complex ensembling techniques proved effective, suggesting
that leveraging the complementary strengths of different models remains strong.

Although CNNs dominated the leaderboard, several teams explored transformer-based and generative
approaches. These included image-to-sequence formulations and vision-language models, such as
MedCLIP and LLaVA. Though these methods were less competitive in terms of F1-scores, they indicate
a growing interest in multimodal models.

Lower-ranking submissions often relied on caption-based pipelines and traditional CNNs without
extensive optimization or innovative architectures. These underperformed compared to more tailored
solutions.

A comparison of the 2024 and 2025 ImageCLEFmedical Concept Detection subtasks reveals a decline
in primary F1-scores across the leaderboard, suggesting that this year’s task may have been more
challenging or less suited to the models deployed.

Despite this overall decline in primary performance, secondary F1-scores based on manual annotations
remained high and in some cases even improved. For example, the AUEB NLP Group, which participated
in both years, saw a drop in primary F1-score, but an increase in secondary F1-score from 0.9393 to
0.9484, reclaiming the top spot.

By training and evaluating our own baseline model on the data from this year, we could determine
that about 0.1 of the difference in primary F1-score is purely due to the new test dataset, which contains
a much smaller number of unique concepts (see Table 4).

The observed decline in primary F1-scores can likely be attributed to several interrelated factors
stemming from changes in the dataset. First, the slight increase in average concepts per image introduced
greater multi-label complexity, making it more difficult to make fully correct predictions under the strict
F1-score metric. Second, the broader inclusion of imaging modalities, particularly the addition of optical
coherence tomography (OCT) and expanded angiography cases, may have introduced domain shifts
that negatively affected models that were not trained or tuned on such data. Lastly, although concept
filtering improved label quality, it may have also limited the label space, penalizing over-predictive or
less conservative systems.

5.2. Results for the Caption Prediction Subtask

In this edition, the caption prediction subtask attracted 8 teams which submitted 98 graded runs.
Tables 6, 7 and 8 present the results of the submissions.

UMUTeam [21] The UMUTeam employed the BLIP [45] architecture, which consists of a ViT encoder
and a language model decoder, to generate captions for medical images. They fine-tuned a model
which performs well in general image captioning benchmarks, selecting the best model based on
the relevance metric. With a score of 0.9271 for Similarity, 0.5977 for BERTScore Recall, 0.2594
for ROUGE-1, 0.3230 for BLEURT and an overall score of 0.3432, they won the caption prediction
subtask, scoring highest in all but the BERTScore Recall and AlignScore metrics.

DS4DH [18] developed multiple strategies for automatic medical image captioning. First, they fine-
tuned a Vision-Language Model (InstructBLIP-Flan-T5-XL [46]) using selective parameter freezing,



Table 6
Performance of the participating teams in the ImageCLEFmedical 2025 Caption caption prediction
subtask. Only the best run based on the achieved Overall Score is listed for each team as well as the team
rankings based on the Overall Score together with rankings based on Relevance (Rel.) and Factuality
(Fact.) Average. Additional scores are shown in Tables 7 and 8. The full results are shown in Tables 13
and 15 in Appendix A.

Group Name Best Run Overall Relevance Factuality Rank (Rel./Fact.)

UMUTeam 1681 0.3432 0.5268 0.1596 1 (1/1)
DS4DH 1520 0.3362 0.5174 0.1549 2 (2/2)
AI Stat Lab 1900 0.3229 0.5089 0.1369 3 (3/3)
UIT-Oggy 1914 0.3211 0.5076 0.1346 4 (4/4)
AUEB NLP Group 1403 0.3068 0.4759 0.1377 5 (6/5)
JJ-VMed 1896 0.3043 0.4922 0.1165 6 (5/6)
sakthiii 1890 0.2746 0.4481 0.1011 7 (7/7)
CS_Morgan 1815 0.2315 0.3717 0.0917 8 (8/8)

Baseline (Llama 4 Scout) 0.3101 0.5073 0.1128

Table 7
Performance of the participating teams in the ImageCLEFmedical 2025 Caption caption Prediction
subtask for relevance metrics Similarity, BERTScore (Recall), ROUGE-1 and BLEURT. These correspond
to the best Overall-based runs of each team, listed in Table 6. The full results are shown in Tables 13
and 15 in Appendix A.

Group Name Best Run Similarity BERTScore (Recall) ROUGE-1 BLEURT

UMUTeam 1681 0.9271 0.5977 0.2594 0.3230
DS4DH 1520 0.9016 0.6067 0.2516 0.3096
AI Stat Lab 1900 0.8919 0.5823 0.2440 0.3173
UIT-Oggy 1914 0.8798 0.5951 0.2535 0.3020
AUEB NLP Group 1403 0.7947 0.5884 0.2176 0.3030
JJ-VMed 1896 0.8251 0.5953 0.2389 0.3094
sakthiii 1890 0.7957 0.5553 0.1607 0.2806
CS_Morgan 1815 0.5704 0.5180 0.1598 0.2385

Baseline (Llama 4 Scout) 0.9360 0.5598 0.2078 0.3258

Table 8
Performance of the participating teams in the ImageCLEFmedical 2025 Caption caption Prediction
subtask for factuality metrics UMLS Concept F1-score and AlignScore. These correspond to the best
Overall-based runs of each team, listed in Table 6. The full results are shown in Tables 13 and 15 in
Appendix A.

Group Name Best Run UMLS Concept F1 AlignScore

UMUTeam 1681 0.1816 0.1375
DS4DH 1520 0.1682 0.1417
AI Stat Lab 1900 0.1524 0.1213
UIT-Oggy 1914 0.1672 0.1021
AUEB NLP Group 1403 0.1429 0.1325
JJ-VMed 1896 0.1366 0.0964
sakthiii 1890 0.1094 0.0928
CS_Morgan 1815 0.0741 0.1087

Baseline (Llama 4 Scout) 0.1302 0.0955

focusing training on cross-modal alignment while keeping most of the vision and language en-
coders fixed. Second, they implemented a Retrieval-Augmented Generation [47] (RAG) approach



that retrieves visually similar training images and incorporates their captions into the prompt
to guide caption generation. Third, they introduced a Cluster-based RAG strategy that groups
training data by the semantic similarity of CUI codes using MedCPT [42] embeddings, enabling
hierarchical retrieval within medically relevant clusters. Finally, they trained an alignment model
(BioBart-v2-large [48]) using pairs of InstructBLIP-generated and ground-truth captions to refine
caption quality.

Among all approaches, the fine-tuned InstructBLIP model achieved the highest overall score
(0.3708) and ranked first in the recall-based BERTScore metric (0.6067) among all challenge
participants. In contrast, both the alignment model and standard RAG approach underperformed,
likely due to the introduction of noisy or irrelevant information, which reflects the visual simi-
larity but semantic variability of radiology images. The Cluster-based RAG showed moderate
improvements over standard RAG (e.g., overall score improved from 0.3478 to 0.3620). However,
due to possible noise in predicted CUIs (F1-score= 0.5225) from the concept detection subtask, it
still fell short of InstructBLIP. On the validation dataset, Cluster RAG outperformed InstructBLIP
on several metrics when ground-truth CUIs were used. This highlights the critical importance of
accurate concept detection for precise RAG retrieval cues, because even minor inaccuracies in
CUI prediction can introduce semantic noise and significantly degrade caption quality.

AI Stat Lab [24] The team developed a modular framework for medical image captioning that begins
with a two-stage preprocessing pipeline. This includes 2× super-resolution and inpainting to
eliminate bright border artifacts. A dual-encoder setup (SigLIP2 [49] + BioMedCLIP [50]) feeds
into a Q-Former [51], which generates concept-aware tokens used for both captioning and medical
concept classification. A LoRA-tuned [52] Bio-Medical LLaMA-3-8B [53] serves as the decoder.
Six model variants produce captions that are either summarized using GPT-4 [54] or reranked
using custom-designed metrics: BioMedCLIP image-text alignment, BLEURT self-consensus, and
BioBERT [55] centroid proximity. Their best submission used BioMedCLIP alignment, achieved
an overall score of 0.3229 and ranked third overall.

UIT-Oggy [17] For this task, the UIT-Oggy team fine-tuned the BLIP model by using Vision Trans-
former (ViT) to encode images and BERT-based text decoding to generate medical captions.
Images were preprocessed to a uniform resolution of 224×224 and captions were tokenised to a
maximum length of 200 tokens, ensuring compatibility with the vision-language model’s input
requirements. The BLIP model achieved an overall score of 0.3211 for captioning, demonstrating
the effectiveness of vision-language pre-training in adapting to the terminology and context of
the medical domain.

AUEB NLP Group [15] The AUEB NLP Group’s approach on caption prediction involved seven
primary systems: A finetuned InstructBLIP [46] model, was extended by a synthesizer and
multi-synthesizer approach, an LM-Fuser, and an Distance from Median Maximum Concept
Similarity (DMMCS) mechanism. In addition a test-time-reranker based on MedCLIP [56] and a
reinforcement learning-based Mixer were implemented. The team’s best results were reached for
the finetuned InstructBLIP model, which reached an overall rating of 0.3068 and the fifth rank in
the challenge.

JJ-VMed [20] In the caption prediction task, JJ-VMed reused their LLaVA-LLaMA 3 model for initial
generation, followed by post-processing with LLaMA 3.1. With a score of 0.8251 for Similarity,
0.5953 for BERTScore Recall, 0.2389 for ROUGE-1, 0.3094 for BLEURT and an overall score of
0.3043, they ranked sixth place in the caption prediction subtask.

sakthiii [19] Following the concept detection training, the team transitioned to the caption prediction
task by reusing the same MedCLIP model weights. This second stage aimed to leverage the se-
mantic understanding gained during concept identification to help generate contextually relevant
textual descriptions for the images. For this task, each image was preprocessed, converted to



RGB format, and then paired with its corresponding caption from the dataset. The MedCLIP
processor and tokenization pipeline from the Transformers library were utilized to prepare these
multimodal inputs for the model. In the caption prediction task, their approach yielded scores of
0.7957 for Similarity, 0.5553 for BERTScore Recall, 0.1607 for ROUGE-1, and 0.2806 for BLEURT ,
also resulting in an eighth-rank achievement.

CS_Morgan [23] The CS_Morgan team investigated six distinct captioning pipelines by fine-tuning
three vision-language backbones—Qwen-2B, Qwen2.5-3B, and SmolVLM-500M on the ROCOv2
dataset. They evaluated a vanilla LoRA-based adaptation (Submissions 1–3) and a modality-
conditioned variant (Submissions 4–6) in which a ResNet-50 classifier (trained from scratch on
four modalities: CT, MRI, Ultrasound, Radiograph) first predicts the image modality. During
inference, the predicted modality label is concatenated to the prompt (e.g., “CT image: [image].
Describe the medical image.”) to guide the caption generator toward modality-specific terminology.
Across these six runs, Qwen-2B achieved the highest Overall score (0.2537) when fine-tuned
without classification, while both Qwen2.5-3B and SmolVLM demonstrated improved BLEURT and
MedCATs scores under modality-conditioned prompting. This two-stage pipeline highlights that
even smaller models like SmolVLM-500M can approach mid-scale performance when provided
with structured modality cues.

Baseline For this year’s baseline models in the caption prediction subtask, we utilized off-the-shelf
vision-language models to generate appropriate captions based on the challenge images. Specifi-
cally, we evaluated the performance of the following instruction-tuned models: Meta’s LLaMA
4 Scout (17Bx16E) Instruct [57], Google DeepMind’s Gemma 3 27B Instruct [58], and Alibaba
Cloud’s Qwen2.5-VL 32B Instruct [59]. Each model was prompted individually with the challenge
images and the following standardized instruction prompt in-context:

"You are a medical expert contributing to a peer-reviewed scientific journal. Your task
is to write a caption for a medical image, exactly as it would appear beneath a figure
in a PubMed-indexed article. Concisely describe the clinical content of the image,
identifying the imaging modality, key medical concepts, anatomical structures, visible
markings, and any relevant abnormalities or pathologies. Where appropriate, include
standard abbreviations in addition to full terms for modality, medical concepts, and
pathologies (e.g., ’magnetic resonance imaging (MRI)’). Do not include any explana-
tions, introductions, titles, figure numbers (e.g., ’Figure 1:’ / ’Fig 1:’), references, or
bullet points. Text only the caption."

To ensure reproducibility, we employed a deterministic decoding strategy by setting the Top-k
sampling parameter to 𝑘 = 1, thereby always selecting the most likely predicted token at each
step. Among the three baseline models evaluated, Meta’s LLaMA 4 Scout (17Bx16E) Instruct
model performed best, obtaining an overall challenge score of 0.3101. This result positioned it
approximately in the middle range of the submitted participant approaches. Notably, LLaMA 4
Scout achieved the highest scores in the Similarity metric (0.9369) and BLEURT metric (0.3258).

In the 2025 ImageCLEFmedical Caption Prediction subtask, all participating teams used vision-
language models (VLMs) as the basis for their methods, showing a clear trend of using recent advances
in multimodal architectures. Most submissions used or fine-tuned Transformer-based models, such as
BLIP, InstructBLIP, and LLaMA variants. This indicates a reliance on pretrained models with strong
image-text alignment capabilities. Several teams incorporated retrieval-augmented generation (RAG),
multi-stage pipelines, or modular architectures to improve alignment with medical content. However,
performance gains from these methods varied depending on the accuracy of supporting components,
such as concept detection systems. Additionally, some teams used post-processing strategies, such
as reranking or summarization. Despite the variety of approaches, models with direct fine-tuning on
medical data and minimal architectural complexity often outperformed more elaborate pipelines. This
result highlights the continued relevance of focused adaptation.



The results of the ImageCLEFmedical 2025 Caption Prediction subtask indicate a notable shift in
evaluation priorities from general linguistic similarity toward a more balanced assessment of relevance
and clinical factuality. Teams such as UMUTeam and DS4DH exhibited strong performance across both
the relevance and factuality dimensions, outperforming several returning participants.

The analysis indicates that linguistic similarity metrics, such as BERTScore and ROUGE, demonstrate
a high degree of consistency with those observed in the previous year, suggesting stable performance in
terms of surface-level textual alignment. Embedding-based similarity scores are notably elevated among
the top-performing submissions, suggesting that the generated captions may encompass semantically
relevant content that extends beyond the scope of the original reference captions. This finding suggests
a potential discrepancy between lexical overlap and underlying semantic alignment. Factuality-oriented
metrics such as UMLS Concept F1-score and AlignScore remain relatively low, underscoring the inherent
difficulty of ensuring clinical accuracy in generated captions. However, reliance on the original captions
as the sole reference may limit the effectiveness of these scores in evaluating the full range of medically
plausible outputs.

5.3. Results for the Explainability Subtask

This year, two teams participated in the explainability subtask. Table 9 presents the summarised results
for both teams. In addition,

Table 9
Performance of the participating teams in the ImageCLEFmedical 2025 Caption caption prediction
explainability extension.

Group Name Overall Caption Visualization Methodology

AUEB-NLP-Group 3.2 3.3 2.8 4.0
JJ-VMed 2.6 3.2 1.9 2.0

Table 10 presents the results of the caption sub-scale and

Table 10
Performance of the participating teams in the ImageCLEFmedical 2025 Caption caption prediction
explainability extension, caption subscales.

Group Name Average score Readability Clinical appropriateness Level of detail Focus

AUEB-NLP-Group 3.3 4.5 2.7 2.6 3.3
JJ-VMed 2.6 3.4 2.4 2.8 4.1

Table 11 those of the visualisation sub-scale.

Table 11
Performance of the participating teams in the ImageCLEFmedical 2025 Caption caption prediction
explainability extension, visualization subscales.

Group Name Average score Visual-text coherence Completeness Focus

AUEB-NLP-Group 2.8 3.1 2.8 2.6
JJ-VMed 1.9 1.9 1.9 1.9

AUEB NLP Group [15] The AUEB NLP Group extracted UMLS concepts of the captions generated
by their finetuned InstructBLIP [46] model using a biomedical NER model of the ScispaCy library.
GPT-4o was used to identify bounding boxes for these concepts. The group reached the best
overall rating of 3.2 by the radiologist. However, it should be noted that the explainability



approach focuses solely on the generated captions and does not involve the black-box model
itself, which means it does not enhance the radiologist’s trust in the model’s predictions.

JJ-VMed [20] For the explainability task, JJ-VMed implemented a three-phase approach: Spatial
mapping using GPT-4 and GPT-4V to link concepts and textual descriptions with image regions,
segmentation and object detection using SAM [60] (Segment Anything Model) and YOLOv8 [61],
as well as visualisation heuristics, such as arrow-following and keypoint-detection. The outputs
included bounding boxes, segmentation masks, and heatmaps. The team achieved an overall
rating of 2.6. Similar to the winning approach, this method does not incorporate the black-box
model itself, and therefore the explanations do not contribute to increasing trust in the model’s
predictions.

In summary, both approaches used bounding boxes to visualise the connection between the images and
specific concepts of the captions. The JJ-VMed team also provided heatmaps. Both visualisation methods
are clinically valid. Although similar visualisation methods were used, the underlying techniques used
for generation strongly differed. While the AUEB NLP group combined NER with GPT-4o to generate
bounding boxes, the JJ-VMed combined GPT-4V models with YOLO object detection and Segment
anything models (SAM) for segmentation. Both of these methods used to generate the explainability
visualisations are based on external models. These models have no direct integration with the black-box
model responsible for generating the captions. In conclusion, the visualizations do not contribute to
increase the clinicians’ trust in the presented captioning model. More appropriate approaches for this
task would be to use attention maps [62], GradCAM [63], or Layer-wise Relevance Propagation (LRP)
[64], to generate model-intrinsic explanations that highlight the regions or features within the image
that actually influenced the captioning output, thereby providing more meaningful insights into the
model’s decision-making process.

During the manual validation, it was found that both participating teams were generally able to
identify the imaging modality and the approximate anatomical region depicted in the images. However,
substantial limitations were observed in the accurate identification and spatial localization of anatomical
structures and pathological findings. A recurring issue across both submissions involved the inaccurate
placement, scale, and labeling of bounding boxes. Frequently, the annotations only partially covered the
target anatomical entities or failed to capture them entirely. Both teams generated syntactically coherent
and clinically plausible captions, though with notable differences in level of detail and accuracy. The
AUEB NLP Group demonstrated greater accuracy in the identification and localisation of anatomical
entities, resulting in more precise but less informative annotations. In contrast, JJ-VMed produced more
detailed and descriptive captions, albeit often based on incorrect concept detection.

6. Conclusion

The 9th edition of the ImageCLEFmedical Caption task continued its evolution with three components:
the established Concept Detection and Caption Prediction subtasks, and the promotion of Explainability
to a fully graded subtask. This year’s challenge introduced an enlarged dataset featuring the new Optical
Coherence Tomography (OCT) modality and a revised evaluation framework for captioning. The task
attracted 11 teams who submitted a total of 149 graded runs, a substantial increase in submissions
fostered by a higher run quota. Participation was balanced, with six teams entering both core subtasks,
three focusing solely on concept detection, and two on caption prediction. Two teams took on the new
explainability challenge.

For the concept detection subtask, the top-performing methods continued to rely on powerful en-
sembles of Convolutional Neural Networks (CNNs). However, a notable trend was the exploration of
transformer-based and generative approaches by several teams, signalling a potential shift in methodol-
ogy for future challenges.

In the caption prediction subtask, a clear consensus emerged around vision-language models (VLMs),
with all teams leveraging architectures like BLIP, LLaMA, and their variants. Interestingly, direct



fine-tuning on medical data often outperformed more elaborate pipelines, such as Retrieval-Augmented
Generation (RAG), which proved sensitive to the quality of their retrieval components, highlighting the
challenge of system interdependencies.

In a reversal from 2024, primary F1-scores for concept detection saw a general decline across the
leaderboard. This is attributed to the increased difficulty of the 2025 dataset, which featured new
modalities like OCT and greater multi-label complexity. Despite this, secondary F1-scores on curated
concepts remained high, indicating that models still perform robustly on core clinical findings.

The introduction of a composite score for caption prediction, averaging six metrics for relevance and
factuality, successfully shifted the focus toward a more holistic evaluation. While relevance scores were
strong, factuality metrics like UMLS F1-scoreand AlignScore remain modest across all submissions,
underscoring that generating clinically accurate text is still the primary hurdle for the field. Notably,
an off-the-shelf LLaMA 4 Scout baseline proved competitive, establishing a strong benchmark and
demonstrating that while large foundation models are powerful, specialised fine-tuning still provides a
winning edge.

Looking ahead, a primary focus for the 2026 challenge will be on advancing the maturity of the
explainability task. This year’s initial submissions relied on post-hoc visualisations generated by
external models. While a valid first step, these methods do not offer insights into the captioning model’s
internal decision-making process. Future iterations will therefore strongly encourage the development
of model-intrinsic explanations, such as attention maps or GradCAM, to foster genuine trust in the
underlying VLM. Furthermore, the 2026 edition will broaden the task’s scope and realism. The dataset
will be extended again with recent PubMed Central publications, and to address the multilinguality of
scientific literature, non-English captions will be translated and incorporated into the dataset, whereas
previously they were omitted. For images that lack a direct caption, a baseline description will be
generated for the dataset by using the context from the source article. The introduction of multilingual
data and a continued focus on model transparency are intended to stimulate further research toward
capable and reliable medical image understanding systems.
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Table 12
Performance of the participating teams in the ImageCLEFmedical 2025 Concept Detection subtask.

Group Name Run F1 Secondary F1

AUEB NLP Group 1980 0.588788 0.948442
AUEB NLP Group 1981 0.588005 0.950632
AUEB NLP Group 1979 0.587366 0.952266
AUEB NLP Group 1977 0.586759 0.944906
AUEB NLP Group 1982 0.586628 0.950797
AUEB NLP Group 1978 0.586606 0.946598
AUEB NLP Group 1976 0.586443 0.943558
AUEB NLP Group 1975 0.5858 0.938881
AUEB NLP Group 1983 0.585592 0.951541
AUEB NLP Group 1986 0.585395 0.958925
AUEB NLP Group 1771 0.584075 0.948869
AUEB NLP Group 1970 0.581914 0.952065
AUEB NLP Group 1973 0.581705 0.946296
AUEB NLP Group 1974 0.580833 0.933403
AUEB NLP Group 1985 0.577306 0.945636
DeepLens 1375 0.576579 0.929936
DeepLens 1725 0.576579 0.929936
DeepLens 1704 0.576411 0.923058
AUEB NLP Group 1984 0.575555 0.944689
DeepLens 1678 0.575385 0.915613
DeepLens 1512 0.575199 0.930402
DeepLens 1677 0.574419 0.922487
DeepLens 1707 0.573931 0.911556
DeepLens 1703 0.572481 0.92337
DeepLens 1513 0.572446 0.930584
DeepLens 1705 0.571973 0.912433
DeepLens 1728 0.571531 0.920061
DeepLens 1514 0.571071 0.916518
DeepLens 1706 0.569956 0.911898
DeepLens 1726 0.569058 0.901976
mapan 1505 0.565985 0.929801
mapan 1658 0.565037 0.925401
mapan 1361 0.564746 0.929101
mapan 1657 0.56174 0.925503
UIT-Oggy 1892 0.561317 0.910382
UIT-Oggy 1894 0.561317 0.910382
DS4DH 1508 0.522459 0.867173
UIT-Oggy 1950 0.5163 0.8268
UIT-Oggy 1971 0.454259 0.719997
UIT-Oggy 1969 0.445994 0.664261
sakthiii 1774 0.400278 0.908151
JJ-VMed 1903 0.398163 0.83292
UMUTeam 1807 0.239768 0.53766
UIT-Oggy 1732 0.197456 0.363732
UMUTeam 1806 0.188454 0.539004
LekshmiscopeVIT 1942 0.149379 0.229757
LekshmiscopeVIT 1928 0.14405 0.221592
LekshmiscopeVIT 1935 0.143856 0.225208
LekshmiscopeVIT 1931 0.14368 0.230574
UIT-Oggy 1387 0.000675 0
UIT-Oggy 1733 0.000408 0.000245



Table 13
Performance of the participating teams in the ImageCLEFmedical 2025 Caption Prediction for the relevance
metrics Similarity, BERTScore (Recall), ROUGE-1 and BLEURT.

Group Name Run Similarity BERTScore (Recall) ROUGE-1 BLEURT Average

UMUTeam 1681 0.9270669902 0.5976714391 0.2594154991 0.323028482 0.5267956026
UMUTeam 1651 0.927015094 0.5976714391 0.2594154991 0.323028482 0.5267826286
DS4DH 1520 0.9016275484 0.6067308264 0.2516020917 0.3095523716 0.5173782095
DS4DH 1713 0.901575798 0.6067308264 0.2516020917 0.3095523716 0.5173652719
DS4DH 1735 0.8902308449 0.6033844645 0.2420076118 0.3087292771 0.5110880496
DS4DH 1714 0.8900415234 0.6033844645 0.2420076118 0.3087292771 0.5110407192
DS4DH 1946 0.8626234373 0.6010897754 0.2497290254 0.3063632513 0.5049513723
AI Stat Lab 1900 0.8919229234 0.5822740783 0.2439531842 0.3172543037 0.5088511224
AI Stat Lab 1965 0.9008491427 0.5812832767 0.2397171258 0.3185598757 0.5101023552
AI Stat Lab 1951 0.9008150686 0.5812832767 0.2397171258 0.3185598757 0.5100938367
UIT-Oggy 1914 0.8798202189 0.5951423837 0.2535223392 0.3020021864 0.507621782
UIT-Oggy 1922 0.8795908477 0.5951423837 0.2535223392 0.3020021864 0.5075644393
UIT-Oggy 1937 0.8793885703 0.5951423837 0.2535223392 0.3020021864 0.5075138699
UIT-Oggy 1911 0.8790418888 0.5951423837 0.2535223392 0.3020021864 0.5074271995
DS4DH 1662 0.8740206857 0.598339581 0.2339253215 0.3094411571 0.5039316863
AI Stat Lab 1952 0.9011289068 0.5793446009 0.244807675 0.3194920946 0.5111933193
AI Stat Lab 1944 0.851023204 0.5853606745 0.2436787283 0.3178475372 0.499477536
AI Stat Lab 1940 0.8506289832 0.5831456219 0.2422876358 0.3163584231 0.498105166
AI Stat Lab 1947 0.8453687491 0.5801300292 0.2389158623 0.3176919038 0.4955266361
UIT-Oggy 1908 0.8795646934 0.5922596574 0.2474369465 0.2980985607 0.5043399645
UIT-Oggy 1912 0.8795351264 0.5922596574 0.2474369465 0.2980985607 0.5043325727
DS4DH 1902 0.867253701 0.5952384799 0.2295892987 0.3099015828 0.5004957656
UIT-Oggy 1916 0.8794870123 0.5922596574 0.2474369465 0.2980985607 0.5043205442
DS4DH 1525 0.8672293565 0.5952384799 0.2295892987 0.3099015828 0.5004896795
UIT-Oggy 1936 0.8794485511 0.5922596574 0.2474369465 0.2980985607 0.5043109289
UIT-Oggy 1910 0.879448055 0.5922596574 0.2474369465 0.2980985607 0.5043108049
UIT-Oggy 1907 0.8794236755 0.5922596574 0.2474369465 0.2980985607 0.50430471
UIT-Oggy 1906 0.8793601247 0.5922596574 0.2474369465 0.2980985607 0.5042888223
UIT-Oggy 1918 0.8793462955 0.5922596574 0.2474369465 0.2980985607 0.504285365
UIT-Oggy 1905 0.8793214054 0.5922596574 0.2474369465 0.2980985607 0.5042791425
UIT-Oggy 1920 0.8792710703 0.5922596574 0.2474369465 0.2980985607 0.5042665587
UIT-Oggy 1909 0.8792222183 0.5922596574 0.2474369465 0.2980985607 0.5042543457
UIT-Oggy 1913 0.8791593534 0.5922596574 0.2474369465 0.2980985607 0.5042386295
UIT-Oggy 1917 0.8790993466 0.5922596574 0.2474369465 0.2980985607 0.5042236278
UIT-Oggy 1915 0.8789722703 0.5922596574 0.2474369465 0.2980985607 0.5041918587
AI Stat Lab 1941 0.8436483235 0.5823160331 0.2431369998 0.3154446557 0.496136503
AI Stat Lab 1695 0.84912194 0.5774936852 0.2389612648 0.3154152172 0.4952480268
AI Stat Lab 1901 0.8455747573 0.5756069469 0.2351401032 0.3124395254 0.4921903332
DS4DH 1344 0.8324795592 0.5963964174 0.2380531842 0.3054558349 0.4930962489
UIT-Oggy 1224 0.8599589108 0.5886605787 0.2439080163 0.2945956769 0.4967807957
UIT-Oggy 1289 0.8597930593 0.5886605787 0.2439080163 0.2945956769 0.4967393328
UIT-Oggy 1204 0.8597542462 0.5886605787 0.2439080163 0.2945956769 0.4967296295
UIT-Oggy 1219 0.8597205655 0.5886605787 0.2439080163 0.2945956769 0.4967212094
AI Stat Lab 1673 0.8364538401 0.5741285064 0.232773627 0.3129990471 0.4890887552
AI Stat Lab 1729 0.8430352433 0.583511695 0.2331348627 0.3131518531 0.4932084135
AUEB NLP Group 1403 0.7946814175 0.5884477399 0.2176475984 0.302975852 0.4759381519
AI Stat Lab 1948 0.8686241956 0.577509811 0.2173791759 0.31989704 0.4958525556
AUEB NLP Group 1463 0.7942309996 0.5930055156 0.2192303479 0.3013233487 0.4769475529
AUEB NLP Group 1462 0.7940360448 0.593092524 0.2190622343 0.3011381619 0.4768322413
AI Stat Lab 1693 0.8202862609 0.5776584378 0.2269654242 0.3094469583 0.4835892703
AI Stat Lab 1405 0.8222836481 0.5756415949 0.2279223778 0.3094332639 0.4838202212
JJ-VMed 1896 0.8251128696 0.5952554406 0.2388722869 0.3094253234 0.4921664801
JJ-VMed 1953 0.8250990632 0.5952554406 0.2388722869 0.3094253234 0.4921630285



Group Name Run Similarity BERTScore (Recall) ROUGE-1 BLEURT Average

AUEB NLP Group 1717 0.7939443954 0.5908580871 0.2174402227 0.3004115043 0.4756635524
AI Stat Lab 1949 0.8605397462 0.5755094226 0.2194102787 0.3179662772 0.4933564312
AUEB NLP Group 1968 0.7885883406 0.5950158604 0.2150092584 0.2925783725 0.472797958
AI Stat Lab 1939 0.815931258 0.5759145452 0.2250088776 0.3089080595 0.4814406851
AI Stat Lab 1759 0.8871127837 0.5714247114 0.2135729257 0.3267615565 0.4997179943
AUEB NLP Group 1724 0.7896534529 0.5938921733 0.2121607527 0.2897385987 0.4713612444
AI Stat Lab 1972 0.866789733 0.5741138853 0.2102240107 0.3195298643 0.4926643733
AI Stat Lab 1407 0.8272838955 0.5709968858 0.2220934254 0.3048902393 0.4813161115
DS4DH 1715 0.8517214244 0.5813874618 0.2058265321 0.30820145 0.4867842171
DS4DH 1740 0.8515940058 0.5813874618 0.2058265321 0.30820145 0.4867523624
AI Stat Lab 1769 0.8692591188 0.5751669697 0.2077211375 0.3227973895 0.4937361539
AI Stat Lab 1760 0.874319018 0.5692727362 0.2056533176 0.3228536042 0.493024669
AI Stat Lab 1758 0.8737519664 0.5682426019 0.2050639657 0.3214654774 0.4921310028
AI Stat Lab 1938 0.8627533969 0.5704782898 0.2031508481 0.3197355222 0.4890295143
AI Stat Lab 1757 0.8715797625 0.5687446644 0.2011842945 0.3195840435 0.4902731912
AI Stat Lab 1408 0.7723425438 0.574463241 0.2269994767 0.3093488286 0.4707885225
AUEB NLP Group 1718 0.7844345662 0.5896227542 0.2148468288 0.3043625319 0.4733166703
AI Stat Lab 1943 0.8637755594 0.57226763 0.2015586806 0.3175529241 0.4887886985
AUEB NLP Group 1721 0.7897891572 0.5813948544 0.2138169409 0.311333959 0.4740837278
AUEB NLP Group 1723 0.7917244991 0.577736818 0.217124953 0.312086697 0.4746682417
AUEB NLP Group 1958 0.7725077319 0.5872149247 0.2081816026 0.3010042339 0.4672271233
AUEB NLP Group 1957 0.7721005534 0.5872149247 0.2081816026 0.3010042339 0.4671253286
AUEB NLP Group 1669 0.7406335963 0.5916328686 0.2129158395 0.2991840382 0.4610915857
AUEB NLP Group 1954 0.7348429915 0.5898034716 0.2134433145 0.3028956126 0.4602463476
AUEB NLP Group 1670 0.7361830034 0.5903139834 0.2140566332 0.3065920633 0.4617864208
AUEB NLP Group 1960 0.6777612398 0.545355592 0.1814278054 0.2582794544 0.4157060229
AUEB NLP Group 1722 0.7944573759 0.5441874041 0.1984621327 0.321868093 0.4647437514
AUEB NLP Group 1720 0.7521774647 0.5748713989 0.2050792956 0.3057612504 0.4594723524
AUEB NLP Group 1716 0.6842017212 0.5380596983 0.1594842126 0.2874211724 0.4172917011
AUEB NLP Group 1719 0.7518677714 0.5686053592 0.2018762512 0.3053330915 0.4569206184
AUEB NLP Group 1962 0.653930667 0.5620845325 0.1868267796 0.2585293672 0.4153428366
AUEB NLP Group 1961 0.6648839592 0.5472293767 0.1813993066 0.2637027918 0.4143038585
sakthiii 1890 0.7957256077 0.5552566792 0.1606543695 0.2805677495 0.4480511015
AUEB NLP Group 1963 0.6497840212 0.5599914827 0.1886038364 0.257882338 0.4140654196
AUEB NLP Group 1966 0.6529185566 0.565940854 0.1910083614 0.2770356284 0.4217258501
AUEB NLP Group 1967 0.6326793988 0.5615289665 0.1928296088 0.2850164847 0.4180136147
AUEB NLP Group 1959 0.7378352437 0.5350710091 0.1805768485 0.317518852 0.4427504883
AUEB NLP Group 1402 0.7407298697 0.5469746038 0.1469707576 0.2726336208 0.426827213
UIT-Oggy 1386 0.6518306492 0.3994705669 0.1188318905 0.2903692437 0.3651255876
AI Stat Lab 1245 0.6131234597 0.530113321 0.1799603324 0.2837410142 0.4017345318
CS_Morgan 1815 0.5703600506 0.517985392 0.1598199153 0.238530669 0.3716740067
CS_Morgan 1945 0.4201825029 0.5374972128 0.1360990778 0.2576351634 0.3378534892
CS_Morgan 1817 0.4455569753 0.5295828721 0.08732785488 0.2026097055 0.316269352
CS_Morgan 1955 0.3924821619 0.5089190354 0.1346502289 0.2163842754 0.3131089254
CS_Morgan 1956 0.4506571947 0.5110622933 0.0919092927 0.20395449 0.3143958177

Table 15
Performance of the participating teams in the ImageCLEFmedical 2025 Caption Prediction for the factuality
metrics UMLS Concept F1-scoreand AlignScore.

Group Name Run UMLS Concept F1 AlignScore Average

UMUTeam 1681 0.181597074 0.1375067978 0.1595519359
UMUTeam 1651 0.181597074 0.1375067978 0.1595519359
DS4DH 1520 0.1681505412 0.1417267149 0.154938628
DS4DH 1713 0.1681505412 0.1417267149 0.154938628



Group Name Run UMLS Concept F1 AlignScore Average

DS4DH 1735 0.1607845314 0.1300015817 0.1453930566
DS4DH 1714 0.1607845314 0.1300015817 0.1453930566
DS4DH 1946 0.1545091995 0.12863346 0.1415713298
AI Stat Lab 1900 0.152401917 0.1213079496 0.1368549333
AI Stat Lab 1965 0.1485685306 0.1161946781 0.1323816043
AI Stat Lab 1951 0.1485685306 0.1161946781 0.1323816043
UIT-Oggy 1914 0.1672053088 0.1020638557 0.1346345822
UIT-Oggy 1922 0.1672053088 0.1020638557 0.1346345822
UIT-Oggy 1937 0.1672013955 0.1020638557 0.1346326256
UIT-Oggy 1911 0.1672053088 0.1020638557 0.1346345822
DS4DH 1662 0.1554253529 0.1175877731 0.136506563
AI Stat Lab 1952 0.1478996923 0.107244806 0.1275722492
AI Stat Lab 1944 0.1535761911 0.1233331983 0.1384546947
AI Stat Lab 1940 0.1539626853 0.121640157 0.1378014212
AI Stat Lab 1947 0.1520396375 0.1264092892 0.1392244633
UIT-Oggy 1908 0.1671403074 0.08817711816 0.1276587128
UIT-Oggy 1912 0.1671403074 0.08817711816 0.1276587128
DS4DH 1902 0.1519294103 0.1110485002 0.1314889553
UIT-Oggy 1916 0.1671403074 0.08817711816 0.1276587128
DS4DH 1525 0.1519294103 0.1110485002 0.1314889553
UIT-Oggy 1936 0.1671403074 0.08817711816 0.1276587128
UIT-Oggy 1910 0.1671403074 0.08817711816 0.1276587128
UIT-Oggy 1907 0.1671442207 0.08817711816 0.1276606694
UIT-Oggy 1906 0.1671403074 0.08817711816 0.1276587128
UIT-Oggy 1918 0.1671442207 0.08817711816 0.1276606694
UIT-Oggy 1905 0.1671403074 0.08817711816 0.1276587128
UIT-Oggy 1920 0.1671403074 0.08817711816 0.1276587128
UIT-Oggy 1909 0.1671442207 0.08817711816 0.1276606694
UIT-Oggy 1913 0.1671442207 0.08817711816 0.1276606694
UIT-Oggy 1917 0.1671442207 0.08817711816 0.1276606694
UIT-Oggy 1915 0.1671403074 0.08817711816 0.1276587128
AI Stat Lab 1941 0.1512932382 0.1149847237 0.1331389809
AI Stat Lab 1695 0.1486805908 0.1167159104 0.1326982506
AI Stat Lab 1901 0.1479159041 0.1145724355 0.1312441698
DS4DH 1344 0.1409897282 0.1191117719 0.1300507501
UIT-Oggy 1224 0.1591619369 0.0917596987 0.1254608178
UIT-Oggy 1289 0.1591619369 0.0917596987 0.1254608178
UIT-Oggy 1204 0.1591619369 0.0917596987 0.1254608178
UIT-Oggy 1219 0.1591580237 0.0917596987 0.1254588612
AI Stat Lab 1673 0.1439318728 0.1219713989 0.1329516358
AI Stat Lab 1729 0.1391716321 0.1075658474 0.1233687398
AUEB NLP Group 1403 0.1428841514 0.132528786 0.1377064687
AI Stat Lab 1948 0.1339785951 0.09510961553 0.1145441053
AUEB NLP Group 1463 0.1418998018 0.1229888817 0.1324443418
AUEB NLP Group 1462 0.1418848072 0.1230587846 0.1324717959
AI Stat Lab 1693 0.1403268954 0.1101189418 0.1252229186
AI Stat Lab 1405 0.138163306 0.1117387904 0.1249510482
JJ-VMed 1896 0.1365865963 0.09636041502 0.1164735057
JJ-VMed 1953 0.1365896034 0.09636041502 0.1164750092
AUEB NLP Group 1717 0.1428581972 0.1212715175 0.1320648574
AI Stat Lab 1949 0.135009399 0.09302195493 0.114015677
AUEB NLP Group 1968 0.1416362042 0.1249606724 0.1332984383
AI Stat Lab 1939 0.1384932591 0.1104100202 0.1244516397
AI Stat Lab 1759 0.1339573047 0.07731010822 0.1056337064
AUEB NLP Group 1724 0.1420931805 0.1256619378 0.1338775591
AI Stat Lab 1972 0.1298322027 0.08978797749 0.1098100901
AI Stat Lab 1407 0.1319701123 0.1008284354 0.1163992738



Group Name Run UMLS Concept F1 AlignScore Average

DS4DH 1715 0.1317131746 0.09011638678 0.1109147807
DS4DH 1740 0.1317131746 0.09011638678 0.1109147807
AI Stat Lab 1769 0.1281333934 0.07762737151 0.1028803824
AI Stat Lab 1760 0.1285401193 0.07700460129 0.1027723603
AI Stat Lab 1758 0.1275018379 0.07555846518 0.1015301515
AI Stat Lab 1938 0.1236428821 0.08431520399 0.103979043
AI Stat Lab 1757 0.125356389 0.07871790992 0.1020371495
AI Stat Lab 1408 0.120136846 0.1221238774 0.1211303617
AUEB NLP Group 1718 0.1332347603 0.1031040788 0.1181694195
AI Stat Lab 1943 0.1242196908 0.0795414926 0.1018805917
AUEB NLP Group 1721 0.1264694028 0.1061366883 0.1163030455
AUEB NLP Group 1723 0.1318383455 0.09723908109 0.1145387133
AUEB NLP Group 1958 0.1313131377 0.1048361156 0.1180746266
AUEB NLP Group 1957 0.1313131377 0.1048361156 0.1180746266
AUEB NLP Group 1669 0.1281878816 0.1071699227 0.1176789021
AUEB NLP Group 1954 0.1269069081 0.1023208849 0.1146138965
AUEB NLP Group 1670 0.126466453 0.09754210518 0.1120042791
AUEB NLP Group 1960 0.1038346088 0.20580824 0.1548214244
AUEB NLP Group 1722 0.1210673216 0.08515363201 0.1031104768
AUEB NLP Group 1720 0.1149024835 0.09374551904 0.1043240013
AUEB NLP Group 1716 0.08085937435 0.2013026187 0.1410809965
AUEB NLP Group 1719 0.1129864203 0.08519079867 0.09908860949
AUEB NLP Group 1962 0.103754184 0.1684078371 0.1360810105
AUEB NLP Group 1961 0.09976216893 0.1706447497 0.1352034593
sakthiii 1890 0.1094381488 0.09281623394 0.1011271914
AUEB NLP Group 1963 0.1021655207 0.1626846656 0.1324250931
AUEB NLP Group 1966 0.09722323349 0.1471662273 0.1221947304
AUEB NLP Group 1967 0.09908635031 0.1305662774 0.1148263139
AUEB NLP Group 1959 0.09507913073 0.07194208767 0.0835106092
AUEB NLP Group 1402 0.09692104503 0.09017681921 0.09354893212
UIT-Oggy 1386 0.09659835594 0.1357863288 0.1161923424
AI Stat Lab 1245 0.06223023044 0.09672321705 0.07947672375
CS_Morgan 1815 0.0740537927 0.1086801355 0.09136696409
CS_Morgan 1945 0.02326776867 0.07248510048 0.04787643457
CS_Morgan 1817 0.0244483798 0.09559641568 0.06002239774
CS_Morgan 1955 0.01707103176 0.08739293675 0.05223198425
CS_Morgan 1956 0.02251056628 0.07620089553 0.04935573091
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