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Abstract
The second edition of the 2025 ImageCLEF MEDIQA-MAGIC challenge [1], co-organized by researchers from
Microsoft, Stanford University, and the Hospital Clinic of Barcelona, focuses on multimodal dermatology question
answering and segmentation, using real-world patient queries and images. This work addresses the Closed Visual
Question Answering (CVQA) task, where the goal is to select the correct answer to multiple-choice clinical
questions based on both user-submitted images and accompanying symptom descriptions.

This task presents several challenges: consumer health questions are often noisy, imprecise, and often lack
relevant clinical context. Unlike real-world settings where physicians can iteratively ask follow-up questions, the
system must make medical decisions with high accuracy based on a single multimodal static patient interaction.
This raises the difficulty of building models that generalize well and increases the risk of clinically significant
misclassifications.

To address these limitations, not only predictive accuracy, but also reasoning ability and explainability were
prioritized. The proposed approach combines three core components: (1) fine-tuning open-source multimodal
models from the Qwen, Gemma, and LLaMA families on the competition dataset, (2) introducing a structured
reasoning layer that reconciles and adjudicates between candidate model outputs, and (3) incorporating agentic
retrieval-augmented generation (agentic RAG), which adds relevant information from the American Academy of
Dermatology’s symptom and condition database to fill in gaps in patient context.

The team achieved second place with a submission that scored sixth, demonstrating competitive performance
and high accuracy. Beyond competitive benchmarks, this research addresses a practical challenge in telemedicine:
diagnostic decisions must often be made asynchronously, with limited input and with high accuracy and inter-
pretability. By emulating the systematic reasoning patterns employed by dermatologists when evaluating skin
conditions, this architecture provided a pathway toward more reliable automated diagnostic support systems.

Keywords
Agentic Vision-Language Models, Generative AI for Clinical Decision Support, Medical Natural Language
Understanding, Multimodal Healthcare Intelligence and Reasoning Systems, Knowledge-Grounded Medical
Question Answering, Ensemble Learning for Telemedical Diagnostics, Medical Domain Specific Model Adaptation

CLEF 2025 Working Notes, 9 – 12 September 2025, Madrid, Spain
*Corresponding author.
†
These authors contributed equally.
$ karishma.thakrar@gatech.edu (K. Thakrar); sbasavatia3@gatech.edu (S. Basavatia); adaftardar3@gatech.edu
(A. Daftardar)
� https://github.com/karishmathakrar (K. Thakrar); https://github.com/Basavatia-Shreyas (S. Basavatia);
https://github.com/akshaydaf (A. Daftardar)
� 0009-0008-2563-7370 (K. Thakrar); 0009-0000-6467-802X (S. Basavatia); 0009-0006-5578-5783 (A. Daftardar)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

2Project code available at: https://github.com/karishmathakrar/arc-mediqa-magic-2025

mailto:karishma.thakrar@gatech.edu
mailto:sbasavatia3@gatech.edu
mailto:adaftardar3@gatech.edu
https://github.com/karishmathakrar
https://github.com/Basavatia-Shreyas
https://github.com/akshaydaf
https://orcid.org/0009-0008-2563-7370
https://orcid.org/0009-0000-6467-802X
https://orcid.org/0009-0006-5578-5783
https://creativecommons.org/licenses/by/4.0/deed.en
https://github.com/karishmathakrar/arc-mediqa-magic-2025


1. Introduction

Dermatological diagnostics present complex challenges that require integrating diverse data types in-
cluding visual images, patient narratives, and contextual information. Traditional diagnostic approaches
rely on in-person examinations to interpret subtle visual features and discuss reported symptoms
along with patient history, a process that doesn’t seamlessly translate to remote consultation settings
where information and interactions can be both limited and unclear. More specifically, telemedicine
consultations introduce several constraints: variable image quality from consumer devices, imprecise
symptom descriptions from patients unfamiliar with medical terminology, and limited opportunity
for follow-up questions. These factors make accurate diagnosis in remote settings substantially more
challenging.

The second edition of the ImageCLEF MEDIQA-MAGIC challenge [1], co-organized by researchers
from Microsoft, Stanford University, and Hospital Clinic of Barcelona, addresses telemedicine constraints
through the DermaVQA dataset [2] that seeks to emulate real-world dermatological consultations. It
combines patient-captured images with accompanying clinical text and presents two key tasks: (1)
segmenting regions of interest in dermatological images and (2) answering closed-ended multiple-choice
questions ("Closed Visual Question Answering" or "CVQA") about the conditions shown. These questions
systematically categorize dermatological presentations across dimensions including affected body areas,
lesion characteristics (size, texture, color, count), symptom duration, and associated sensations like
itching. By structuring the challenge around real consumer health queries and standardized question
schemas developed by certified dermatologists, the competition creates a testbed for multimodal systems
tasked with making accurate diagnostic assessments despite limited training examples, incomplete
coverage, and sparse contextual information, mirroring the practical constraints of asynchronous
telemedicine.

In this paper, we propose methods to advance dermatological diagnosis, including model fine-
tuning, integrative clinical reasoning, and agentic retrieval-augmented generation. Our methodology,
while aimed at improving performance on ambiguous cases, contributes to the broader goal to enable
transparency, giving clinicians insight into how the system arrived at its conclusions. Unlike traditional
extraction-based techniques such as pattern mining and topic modeling [3], our system is designed to
emulate the cognitive processes and diagnostic reasoning of experienced dermatologists when faced
with incomplete or ambiguous data. Our key contributions are:

1. Fine-tuning multimodal models on dermatology data to simulate domain-specific clini-
cal training;

2. Integrating predictions across models to emulate clinicians’ deliberation during differ-
ential diagnosis;

3. Introducing an agentic retrieval system that reflects, revises, and queries external knowl-
edge—mirroring how clinicians consult references and reconsider diagnoses under un-
certainty.

These components were implemented using seven open-source vision-language models (VLMs)
alongside Google’s multimodal Gemini 2.5 Flash, which served as the reasoning engine in our agentic
RAG and explanation layers. Our system achieved second place in the MEDIQA-MAGIC 2025 challenge
with an accuracy of 0.71, outperforming the overall team average of 0.59. This highlights the effectiveness
of our integrated strategy.



Large language models often rely on black-box reasoning, which poses a major challenge for clinical
adoption. In high-stakes settings like dermatology, even accurate models may be met with skepticism if
their decision-making process is opaque. Our system helps bridge this gap by providing explainable,
context-aware responses tailored to clinicians. This improves trust in remote dermatological diagnosis
and contributes more broadly to the development of safer, more reliable AI tools for telehealth and
clinical decision support.

Figure 1: Comparative Analysis of Top-performing Models. Best-performing baseline and fine-tuned
models are compared with Agentic RAG and Reasoning Layer enhancements, demonstrating comparable accuracy
gains in both cases from Agentic RAG and the Reasoning Layer.

2. Related Work

Multimodal diagnostic systems have advanced medical AI by combining vision and language under-
standing, with growing applications in dermatology. SkinGPT-4 [4] pioneered interactive diagnosis
by aligning vision transformers with LLaMA-2-13b-chat for skin evaluation, while Med-Gemini [5]
achieved substantial performance gains through fine-tuning on medical data. Specialized reasoning
systems like MedCoT [6] introduced hierarchical expert verification frameworks and approaches like
Cross-Attentive Fusion [7] leveraged segmentation models for diagnostic reasoning in controlled clinical
settings. While these systems demonstrated the potential of large-scale models through broad medical
fine-tuning, they mostly optimized individual model components rather than reasoning across multiple
predictions to simulate deliberative clinical judgment.

Building on these advancements, foundation model innovations have further expanded multimodal
understanding through diverse approaches. M²Chat [8] balances visual and semantic features with
learnable gating mechanisms, and LLM2CLIP [9] enhances vision-language alignment through con-
trastive fine-tuning. Quality control has evolved with Label Critic [10] automatically assessing medical
annotations through anatomical knowledge. However, these architectural and data improvements
primarily targeted performance optimization rather than addressing the unique challenges of reasoning
under uncertainty with incomplete information.

Retrieval-augmented generation has shown promise for addressing standalone language model limi-



tations in healthcare. Evaluations [11] demonstrated RAG systems can improve medical QA accuracy by
up to 18% over chain-of-thought prompting in structured question-answering tasks, with benchmarking
revealing optimal retriever-knowledge source combinations. Advanced healthcare RAG frameworks
[12] incorporated rationale-guided retrieval and balanced corpus sampling to mitigate bias. Yet existing
RAG systems often treated retrieval and generation as isolated steps, limiting their ability to reason
across multiple retrieved perspectives and selectively augment missing context for faithful clinical
inference under real-world constraints.

Despite progress in medical visual question answering for structured clinical data, significant gaps
persist for telemedicine applications where patient-submitted images are informal, incomplete, and
suboptimally captured. Several approaches targeted controlled clinical-grade imaging rather than the
noisy, heterogeneous data typical of remote consultations [13, 14]. While recent work [15] advanced
interpretability through concept extraction on standard benchmarks, approaches systematically ad-
dressing representation gaps between clinical and consumer imaging through external knowledge
integration remain limited. This work addressed these limitations by developing a reasoning-focused
system combining contextual retrieval with ensemble-like decision-making, specifically designed for
the information asymmetries inherent in patient-provided medical context for remote dermatological
consultations.

3. Exploratory Data Analysis

The DermaVQA dataset [2] used in the competition was organized around 300 unique patient encounters,
each representing a complete dermatological case. Every encounter included patient-level context (query
titles and clinical descriptions), multiple dermatological images (about three per case), and structured
diagnostic annotations spanning 27 questions grouped into 9 major clinical question families. A variety
of key assessment domains were covered such as body coverage extent (CQID010), anatomical location
(CQID011), lesion size (CQID012), temporal onset (CQID015), morphology (CQID020), symptomatology
(CQID025), and lesion attributes like color, quantity, and texture (CQID034–036). Several of these
included multiple slots to capture cases involving lesions with diverse locations or characteristics,
resulting in 2,700 total encounter-question family combinations. Of these, only 6.56% (177/2,700) had
multiple valid answers, primarily in CQID011 (31% of encounters), CQID020 (25%), and CQID012 (3%).

Analyzing the dataset revealed significant class imbalances and consistent trends across clinical
question types. The frequency of "Not mentioned" responses varied by domain, entirely absent in core
assessments like body coverage (CQID010) but common in more subjective areas such as lesion texture
(CQID036: 56.0%) and itch (CQID025: 55.0%). Among non-default answers, skewed distributions were
observed, reflecting both clinical prevalence and potential annotation bias. For anatomical location
(CQID011), extremities were most frequently reported (upper: 31.3%, lower: 23.6%), while head (10.1%),
neck (5.2%), back (9.7%), and other locations (6.3%) were less common. In lesion morphology (CQID020),
“raised or bumpy” was the most common label (39.2%), followed by thin or close to the surface (12.7%) and
crust lesions (11.6%). Lesion quantity (CQID035) responses were heavily skewed toward multiple lesions
(81.3%) over single presentations (16.0%). There was also substantial variation across annotators. One
annotator used "Not mentioned" 77.8% of the time, while others mostly ranged from 0% to 33%. These
inconsistencies in annotation style were difficult to reconcile within a single model, likely introducing
error into the final results



3.1. Dataset Limitations

While DermaVQA represents a valuable and novel contribution to multimodal clinical NLP, several real-
world characteristics of the dataset posed challenges for both modeling and evaluation. Many questions
featured semantically overlapping or clinically ambiguous answer choices that reflect genuine diagnostic
uncertainty. For instance, in CQID034, options like “red” and “pink” or “white” and “hypopigmentation”
often appear visually similar in dermatological images, yet annotators were required to select only
one, forcing distinctions that may not align with ground truth. CQID020 exhibited similar overlap:
labels such as “raised or bumpy,” “thick or raised,” and “warty” were rarely co-selected, only 3 out of
180 encounters included more than one, despite their non-mutually-exclusive nature.

Likewise, clinically co-occurring features like “scab” and “weeping” appeared together in just 3 of 40
relevant cases. This suggests annotators often chose a single, representative label to avoid redundancy,
even for questons with multiple valid answers possible. Additionally, overlapping content across
question IDs introduced further ambiguity: CQID010 asked about the extent of affected areas with
options like “limited area” and “widespread,” while CQID012 asked about lesion size using nearly
identical descriptors such as “larger area” and “size of palm.” These patterns reflect real diagnostic
ambiguity and inter-observer variability, likely contributing to annotation bias and label inconsistency
that complicate both training and evaluation.

Beyond content-level ambiguity, structural issues in the dataset made modeling more difficult. Patient
contexts were user-generated and not standardized, often lacking essential clinical details, containing
informal or ungrammatical language, or embedding implicit questions. For example, the context in
ENC00002 included: “What is on the bottom of the right foot?” Some question formats were also
misaligned with classification-style modeling: CQID011 included “other (please specify),” CQID034 had
“combination (please specify),” and CQID012 embedded ambiguity directly into the prompt itself with
"How large are the affected areas? Please specify which affected area for each selection." In total, these
formulations encouraged open-ended answers that conflicted with the discrete-label format used in
evaluation.

Despite efforts in preprocessing and prompt design to mitigate these challenges, deeper inconsisten-
cies remained. Some ground truth labels directly contradicted the available context or visual evidence.
In ENC00023, for example, “upper extremities” was annotated as an affected area, though this was not
mentioned in the clinical data. Similarly, the physician reported “no itching,” despite visible scratch
marks in the images. In other cases, symptoms like itch may not have been reported at all, as the
data, sourced from Reddit, was not structured for clinical completeness. An additional example of
the data format along with an analysis of the ground truth labels has been provided in Table 3 (see
Appendix).These contradictions highlight a central challenge in multimodal reasoning: reconciling con-
flicting or incomplete inputs across modalities. Addressing such gaps required higher-level reasoning
strategies that could go beyond surface cues. These issues were further compounded by variability
in image quality, from sharp clinical photos to blurry, user-submitted images, and demographic or
platform-related disparities across subsets (i.e., IIYI vs. Reddit), which affected language complexity,
answer distributions, and skin tone representation.

To address these challenges, we adopt a fully generative approach, using LLMs with augmented
reasoning or agentic RAG to select from predefined answer choices rather than rigidly mapping inputs
to fixed labels. This flexibility enables the model to navigate ambiguity, incomplete information,
and variability common in real-world patient descriptions. While this may reduce alignment with
underspecified or noisy ground truth labels under traditional metrics, the resulting outputs are more



clinically meaningful, interpretable, and better aligned with real-world diagnostic reasoning.

4. Data Preprocessing

The preprocessing pipeline integrated data from three primary sources across the train, validation, and
test splits:

• [split].json — containing metadata for each clinical encounter, including associated image
identifiers;

• [split]_cvqa.json — containing answer annotations (as indices) for 27 diagnostic questions
per encounter;

• closedquestions_definitions_imageclef2025.json — providing question text, answer
options, and metadata shared across splits.

Although questions were annotated at the encounter level, each associated image was treated as an
independent sample during preprocessing. The pipeline separated out individual images per encounter
and paired them with the same unified prompt, creating one row per image-question pair. This allowed
each image to be processed independently during individual model inference, while still linking back to
the same encounter-level supervision.

Answer indices were mapped to their corresponding textual labels using the provided answer options.
For multi-slot question families (i.e., CQID034-A to CQID034-F), we grouped responses by their shared
base ID (i.e., CQID034), which introduced a specific challenge: the label “Not mentioned” was often
used either as a legitimate answer or as a fallback after other options were applied. Preprocessing had
to account for this dual role, retaining “Not mentioned” only when it was the sole response across all
slots, and otherwise aggregating all informative answers into a deduplicated, comma-separated string.

To standardize the dataset, answer text was cleaned to remove extraneous tokens (i.e., brackets,
quotation marks, and “(please specify)” suffixes). Prompt formatting involved synthesizing a structured
input per image, which included:

1. Cleaned question text (with numeric prefixes and instructional phrases removed),
2. Question type and category metadata,
3. Synthesized clinical background from query title and content,
4. Comma-separated list of possible answer choices.

Each sample was wrapped in a constrained conversational prompt format, explicitly instructing
models to return only the exact answer text(s)—comma-separated if multiple labels were valid.

Image paths were validated using PIL to ensure all images could be opened; corrupted or missing files
were excluded. The final preprocessed data was serialized into batched .pkl files (100 samples per batch),
each containing structured dictionaries with the fields: encounter_id, base_qid, query_text,
image_path, answer_text, question_type, question_category, and a multi-label indicator.

5. Methodology

We evaluated six architectural configurations for medical visual question answering, systematically
comparing base and fine-tuned vision-language models both independently and as components within



enhanced reasoning frameworks. Each configuration was tested across seven open-source models:
LLaMA-3.2-11B-Vision, Qwen2-VL (2B, 7B), Qwen2.5-VL (3B, 7B), and Gemma-3 (4B, 12B). For agentic
reasoning and retrieval-augmented generation (RAG), we additionally employed Gemini 2.5 Flash as
the instruction-following model responsible for multi-step reasoning and aggregation.

1. Base models performing direct inference on medical VQA tasks
2. Fine-tuned models (LoRA-adapted on ImageCLEFmedical 2025 data) performing direct inference
3. Reasoning layer enhancement utilizing base model inference
4. Reasoning layer enhancement utilizing fine-tuned model inference
5. Agentic RAG system utilizing base model inference
6. Agentic RAG system utilizing fine-tuned model inference

5.1. Model Fine-Tuning

Several pretrained, open-source vision-language models were fine-tuned on the processed MEDIQA-
MAGIC dataset for diagnostic question answering. The models included LLaMA-3.2-11B-Vision-Instruct,
Gemma-3 (4B and 12B), and Qwen2/2.5-VL (2B, 3B, and 7B variants). This range enabled comparison of
performance across architectures and scales and, later, the exploration of ensemble-like strategies that
reflected clinical workflows involving multiple expert perspectives.

Model-specific preprocessing during training included chat template application with appropriate
special token handling for different architectures (LLaMA, Qwen), RGB image format standardization,
and label masking for special tokens to ensure proper loss computation. While we initially tested
modifying chat templates to jointly process all images in a single forward pass, this approach led to
out-of-memory (OOM) errors. Despite exploring various optimizations, the backward pass failed due
to the need to retain gradients across all image-conditioned operations. As a result, we proceeded by
passing in one image at a time for open-source training and inference.

To reduce memory usage and training time, parameter-efficient fine-tuning was applied using Low-
Rank Adaptation (LoRA) with 4-bit quantization via BitsAndBytes. LoRA was configured with rank 8,
alpha 16, and dropout of 0.05, applied to attention projection layers (specifically q_proj and v_proj
for LLaMA and Qwen models, or all linear layers for other architectures). For non-LLaMA models, the
language modeling head and embedding layers were additionally included in trainable parameters. All
models utilized NF4 quantization with double quantization enabled, using bfloat16 as the compute
dtype.

Each training sample combined the preprocessed prompt with its associated medical image, processed
through model-specific vision encoders. The training employed gradient accumulation over 32 steps
with a per-device batch size of 1, effectively achieving a batch size of 32. Models were trained for 3
epochs using the fused AdamW optimizer with a learning rate of 1e-4, gradient clipping at 0.3, and a
constant learning rate schedule with 3% warmup ratio. Gradient checkpointing with non-reentrant
mode was enabled to further optimize memory usage.

Training was conducted on NVIDIA A100 80GB GPUs within Georgia Tech’s high-performance
computing platform, the Partnership for an Advanced Computing Environment (PACE). Each model
required approximately 10 hours to complete, totaling 70 GPU-hours across all configurations. The
Supervised Fine-Tuning Trainer (SFTTrainer) from the TRL library was used, with checkpoints saved
every 50 steps and training progress monitored via TensorBoard. After training, LoRA adapters were
merged into the base models to create standalone versions for inference, with all artifacts saved using
safe serialization and 2GB maximum shard size.



5.2. Model Inference

The inference pipeline was designed to handle both base and fine-tuned models, with automatic selection
based on configuration parameters. For inference on finetuned models, models were loaded with the
same quantization settings used during training (4-bit NF4 quantization with bfloat16 compute
dtype) to maintain consistency and reduce memory requirements. The inference process utilized a
specialized MedicalImageInference class that handled model loading, input preprocessing, and
prediction generation. For each test sample, the system constructed a standardized prompt using
the same template as training, combining the clinical context, question text, and available answer
options with the corresponding medical image. The prompt explicitly tested and instructed the model
to respond only with the exact text of applicable options without explanations, handle multi-label cases
with comma separation, and default to "Not mentioned" when uncertain.

During inference, generation parameters were carefully tuned to balance output quality and diversity,
using temperature 0.9, top-p 0.95, top-k 64, and a maximum of 100 new tokens with sampling enabled.
The system processed predictions in batches through preprocessed pickle files, automatically handling
different batch prefixes for validation and test datasets. Post-processing steps included removing any
system artifacts, special tokens, or formatting prefixes that might appear in the generated text. For
multi-answer questions, predictions from multiple images of the same encounter were aggregated
using an aggregation mechanism that respected question-specific maximum answer limits (ranging
from 1 to 9 depending on the question type). The consolidation process counted prediction frequencies
across images, selected the most common responses up to the allowed limit, and handled ties through
deterministic random selection with a fixed seed. Final predictions were formatted according to the
official evaluation requirements, mapping text answers to their corresponding indices and distributing
multiple answers across question variants when applicable. The complete pipeline generated both CSV
files with prediction details and JSON files formatted for official submission, along with empty mask
prediction directories as required by the competition format.

5.3. Reasoning Layer

The reasoning layer acted as a senior dermatologist reviewing multiple opinions and evidence to reach a
final diagnosis. Unlike traditional ensemble methods that rely on majority voting or weighted averaging
of predictions, this system performed interpretive synthesis that mirrored how senior clinicians integrate
diverse expert opinions during complex case reviews. Where conventional ensembles might simply
count votes, our reasoning layer evaluated the quality of evidence, considered clinical context, and
applied domain-specific knowledge to reach conclusions—sometimes overriding majority predictions
when evidence warranted it.

We designed a multi-stage process using gemini-2.5-flash-preview [16] that systematically
enriched raw inputs before making final decisions:

Stage 1: Image Analysis and Aggregation. The model extracted standardized dermatological
features from each image, including lesion morphology (flat, raised, depressed), precise anatomical
locations, color characteristics, texture patterns, and distribution. For encounters with multiple images,
these individual analyses were synthesized into a unified assessment that captured the complete clinical
picture—identifying patterns across images while preserving important variations.

Stage 2: Clinical Context Extraction. The system processed accompanying clinical text to extract
structured information including patient demographics, symptom duration and progression, identified



triggers, and relevant medical history. This preprocessing transformed free-text clinical notes into a
consistent JSON format, enabling more reliable integration with visual findings.

Stage 3: Evidence-Based Reasoning. In the final stage, the model synthesized these enriched
analyses with predictions from other models through carefully engineered dynamic and query-specific
prompts. Other models’ predictions were explicitly framed as "advisory inputs that may contain errors"
rather than ground truth, preventing the system from defaulting to simple majority agreement. The
reasoning layer was instructed to critically evaluate all evidence and provide step-by-step justification
for its conclusions.

We also evaluated Gemini 2.5 Flash independently, prompting it directly with image and context
information. While its standalone performance showed promise, it was notably weaker than the results
obtained using our multi-stage reasoning setup that incorporated model predictions and structured
synthesis. This highlighted the benefit of combining Gemini’s instruction-following capabilities with
intermediate expert signals and multimodal preprocessing to better reflect clinical decision-making.

This approach addressed key limitations of traditional ensembles. For instance, when multiple models
predicted "size of thumb nail" for a case showing numerous small lesions distributed across a palm-sized
area, the reasoning layer correctly identified this as "size of palm" based on the aggregate affected
area rather than individual lesion size. The system employed specialized reasoning strategies for
different question types: size assessments relied exclusively on visual evidence from the image analysis,
deliberately excluding potentially misleading clinical descriptions, while color evaluations distinguished
between uniform presentations and multi-tonal patterns that would indicate a "combination" answer.

By implementing clinical consultation practices in AI systems, this reasoning layer ensured that
final diagnoses reflected not just statistical consensus but genuine medical reasoning—evaluating
evidence quality, reconciling contradictory inputs, and applying contextual knowledge to reach accurate
conclusions.

5.4. Agentic Retrieval-Augmented Generation

We developed a multi-agent retrieval-augmented generation system using Gemini 2.5 Flash [16], de-
signed to emulate how dermatologists combine visual assessment with targeted reference consultation.
Rather than following a fixed sequence, the system distributes tasks across specialized agents for
evidence integration, reasoning, reflection, and reanalysis—each adapting its behavior based on the
available evidence, diagnostic ambiguity, and question complexity.

5.4.1. Input Layer

The input layer collects all core elements of the clinical encounter, including patient-provided images
along with a description of their symptoms and concerns. We also passed diagnostic predictions from
several large vision-language models from our earlier steps. A curated knowledge base is included as
an additional source of external reference.

5.4.2. Context Assembly

The context assembly layer consists of five specialized agents operate in a modular sequence, each per-
forming a distinct function, image analysis, clinical context extraction, evidence integration, diagnostic
reasoning, and iterative refinement, collectively enabling adaptive, multi-stage decision-making.



Figure 2: Agentic RAG architecture featuring a multi-stage pipeline with integrated agents that process queries,
encounter data, and model predictions through collaborative reasoning and iterative refinement..

Image Analysis Agent The Image Analysis Agent extracts structured features from dermatological
images, including lesion size, location, shape, color, and distribution. By analyzing multiple images
per encounter, it builds a more complete view of the skin condition. The agent also identifies signs
of scratching or trauma and visual indicators that may suggest duration, such as healing or chronic
changes, to support more informed downstream reasoning.

Clinical Context Agent The Clinical Context Agent extracts structured, medically relevant details
from the patient’s written description, organizing them into consistent categories such as demographics,
lesion location, appearance, symptom duration, and prior history. It also identifies mentions of itching,
pain, and potential triggers. Because the input text is patient-authored, the agent implicitly filters out
noise—like emojis or repetition—to provide a cleaner, medically relevant summary that supports more
accurate downstream analysis.

Diagnosis Extractor and Knowledge Retrieval Agents with Hybrid Retrieval The Diagnosis
Extractor combines visual findings from Image Analysis with structured clinical input from the Clinical
Context Agent to generate diagnostic hypotheses grounded in both modalities. These hypotheses
guide the Knowledge Retrieval Agent, which formulates targeted search queries based on the suspected
conditions, integrated multimodal context, and question information. Rather than issuing generic
queries, the agent dynamically composes prompts that reflect the likely diagnosis and clinical focus,
such as location, symptoms, or morphology.

For example, given a question like "Where is the affected area?" and extracted diagnoses like eczema
and dermatitis, the agent ould generate queries such as "eczema common body locations" or "dermatitis
site distribution patterns," tailoring search prompts to both the diagnosis and context of the question.
In this way, the system actively guides knowledge retrieval using structured hypotheses, rather than



simply retrieving information in response to the original input.
These tailored queries form the input to a hybrid search strategy that combines BM25 keyword match-

ing with semantic similarity search based on dense embeddings. Semantic search is performed using
the pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb model, a specialized variant of BioBERT
fine-tuned on a diverse set of natural language inference and semantic similarity benchmarks including
SNLI, MNLI, SCINLI, SCITAIL, MEDNLI, and STS-B [17]. Built on biomedical domain pretraining, this
model produces 768-dimensional embeddings that support nuanced generalization across clinical and
scientific text. These embeddings enable retrieval of passages from LanceDB that are semantically
aligned with the query, even when there is minimal lexical overlap.

In parallel, BM25 keyword search is performed using BM25Okapi, which scores documents based
on term frequency (TF), inverse document frequency (IDF), and document length normalization. This
method prioritizes documents containing exact or rare keyword matches, particularly useful for surfacing
medically significant terms such as drug names, anatomical locations, or uncommon conditions that
may not be captured by semantic models. The results from both semantic and keyword searches are
concatenated and deduplicated using document IDs to avoid redundancy.

To improve retrieval precision, the system applies the cross-encoder/ms-marco-MiniLM-L6-v2 model
to rerank the combined candidate passages. This cross-encoder, trained on the MS MARCO passage
ranking task, jointly encodes each query-document pair to capture fine-grained relevance. It achieves a
strong MRR@10 of 39.01 on the MS MARCO development set, outperforming many larger models while
maintaining efficiency with only 22.7 million parameters [18]. Unlike bi-encoders that embed queries
and documents independently, the cross-encoder models their full interaction, making it particularly
effective at capturing subtle clinical nuances where phrasing differences may alter meaning. This step is
especially critical in medical contexts, where ambiguous matches can lead to misinformation or retrieval
failures. The final top-k results are selected based on the highest cross-encoder relevance scores.

The knowledge base supporting this pipeline is constructed from the Hugging Face dataset bruce-
wayne0459/Skin_diseases_and_care, which contains over 800 curated entries sourced from the American
Academy of Dermatology Association. These entries span dermatologic conditions, treatments, preven-
tion guidelines, and skin, hair, and nail care. All documents are embedded and stored in LanceDB, a
high-performance vector database optimized for fast semantic retrieval at scale, with support for hybrid
and filtered search operations.

Finally, retrieval behavior is conditioned on the type of question being asked. For example, RAG is
disabled for image-dependent questions such as those concerning lesion color or size, where direct
visual analysis provides more accurate answers. This diagnosis-first, context-aware retrieval pipeline
ensures that external knowledge is only surfaced when clinically appropriate, thereby improving both
the relevance and specificity of information used by downstream agents. Each stage of the pipeline,
from diagnosis extraction to reranking, is modular and designed for clinical robustness.

Evidence Integration Agent The Evidence Integration Agent synthesizes outputs from three modal-
ities, image analysis, structured clinical context, and, when available, retrieved medical knowledge, into
a unified representation tailored to the question type. It applies adaptive, task-specific weights to each
source: visual cues are emphasized for appearance-based questions (i.e., lesion color), clinical history
takes precedence for treatment or symptom-related prompts, and retrieved knowledge contributes more
heavily to diagnosis-driven tasks. The agent constructs a structured prompt embedding these inputs
and weights, which is then passed to Gemini for reasoning. The model returns a JSON-formatted output
capturing integrated findings, source concordance or contradiction, and a weighted summary of key
features. This module provides a context-aware synthesis that downstream agents can build upon for



more accurate and interpretable decision-making.

5.4.3. Decision Synthesis

Three interconnected agents, Reasoning, Self-Reflection, and Re-Analysis, form the system’s decision-
making backbone, working in sequence to generate, evaluate, and refine diagnostic predictions based
on the integrated evidence.

Reasoning Engine Agent The Reasoning Engine generates a diagnostic prediction using the
question text and type, answer options, integrated evidence with pre-assigned weights, and pre-existing
model predictions sourced from multiple LLMs—both fine-tuned and general-purpose. These model
outputs are treated as contextual signals rather than authoritative inputs; the agent is prompted to
avoid defaulting to consensus and must explicitly justify any alignment with model suggestions. The
agent selects an answer, assigns a confidence score, and produces a structured explanation grounded
in the weighted evidence. This output serves as a provisional decision that can later be scrutinized or
revised by downstream agents.

Self-Reflection Agent The Self-Reflection Agent introduces metacognitive oversight by reassessing
the Reasoning Engine’s output when the confidence score falls below a predefined threshold (i.e., 0.75),
signaling uncertainty. It revisits the same inputs, questions, evidence, model predictions, and evaluates
the initial answer for overlooked or misinterpreted evidence, reasoning gaps, and the appropriateness of
the assigned confidence. Rather than relying on fixed rules, the agent makes a qualitative determination
about whether a revision is warranted. If so, it sets the requires_revision flag to True and prepares the
case for deeper reanalysis; if not, it affirms the original reasoning, possibly with an adjusted confidence
score. This reflection layer strengthens diagnostic accountability by allowing the system to identify and
flag potential misjudgments before proceeding.

Re-Analysis Agent The Re-Analysis Agent engages only when the Self-Reflection Agent flags the
need for revision, conducting a deeper reassessment of the original question, integrated evidence, initial
reasoning, and critique. Rather than reiterating earlier outputs, it systematically reconsiders the case
with attention to previously identified flaws—such as overlooked evidence or misweighted signals—and
generates a revised or reaffirmed answer, updated confidence score, and structured rationale. This final
step allows the system to recover from low-confidence or error-prone decisions, reinforcing diagnostic
precision while modeling a closed-loop process of autonomous reasoning and correction.

By incorporating this third layer, the pipeline models a closed-loop cognitive system: it makes
an initial prediction, introspects for quality, and, when needed, revisits and improves upon its own
reasoning. This architecture enables the system to exhibit autonomous judgment, adaptive error
correction, and explainable decision-making—capabilities that are especially valuable in high-stakes
clinical domains like dermatology. This system introduces several innovations that extend beyond
traditional RAG pipelines, enabling more robust, flexible, and clinically grounded diagnostic reasoning.
By combining specialized agents, autonomous feedback loops, and adaptive evidence handling, the
architecture mimics key aspects of expert decision-making in dermatology.

6. Results

To evaluate model performance across the CVQA task, accuracy was compared across seven vision-
language models as well as two reasoning configurations using baseline and finetuned models separately.



Baseline models achieved moderate accuracy, and fine-tuning had mixed effects across different ar-
chitectures. Fine-tuning decreased overall accuracy for five of the seven base models (Qwen2-2b,
Qwen2-7b, Qwen2.5-7b, Gemma3-4B, and LLaMA-3.2-11B), with validation accuracy drops ranging
from 8% (LLaMA-3.2-11B) to as high as 29% (Qwen2.5-7B), implying varying degrees of overfitting.
Only two models, Qwen2.5-3B and Gemma3-12B, showed improvement after fine-tuning, gaining
roughly 2% and 11% in accuracy respectively. These inconsistent results can be observed in Table 4
and Figure 4 (see Appendix), which contrast each model’s average validation accuracy before and after
fine-tuning. Qwen2.5-7B without finetuning achieved the highest accuracy of the base and finetuned
models, whereas Qwen2.5-3B had the highest accuracy among fine-tuned models. These results indicate
that fine-tuning effects varied substantially by model.

Contrasting the individual models, the combined-model methods, including the reasoning layer and
agentic RAG, yielded the highest overall accuracies regardless of whether they utilized base or finetuned
model predictions as input. This is highlighted in Figure 1, which shows that advanced models with
integrative reasoning and retrieval performed better than the best performing base model across most
of the questions on the validation dataset except for select questions, CQID020, CQID020, and CQID034.
The difference between the different architectures when comparing base models is fairly comparable.
On the other hand, the best performing fine-tuned model achieved meaningfully worse accuracy on the
validation dataset when compared to the combined-model methods. The only question that showed
marked improvement was Site (CQID010).

Table 1 and Table 2 further demonstrate how the reasoning layer (which aggregated multiple model
predictions) achieved the best average performance on both the validation and test sets. For instance, the
reasoning layer achieved 71.2% accuracy on the validation data, slightly higher than the agentic RAG’s
69.0% and the best single model’s 67.2%. The gap was more pronounced on the test dataset where the
best individual non-finetuned model (Qwen2.5-7B) dropped to 37.5% accuracy while the reasoning layer
and agentic RAG retained 70.6% and 69.2% accuracy respectively. While all three methods performed
similarly on the validation dataset, the combined-model methods maintained consistent, nearly double
the performance of the best single model on the test dataset.

The submitted test results shown below reflect the official outputs we submitted to the MEDIQA-
MAGIC 2025 leaderboard. These were produced using our final reasoning and RAG systems, with no
further test-time tuning.



Table 1
Base model performance comparison across validation and test datasets with three architectures: a) best
performing model inference, b) Reasoning Layer using base model predictions, and c) Agentic RAG using base
model predictions. The Reasoning Layer achieves the highest average performance on both datasets.

Question Validation Dataset Test Dataset (Submitted Results)
Qwen2.5-
VL-7B

Reasoning
Layer

Agentic
RAG

Qwen2.5-
VL-7B

Reasoning
Layer

Agentic
RAG

CQID010 0.4821 0.5714 0.5357 0.3100 0.5100 0.4700
CQID011 0.8333 0.9048 0.8762 0.3847 0.8403 0.8552
CQID012 0.6086 0.7083 0.7009 0.5317 0.6967 0.6900
CQID015 0.7679 0.8929 0.8571 0.3100 0.8500 0.8500
CQID020 0.5708 0.5653 0.5771 0.3122 0.5587 0.5561
CQID025 0.8929 0.8036 0.8036 0.4200 0.8700 0.8400
CQID034 0.4643 0.4286 0.3929 0.0100 0.5500 0.5100
CQID035 0.8750 0.8929 0.8214 0.7200 0.8100 0.8200
CQID036 0.5536 0.6429 0.6429 0.3700 0.6700 0.6400

Average 0.6721 0.7123 0.6898 0.3743 0.7062 0.6924

Table 2
Fine-tuned model performance comparison across validation and test datasets with two architecutres: a)
Reasoning Layer using finetuned model predictions, and b) Agentic RAG using finetuned model predictions.
Qwen2.5-VL-7B was excluded from inference on test due to overfitting duing training. The Reasoning Layer
maintains the highest average performance on both datasets.

Question Validation Dataset Test Dataset
(Submitted Results)

Reasoning
Layer

Agentic
RAG

Reasoning
Layer

Agentic
RAG

CQID010 0.6071 0.5536 0.5300 0.4400
CQID011 0.8777 0.8795 0.8683 0.8363
CQID012 0.6815 0.7173 0.6625 0.6858
CQID015 0.8214 0.8214 0.8100 0.7800
CQID020 0.5821 0.5421 0.5649 0.5544
CQID025 0.8214 0.8036 0.8900 0.8600
CQID034 0.4643 0.3929 0.6000 0.4800
CQID035 0.8929 0.8393 0.8100 0.7900
CQID036 0.6071 0.6071 0.6500 0.6500
Average 0.7062 0.6841 0.7095 0.6752

7. Discussion

The divergent impact of fine-tuning on different models suggests that model architecture and pre-
training state heavily influence how a model benefits from additional training data. Our results showed
that some larger and strong-performing models (i.e. Qwen2.5-7B) lost validation accuracy after domain-
specific fine-tuning, whereas others (i.e. Gemma3-12B) gained considerable accuracy (11%) from the
same fine-tuning methods. One possible explanation is that models with high baseline performance



on the CVQA task may have already aligned well with the task distribution; fine-tuning them on a
limited training set could induce overfitting or disrupt previously learned generalizable features, a
form of catastrophic forgetting [19]. In contrast, models with lower initial accuracy had more room for
improvement and likely benefited from learning domain-specific patterns present in the fine-tuning
data. Sensitivity to fine-tuning has been observed in other multi-modal medical models as well. Med-
Gemini achieved substantial performance gains through targeted fine-tuning on medical data [5]. These
findings nuance previous results by showing such gains are not universal. The efficacy of fine-tuning
may depend on the model’s architecture and how well its pre-training corpus covered dermatological
concepts. To improve fine-tuning outcomes, adaptive strategies may be required to account for each
model’s idiosyncrasies, especially for highly capable models where fine-tuning may hurt performance.
These results highlight the need for careful model-specific tuning approaches and validation as a
"one-size-fits-all" fine-tuning can yield inconsistent outcomes in multi-modal medical AI systems.

Figure 3: Pairwise agreement rates (%) among base model predictions and ground truth labels. Higher values
indicate greater consistency in labels.

In contrast to individual models, the reasoning layer, which aggregated multiple model predictions,



delivered a consistent pronounced performance boost, especially on unseen test cases. This improvement
is analogous to an ensemble-like diagnosis in clinical practice where multiple independent opinions are
combined to reach a more reliable conclusion. Figure 3 demonstrates the pairwise agreements among
the models and ground truth labels. Here we see significant model diversity with little agreement
ranging in values 17.5% to 51.6%, a key trait required for effective ensemble-like methods. By utilizing
multiple outputs from different models and taking the clinical context into mind, the reasoning layer
likely diversifed the errors and captured strengths of each model. The net effect was a more robust
system less prone to a single model’s failure as exemplified in Table 6 (see Appendix). This aggregated
reasoning approach aligns with previous research where an iterative consensus ensemble of large
language models achieved up to a 27% increase in QA accuracy compared to any single model [20].
These results confirm that a similar principle holds in multi-modal CVQA: an ensemble simulating a
"committee" of AI diagnosticians can produce more accurate and reliable answers. This is promising
clinically as it mirrors the workflow of clinicians where difficult cases are often discussed to reduce
error. The performance gain observed from the reasoning layer underscores the value of incorporating
multi-source reasoning into diagnostic AI systems, especially for safety-critical applications where
erroneous single-model outputs could lead to clinically significant misdiagnoses, which is a major
concern for AI diagnostic tools.

The agentic retrieval-augmented generation module introduced additional complexity allowing the
system to dynamically fetch and integrate external medical knowledge during question answering.
Quantitatively, the agentic RAG model performed similarly to the reasoning layer (within 3% accuracy)
and 70% pairwise agreement per Figure 3, indicating that retrieval alone did not dramatically exceed
the reasoning layer’s already strong performance. However, focusing only on accuracy metrics would
overlook the important qualitative contributions of the agentic RAG. By retrieving relevant dermatology
references (such as disease descriptions and treatment guidelines) and weaving them into the answer
rationale, the agentic RAG system produced responses that were often richer in context and explanation.
For instance, when faced with an ambiguous lesion description, the RAG component could pull in a
textbook snippet about similar presentations, thereby providing a fuller and grounded justification for
the chosen diagnoses.

An example of this is shown in Table 7. Even if this extra knowledge did not always encourage the
model to select an answer consistent with ground truth labels, it adds interpretative and explainability
value grounded in clinical context that individual models lack. The use of an agentic RAG system
bridges the gap between the limited patient-provided context and the broader medical knowledge
base. As a result the system’s answer better resembled an informed clinical explanation rather than a
narrow pattern match. This explanation is arguably more valuable for clinicians and professionals that
work with AI technologies and want rationale behind answers from AI. It is easier for professionals to
detect hallucinations and the trustworthiness of an AI system who’s answers are grounded in medical
expertise by citing its sources. Our methodology explicitly drew inspiration form how human clinicians
consult external resources. The agentic RAG module’s value may not fully manifest in blunt accuracy
percentages, but it enhances the trustworthiness and depth of responses. For telemedicine applications,
explanations are vital for patients and providers who want to know why a certain diagnosis was reached.



8. Future Work

While our system showed strong performance in both diagnostic accuracy and clinical plausibility, there
are several areas that could be improved to support real-world use and deeper scientific understanding.
For instance, inference efficiency is a key concern for clinical deployment. The reasoning layer produced
responses in roughly one minute per query, whereas the agentic RAG system—due to its multi-step
prompt chaining—took approximately seven minutes. This latency presents a barrier to real-time use.
Future work should explore optimizations such as prompt compression, parallelized reasoning, and
response caching to reduce inference time without compromising reasoning quality. The retrieval
component is another area with room for enhancement. Our system used a fixed corpus, which may
have limited the relevance and diversity of supporting evidence. Expanding the knowledge base to
include additional medical sources, such as dermatology reference texts, structured ontologies, or
clinical guidelines, could help improve the specificity and clinical depth of generated answers.

We also plan to revisit our fine-tuning strategy, as several large models showed reduced performance
after training. This points to the need for more stable approaches, such as adaptive regularization, early
stopping based on clinically meaningful metrics, or curriculum-based training. In parallel, we aim to
apply this framework to classification-style VQA datasets to evaluate how well the system generalizes
across different task formats. Another area for refinement is the agentic RAG system’s reasoning flow.
We observed some redundancy in its multi-step prompts, with repeated logic across stages. While this
may have added robustness, it also introduced unnecessary complexity. Future iterations should focus
on streamlining these reasoning chains to improve efficiency without sacrificing interpretability.

Beyond system improvements, there is a growing consensus that evaluation of medical AI should
extend beyond traditional metrics to encompass the quality of reasoning, justification and the decision-
making value provided to human clinicians [21]. An AI system’s utility in health is not just about how
often it selects the correct label, but also whether its reasoning process is sound and its advice can be
trusted in practice. In a tele-medical scenario, additional factors like how the AI system communicates
a differential diagnoses or its ability to incorporate new patient information on the fly are crucial for
adoption. For future work we advocate for more nuanced evaluation frameworks where reasoning
quality and clinical usefulness are measured in addition to accuracy.

9. Conclusion

This work highlights the potential of combining fine-tuned vision-language models with reasoning and
agentic retrieval-augmented generation (RAG) to support dermatological diagnosis. While fine-tuning
individual models produced variable results, integrating a reasoning layer and agentic RAG led to
stronger performance by synthesizing outputs across models and anchoring predictions in trusted
dermatological knowledge.

The dataset revealed important real-world challenges: some patients declined pathological exams due
to financial constraints, while others had already sought care unsuccessfully at multiple hospitals. These
cases reflect a broader healthcare access gap, patients in need of accurate diagnosis who cannot obtain
it through traditional means, and where AI-assisted telemedicine presents a promising alternative.

Yet a major barrier to deploying AI in clinical practice remains: the opacity of large language models
and deep learning systems. These models often produce predictions through mechanisms that are not
easily interpretable by clinicians, limiting their utility in high-stakes medical contexts where trust and



transparency are essential.
Our proposed methods, namely agentic rag, directly sought to address this challenge. Instead of

offering opaque outputs, it provides traceable, context-aware justifications grounded in clinical literature
and guidelines. This shifts AI from a black-box predictor to a collaborative decision support tool, one
that clinicians can inspect, understand, and ultimately rely on.

Importantly, our results show that interpretability does not require sacrificing accuracy. By delivering
both high diagnostic performance and transparent reasoning, our system illustrates a viable path
forward for trustworthy AI in healthcare. We believe this framework, reasoning-enhanced, knowledge-
grounded, and agentic, can extend beyond dermatology to other domains of telemedicine, particularly
where patients face similar structural barriers to care. This work is a step toward AI systems that
support equitable, auditable, and expert-aligned clinical decision-making.
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A. Appendix

Table 3: Expected answers for Encounter 6 reveal key mismatches with ground truth: “size” included
contradictory labels despite widespread lesions, “color” listed a combination when only pink
was visible, and “texture” was marked “Not mentioned” despite clearly rough, raised features.
These inconsistencies may have penalized more clinically accurate model predictions.

Clinical Case Analysis
Case Information and Images Ground Truth Labels
Encounter: ENC00006
Query Title: "Can everyone diagnose what this
skin disease is?"
Query Content: "The patient is a 50-year-old male
construction worker who is frequently exposed to
cement hardener. The first image is of the chest,
and the second image is of the back. The patient
has hand rashes with peeling and cracking, followed
by the appearance of rashes on the chest and back,
which are unbearably itchy."
Images:

CQID010: How much of the body is affected?
"Widespread"

CQID011: Where is the affected area?
"Chest/abdomen, back, upper extremities"

CQID012: How large are the affected areas?
"Size of palm, larger area"

CQID015: When did the patient first notice?
"Not mentioned"

CQID020: What label best describes?
"Crust, raised or bumpy, scab"

CQID025: Associated itching?
"Yes"

CQID034: Color of skin lesion?
"Combination (please specify)"

CQID035: How many skin lesions?
"Multiple (please specify)"

CQID036: Skin lesion texture?
"Not mentioned"



Table 4
Base model performance comparison across language models on validation dataset. Qwen2.5-VL-7B achieves
the highest average performance.

Question Qwen2-
VL-2B

Qwen2-
VL-7b

Qwen2.5-
VL-3B

Qwen2.5-
VL-7B

Gemma3-
4B

Gemma3-
12B

LLaMA-
3.2-11B-
Vision

CQID010 0.2115 0.4107 0.6250 0.4821 0.5179 0.1071 0.3036
CQID011 0.6869 0.7863 0.7417 0.8333 0.8256 0.7045 0.6821
CQID012 0.5737 0.6250 0.6696 0.6086 0.6280 0.5179 0.6161
CQID015 0.2500 0.4821 0.5000 0.7679 0.5714 0.3750 0.3393
CQID020 0.4641 0.5698 0.5002 0.5708 0.6188 0.5589 0.4054
CQID025 0.4038 0.7500 0.5357 0.8929 0.6250 0.0714 0.4643
CQID034 0.3269 0.3571 0.4286 0.4643 0.4643 0.1964 0.4286
CQID035 0.0577 0.5714 0.6786 0.8750 0.2500 0.3393 0.6607
CQID036 0.3077 0.3750 0.3214 0.5536 0.4107 0.3036 0.4107

Average 0.5556 0.5475 0.5556 0.6721 0.5457 0.3527 0.4790

Table 5
Fine-tuned model performance comparison across language models on validation dataset. Qwen2.5-VL-3B
achieves the highest average performance.

Question Qwen2-
VL-2B

Qwen2-
VL-7b

Qwen2.5-
VL-3B

Qwen2.5-
VL-7B

Gemma3-
4B

Gemma3-
12B

LLaMA-
3.2-11B-
Vision

CQID010 0.3600 0.2321 0.6607 0.2500 0.5714 0.2500 0.3571
CQID011 0.6747 0.3667 0.7634 0.3839 0.8360 0.8435 0.4976
CQID012 0.5567 0.5119 0.6726 0.5119 0.6577 0.5417 0.5506
CQID015 0.3200 0.0893 0.5357 0.2857 0.4107 0.8036 0.2857
CQID020 0.4560 0.2942 0.5126 0.3031 0.6253 0.6071 0.2990
CQID025 0.4600 0.6250 0.4821 0.3929 0.2500 0.0893 0.4107
CQID034 0.2600 0.1250 0.3571 0.0357 0.3036 0.3214 0.3750
CQID035 0.3200 0.1250 0.8214 0.7679 0.4821 0.5179 0.5714
CQID036 0.2200 0.2321 0.4107 0.5000 0.0714 0.1786 0.2500

Average 0.4030 0.2890 0.5796 0.3812 0.4676 0.4614 0.3997



Figure 4: Performance Comparison of All Base and Fine-tuned Models. Radar plots depict model accuracy
across individual diagnostic questions, highlighting subtle improvements for some models due to fine-tuning,
while worsening the performance of other models. For example, the performance of the Gemma3-12B model
improves greatly due to fine-tuning, while the performance of the Qwen2.5-7B noticably degrades on most of
the questions.



Figure 5: Pairwise agreement rates (%) among finetuned model predictions and ground truth labels. Higher
values indicate greater consistency in labels.



Table 6: Reasoning Layer Output for Skin Description Task (CQID020) and Encounter 914.
Field Content
Query Details Query: What label best describes the affected area?

Query Type: Skin Description
Category: Skin Specific
Clinical Context: Would brothers and sister here please help. These are my friend’s hands.
Has been to a few hospitals, but unable to get treated. Hope that people here can take a look
to see what it is and what treatment is needed. Alternative medical treatment is also
welcome. Thanks a lot.
Options: raised or bumpy, flat, skin loss or sunken, thick or raised, thin or close to the
surface, warty, crust, scab, weeping, Not mentioned

Finetuned Model
Predictions

Qwen2-VL-2B: skin loss or sunken, warty, flat, Qwen2-VL-7B: raised or bumpy, thin or
close to the surface, Qwen2.5-VL-3B: skin loss or sunken, warty, raised or bumpy, thick or
raised, Qwen2.5-VL-7B: raised or bumpy, thick or raised, warty, Gemma-3-4B: crust, crust
flat not mentioned, scab, , thin or close to the surface, warty, Gemma-3-12B: thick or raised,
crust, raised or bumpy, LLaMA-3.2-11B: thick or raised, crust, raised or bumpy, scab,
bumpy, warty

Reasoning "The image analysis provides a detailed description of the affected areas across different
sites (fingers, foot, ankle/lower leg). The ’SKIN_DESCRIPTION’ section states that the
morphology varies by location. - On the fingers, lesions are described as ’flat or slightly
raised papules/confluent areas with dry skin and scaling’. This supports the options ’flat’
and ’raised or bumpy’. - On the foot, lesions are described as ’discrete, raised papules... some
crusted and excoriated’. This supports ’raised or bumpy’, ’crust’, and ’scab’. - On the
ankle/lower leg, there are ’erythematous plaques with thick scaling, crusting, excoriations’.
Plaques are elevated and often thickened, supporting ’raised or bumpy’ and ’thick or raised’.
’Thick scaling’ also supports ’thick or raised’. ’Crusting’ supports ’crust’ and ’scab’.
Therefore, based on the evidence, the affected areas exhibit morphologies described by
multiple labels from the options: flat, raised or bumpy, thick or raised, crust, and scab. These
are all explicitly mentioned features of the affected skin across different sites."

Final Answer raised or bumpy, flat, thick or raised, crust, scab



Table 7: Agentic RAG for Skin Description Task (CQID020) and Encounter 914.
Field Content
Query Details Query: What label best describes the affected area?

Query Type: Skin Description
Category: Skin Specific
Clinical Context: Would brothers and sister here please help. These are my friend’s hands.
Has been to a few hospitals, but unable to get treated. Hope that people here can take a look
to see what it is and what treatment is needed. Alternative medical treatment is also
welcome. Thanks a lot.
Options: raised or bumpy, flat, skin loss or sunken, thick or raised, thin or close to the
surface, warty, crust, scab, weeping, Not mentioned

Finetuned Model
Predictions

Qwen2-VL-2B: skin loss or sunken, warty, flat, Qwen2-VL-7B: raised or bumpy, thin or
close to the surface, Qwen2.5-VL-3B: skin loss or sunken, warty, raised or bumpy, thick or
raised, Qwen2.5-VL-7B: raised or bumpy, thick or raised, warty, Gemma-3-4B: crust, crust
flat not mentioned, scab, , thin or close to the surface, warty, Gemma-3-12B: thick or raised,
crust, raised or bumpy, LLaMA-3.2-11B: thick or raised, crust, raised or bumpy, scab,
bumpy, warty

Image and Clinical
Context Analysis
(Summarized)

Size: Lesions range widely by location—1–3 mm papules on the foot and fingers, up to
several cm patches on the lower leg and fingers.

Site Location: Involves dorsal/lateral fingers, medial malleolus and anterior distal lower
leg/ankle, dorsal feet/toes, and interdigital web spaces. Some fingers are unaffected.
Skin Description: Erythematous, dry, and scaly fingers; crusted plaques with punctate
bleeding and excoriations on the lower leg/ankle; reddish-brown papules/nodules with
central crusting on the foot/toes. Possible vesicles on some fingers.
Lesion Color: Varies by site—mild erythema with whitish scales on fingers,
yellowish-white scales/crusts and puncta on lower leg, reddish-brown papules and darker
crusting on feet/toes.
Lesion Count: Extensive involvement—diffuse finger changes, 5–10+ distinct lesions on
lower leg/ankle, 20+ papules/nodules on foot/toes, clusters on fingers.
Extent: Localized to fingers, lower legs, and feet as shown. Some hands partially unaffected.
Full body extent not assessed.
Texture: Consistently rough or bumpy—due to scaling and crusts (fingers, lower leg) and
papules/nodules with crusting or excoriation (feet/toes).
Onset Duration: Appears subacute to chronic, with signs of flaring. History of prior visits
suggests long-standing or recurrent nature.
Symptoms: Visual signs of pruritus include excoriations and crusts. Seeking treatment
implies symptomatic discomfort.
History: Previous unsuccessful treatment attempts across multiple hospitals.

Diagnosis Extractor Diagnosis: Lichen
Confidence: 0.70
Source: Image analysis

Retrieved Knowledge
(Summarized)

Topic 1: Lichen planus overview

Relevance Score: 2.47



Field Content
Key Information:
– Affects skin, mouth, genitals, scalp, and nails; may appear in one or several locations
– Can alter the appearance of fingernails and toenails
– Often develops on the wrists but may involve other areas of the body
– Not contagious and not a form of cancer

Topic 2: Lichen planus diagnosis and treatment
Relevance Score: 2.25
Key Information:
– Diagnosis may include physical exam, skin biopsy, and blood tests
– Treatment focuses on reducing symptoms and accelerating skin healing
– Topical and oral corticosteroids, antihistamines, PUVA therapy, and retinoids are options
– Mouth involvement may require different management approaches
– Skin cases usually resolve within two years; recurrence is possible
– Residual pigmentation changes may persist and require cosmetic treatments

Topic 3: Neurodermatitis overview
Relevance Score: 1.90
Key Information:
– Characterized by intense, localized itching often affecting arms, legs, scalp, or groin
– Itching may worsen during rest or nighttime and continue even without stress triggers
– Persistent scratching can lead to thickened skin, bleeding, and secondary infections
– Common signs include chronic itch, skin damage from scratching, and disturbed sleep
– Diagnosis is based on clinical signs and ruling out other causes of chronic itch

Topic 4: Lichen planus signs and symptoms
Relevance Score: 1.61
Key Information:
– Appears as shiny, firm, reddish-purple bumps often with white lines (Wickham’s striae)
– May present as thick plaques, open sores, or scattered bumps on areas like wrists, back, or
ankles
– Can affect nails (causing splitting or thinning) and the scalp (causing irritation or scarring
hair loss)
– Oral form includes painful sores, redness, peeling gums, and white streaks or dots

Topic 5: Neurodermatitis self-care strategies
Relevance Score: 1.02
Key Information:
– Daily management includes cool compresses, colloidal oatmeal baths, and antihistamines
– Fragrance-free moisturizers and barrier protection reduce flare-ups
– Covering affected areas and keeping nails short can minimize scratching damage
– Heat, stress, and synthetic fabrics are common triggers to avoid



Field Content
– Consistent follow-up with dermatology improves long-term outcomes
– Medical treatment is typically required for sustained symptom relief

Medical Knowledge
Insights

"The retrieved medical knowledge discusses Lichen Planus and Neurodermatitis (Lichen
Simplex Chronicus). Lichen Planus (Result 1, 4) can affect various sites including skin, nails,
mouth, and has characteristic shiny, reddish-purple papules/plaques with white lines, often
itchy. Neurodermatitis/LSC (Result 3, 5) is characterized by intense itching in one or two
areas, leading to thickened, leathery skin from scratching, often on arms, legs, neck, scalp,
groin. The visual findings of scaly/crusted patches/plaques on the lower leg (Image 2) and
particularly the intensely pruritic-appearing, excoriated papules/nodules on the foot/toes
(Image 3) are highly suggestive of Lichen Simplex Chronicus or a form of eczematous
dermatitis driven by scratching.
The diffuse scaling/dryness on other fingers (Image 1) could represent a different process or
milder involvement. Image 5’s potential vesicles could suggest dyshidrotic eczema. While
classical Lichen Planus morphology (shiny, purple papules, Wickham’s striae) is not
prominent in these images, Lichen Planus can have varied presentations (hypertrophic LP,
bullous LP) or co-exist with other conditions. The history of multiple failed treatments
aligns with conditions like chronic eczema or LSC, which can be challenging to manage and
often recur (Result 2, 3, 5). The intense itching visually evident is a key symptom of both LP
and Neurodermatitis, prompting consideration of these diagnoses. Self-care measures for
Neurodermatitis (Result 5) highlight the importance of breaking the itch-scratch cycle,
which appears crucial based on the visual findings of excoriation."

Initial Reasoning "The question asks for the best label(s) to describe the affected area based on the provided
evidence. I need to review the ‘SKIN_DESCRIPTION‘, ‘TEXTURE‘, and ‘SIZE‘ fields in the
integrated evidence, as these directly describe the appearance of the lesions. The
‘SKIN_DESCRIPTION‘ mentions:- Diffuse erythema, dryness, and scaling on fingers.
Erythematous patches/plaques with yellowish-white scales, crusting, erosions, punctate
bleeding, smaller papules, and excoriations on the lower leg/ankle.- Multiple discrete
erythematous to reddish-brown papules/nodules, some with central crusting/excoriation on
foot/toes. Small papules/vesicles on some fingers. The ‘TEXTURE‘ is described as
R̈oughness... due to scaling/dryness..., scales/crusts/erosions..., and papules/nodules with
crusted/excoriated surfaces... Some fingers... may have bumpy texture from papules/vesicles.
The ‘SIZE‘ mentions p̈apules/patchesänd p̈apules/nodules̈, indicating elevated lesions.
Evaluating the options: ‘raised or bumpy‘: Supported by the mention of papules, nodules,
vesicles, plaques, and bumpy texture. ‘flat‘: Patches are mentioned, which are flat, but the
description also includes scaling, crusting, papules, nodules, and plaques, which are not flat.
This isn’t the best overall description of the *affected area* which contains multiple lesion
types. ‘skin loss or sunken‘: Supported by the mention of erosions and excoriations, which
represent skin loss. However, this describes a specific feature within some lesions, not the
overall description of the raised/thickened areas. ‘thick or raised‘: Supported by the mention
of plaques and the medical knowledge linking findings to conditions like Neurodermatitis
which cause skin thickening. Papules and nodules are also raised. ‘thin or close to the
surface‘: Not supported by the evidence. Thickening is implied by plaques and the likely
diagnosis. ‘warty‘: Not mentioned or suggested by the descriptions. ‘crust‘: Explicitly
mentioned as present on the lower leg/ankle and foot/toes. ‘scab‘: Implied by the presence
of crusting, erosions, and punctate bleeding. A scab is essentially a crust over a wound.
‘weeping‘: Not explicitly mentioned as a prominent feature. ‘Not mentioned‘: Several
features are mentioned.



Field Content
Based on the evidence, the affected areas exhibit a variety of morphologies. Key features
include raised lesions (papules, nodules, plaques), surface changes (scaling, crusting), and
consequences of scratching (erosions, excoriations, bleeding, likely scabs). Therefore,
multiple labels are appropriate to best describe the diverse appearance. ‘raised or bumpy‘ is
a good general term for the elevated lesions. ‘thick or raised‘ captures the larger, possibly
thickened plaques and the potential for chronic thickening. ‘crust‘ is a direct description of a
common surface finding. ‘scab‘ is a very likely finding given the excoriations and bleeding
leading to crust formation. All four of these options are well-supported by the integrated
evidence describing different aspects of the affected areas."

Initial Results Predicted Answer: raised or bumpy, thick or raised, crust, scab (Confidence: 0.74).
Uncertainty factors:
– "Potential overlap or redundancy between ’raised or bumpy’ and ’thick or raised’.",
– "Inferring the presence of ’scabs’ from ’crusting, erosions, and punctate bleeding’ rather
than explicit mention."
Counterfactual: "If the evidence only described ’flat erythematous patches with scaling’,
then ’flat’ would be a better descriptor and ’raised or bumpy’, ’thick or raised’, ’crust’, and
’scab’ would be less appropriate or incorrect. If the evidence explicitly stated the absence of
crusting or excoriations, then ’crust’ and ’scab’ would not be selected."
Knowledge Contribution: "The medical knowledge about Neurodermatitis (Lichen
Simplex Chronicus) reinforces the relevance of ’thick or raised’ by explaining that intense
scratching can lead to thickened skin (lichenification), which aligns with the description of
plaques and the visually evident excoriations. This adds weight to ’thick or raised’ as a key
descriptor beyond just elevated lesions."

Reflection + Revision Reflection: "The initial reasoning correctly identified the key evidence fields
(‘SKIN_DESCRIPTION‘, ‘TEXTURE‘, ‘SIZE‘) and extracted relevant descriptions of the
lesions (scaling, crusting, erosions, papules, nodules, plaques, bumpy texture). It
appropriately linked these findings to several of the options, correctly identifying support
for ‘raised or bumpy‘, ‘thick or raised‘, and ‘crust‘. The inference of ‘scab‘ from crusting,
erosions, and bleeding is also a reasonable interpretation, as scabs are composed of dried
blood and serum, often forming over erosions or excoriations. The reasoning correctly
dismissed ‘flat‘ as not representative of the entire affected area, and correctly dismissed ‘thin
or close to the surface‘, ‘warty‘, and ‘weeping‘ due to lack of evidence. However, the
reasoning for excluding ‘skin loss or sunken‘ was weak. While it correctly noted that
erosions and excoriations (representing skin loss) are features *within* some lesions, it
failed to fully appreciate that these features are widespread and significant descriptors of the
affected area, particularly on the lower leg and foot/toes. The question asks to describe the
’affected area’, which includes all observed pathologies, not just the raised or thickened
components. Skin loss due to scratching is a prominent characteristic visually evident in the
provided images and described in the evidence, making ’skin loss or sunken’ a valid and
important descriptor of parts of the affected area."
Reasoning Gap: "The primary reasoning gap was the assumption that a descriptor must
apply uniformly to the entire ’affected area’ to be selected. The affected area encompasses
diverse morphologies across different sites. Descriptors like ’skin loss or sunken’, ’crust’,
’scab’, ’raised or bumpy’, and ’thick or raised’ all describe different, co-existing features
within the overall affected region. The initial reasoning correctly applied this principle to
select multiple ’raised’ descriptors and ’crust’, but inconsistently applied it by dismissing
’skin loss’ because it didn’t describe the *raised* areas."
Revised Answer: raised or bumpy, skin loss or sunken, thick or raised, crust, scab.



Field Content
Revised Confidence: 0.90
Revised Reasoning: "The question asks for the best label(s) to describe the affected area
based on the integrated evidence. I need to perform a detailed analysis of the visual
descriptions (‘SKIN_DESCRIPTION‘, ‘TEXTURE‘, ‘SIZE‘) across the different affected sites
mentioned (fingers, lower leg/ankle, foot/toes) and consider how these features relate to the
provided options. The reflection highlighted the importance of considering the diversity of
lesions within the ’affected area’ and ensuring that features like skin loss from excoriation
are not overlooked." The ‘SKIN_DESCRIPTION‘ reveals a heterogeneous presentation across
body sites: - Fingers: diffuse erythema, dryness, scaling, possibly small papules/vesicles. -
Lower leg/ankle: erythematous patches/plaques with scales, crusting, erosions, punctate
bleeding, smaller papules, excoriations. - Foot/toes: discrete papules/nodules, some with
central crusting/excoriation.
The ‘TEXTURE‘ is described as rough due to scaling, crusts, erosions, papules, and nodules,
and potentially bumpy from papules/vesicles.The ‘SIZE‘ includes papules (1-3mm), nodules,
patches, and plaques (up to several cm). Evaluating the options based on these descriptions:
1. **raised or bumpy**: This is strongly supported. Papules, nodules, and plaques are
explicitly mentioned, all of which are elevated lesions. The texture is described as rough and
potentially bumpy from papules/vesicles. This applies to lesions on fingers
(papules/vesicles), lower leg/ankle (papules, plaques), and foot/toes (papules/nodules). 2.
**flat**: Patches are mentioned on the lower leg/ankle. Patches are typically flat areas of
altered color or texture. However, these patches have additional features like scales,
crusting, erosions, and papules on them, meaning the surface is not uniformly flat. The
diffuse erythema on fingers might be primarily flat, but is associated with scaling. Given the
widespread presence of raised lesions (papules, nodules, plaques) and surface irregularities
(scaling, crusting, erosions, excoriations), ’flat’ is not the best overall descriptor for the
*affected area* encompassing all these sites and morphologies. 3. **skin loss or sunken**:
This is strongly supported. ’Erosions’ and ’excoriations’ are explicitly mentioned on the
lower leg/ankle and foot/toes. Erosions are superficial skin loss. Excoriations are deeper
abrasions caused by scratching, also representing skin loss. The term ’skin loss’ is directly
applicable to these features. While the lesions aren’t described as ’sunken’ (which often
implies atrophy or subcutaneous volume loss), the ’skin loss’ part of the option is clearly
present and significant, particularly in areas where scratching is severe (visually evident and
supported by ‘SYMPTOMS‘). 4. **thick or raised**: This is strongly supported. Papules,
nodules, and plaques are all ’raised’. Plaques on the lower leg/ankle suggest thickened skin.
The medical knowledge about Neurodermatitis/Lichen Simplex Chronicus
(‘MEDICAL_KNOWLEDGE_INSIGHTS‘) reinforces that chronic scratching leads to skin
thickening (lichenification), which aligns with the description of plaques and the visual
evidence of intense pruritus (excoriations). Thus, ’thick’ is a highly relevant descriptor for
some areas, particularly the lower legs, and ’raised’ applies across all sites with
papules/nodules/plaques. 5. **thin or close to the surface**: ’Thin’ is not supported by any
evidence; in fact, thickening is suggested. Some lesions like erosions or superficial papules
are ’close to the surface’, but ’thin’ as a descriptor for the skin texture is inaccurate. 6.
**warty**: There is no description of warty appearance (i.e., papillomatous, verrucous
surface). 7. **crust**: This is explicitly mentioned as a feature on the lower leg/ankle and
foot/toes. This is a direct and accurate descriptor of a surface characteristic in the affected
area. 8. **scab**: This is strongly implied. The presence of ’crusting’, ’erosions’, and
’punctate bleeding’ indicates areas where the skin surface has been broken (erosions,
excoriations) and dried blood, serum, and exudate have formed a crust.



Field Content
A scab is precisely such a formation over a wound or abrasion. This is a very likely finding
given the described features. 9. **weeping**: Not explicitly mentioned as a prominent
feature. While some serous exudate leading to crusting might occur, ’weeping’ typically
implies active discharge, which is not described. Multiple options are necessary to
accurately describe the varied affected areas. The analysis supports ‘raised or bumpy‘, ‘skin
loss or sunken‘, ‘thick or raised‘, ‘crust‘, and ‘scab‘ as valid descriptors of different aspects of
the observed lesions and affected regions."
Knowledge utilization assessment: "Medical knowledge about conditions like Lichen
Simplex Chronicus (Neurodermatitis) was integrated to understand the significance of
visually evident features like intense excoriation and described findings like plaques. This
knowledge reinforces that chronic scratching leads to skin thickening (lichenification),
validating ’thick or raised’ as a descriptor, and also explains why skin damage (erosions,
excoriations, leading to skin loss, crusts, and scabs) is a prominent feature in such pruritic
conditions. This contextual understanding strengthens the evidence supporting descriptors
like ’thick or raised’, ’skin loss or sunken’, ’crust’, and ’scab’ in the context of the patient’s
history and visual presentation."

Final Answer "raised or bumpy, skin loss or sunken, thick or raised, crust, scab" Confidence: 0.90
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