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Abstract
Multimodal reasoning is a task focused on multilingual visual question answering, aiming to evaluate the
reasoning capabilities of modern LLMs on complex inputs presented in various languages and involving diverse
subjects. This paper elaborates on the strategy of using prompts that combine image and text features to enhance
the image understanding capabilities of multimodal models. By aligning images with descriptive text features
and constructing multimodal prompts, the approach aims to improve the model’s comprehension of images. The
proposed method achieves an accuracy of 74.56% on the multilingual validation set and 56.19% on the multilingual
test set, representing a 29.18% improvement in performance on the test set compared to the baseline.
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1. Introduction

Multimodal reasoning tasks, such as ImageCLEF 2025 [1], require models to comprehensively process
and understand information from multiple modalities (e.g., vision, language, audio, etc.) to accomplish
complex reasoning and decision-making. These tasks have not only propelled advancements in the field
of artificial intelligence but have also fostered progress in technologies such as multimodal learning,
cross-modal alignment, and deep learning. Furthermore, through interdisciplinary research, these
tasks have contributed to the development of more robust models, thereby enhancing user experience,
addressing challenges posed by complex tasks, and yielding significant benefits in social and economic
domains [2, 3, 4].

In recent years, with the ongoing development of multimodal pretraining technology, a new array
of multimodal models has emerged. Among these, the Qwen model, as an advanced Vision-Language
model, provides innovative solutions for multimodal reasoning tasks with its robust multimodal fusion
capabilities and efficient inference performance [5, 6]. However, Vision-Language Models (VLMs) still
face challenges in deep logical reasoning and inference. They may struggle to answer questions that
necessitate reasoning through complex dependencies or hypothetical scenarios [7].

To overcome this limitation, numerous studies have attempted to enhance the models’ deep reasoning
capabilities through fine-tuning, such as by introducing additional training data or designing task-
specific loss functions to bolster the models’ reasoning abilities [8]. However, due to the complex model
architecture of VLMs, the large scale of parameters, and the scarcity of training data (for instance, in
few-shot settings), directly fine-tuning the entire model for downstream tasks is impractical. Such fine-
tuning may also lead to the forgetting of useful knowledge acquired during the large-scale pretraining
phase and may cause overfitting to the downstream task [9].

Therefore, while fine-tuning is an effective method to enhance model performance, its high cost and
low efficiency limit its practical application for VLMs. This has prompted researchers to explore more
efficient ways to improve the deep reasoning capabilities of VLMs, such as by designing lightweight
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adaptation modules or employing prompt engineering strategies. These approaches aim to enhance the
model’s reasoning ability on specific tasks while retaining the knowledge acquired during pretraining
[10].

Inspired by prompt engineering, we propose a prompt engineering strategy for the Qwen-VL-Max
model. By introducing prompts that combine image and text features, our method guides the model to
better understand task requirements, thereby effectively handling complex multimodal reasoning tasks.
Our approach not only retains the strengths of the Qwen-VL-Max model in multimodal understanding
but also significantly enhances its performance in deep reasoning tasks through prompt engineering,
providing an efficient and effective solution for multimodal reasoning tasks.

2. Method

The methodology of this study designs the multimodal prompts to enhance the image understanding
capabilities of the visual language model., thereby better generalizing to downstream tasks. The Figure 1
illustrates the overall architecture of this method.

Specifically, for an image reasoning question answering dataset 𝐷 = {𝐼1, 𝐼2, . . . , 𝐼𝑛}, where
𝐼𝑖 denotes the images in the dataset 𝐷 and 𝑛 represents the length of the dataset 𝐷, we first
use a VLM to generate formatted descriptive text 𝑇𝑖 for each image 𝐼𝑖. These texts are then
combined with standardized prompts 𝑃𝑠 to form a set of multimodal prompt pairs 𝑀𝑃 =
{(𝑃𝑠, 𝐼1, 𝑇1), (𝑃𝑠, 𝐼2, 𝑇2), . . . , (𝑃𝑠, 𝐼𝑛, 𝑇𝑛)}.

For each 𝑀𝑃𝑖, the image 𝐼𝑖 is preprocessed to 𝑅 × 𝑅 resolution and divided into 𝑁 patches,
each embedded as a vector v𝑗 . The text 𝑇𝑖 is tokenized into 𝑛 tokens and embedded as vectors e𝑖.
Subsequently, v𝑗 and e𝑖 are fed into separate encoders for images and text to obtain the features 𝐻 ′

𝐼 and
𝐻𝑇 , respectively. These features are then fused into 𝐻fusion through modality-specific feature alignment
methods. To distinguish between image and text inputs, special tokens < img > and < /img > are used
to wrap the image feature sequence, < box > and < /box > are used for bounding box information,
and < ref > and < /ref > are used for referenced content. Finally, 𝐻fusion is input into the large
language model to obtain the results.

The following sections will first introduce the construction of multimodal prompts, followed by an
explanation of the multimodal feature alignment methods.

2.1. Construction of Multimodal Prompts

In the context of this study, for each image 𝐼𝑖 belonging to the dataset 𝐷, a corresponding descriptive text
𝑇𝑖 is generated using VLM. This descriptive text is formatted within the model’s prompt to standardize
the style and structure, adhering to the following requirements:

• Content Description: The text must encompass a comprehensive description of the content
present in the image.

• Emphasis on Visual Elements: Particular attention should be given to describing charts, tables,
diagrams, and other illustrative elements that may be present in the image.

• Problem Statement Clarification: The text should clearly articulate the problem or question
posed within the image.

• Option Description: Each option available within the image must be described explicitly.
• Option Specification: The range of options (A, B, C, D, E) should be clearly delineated.

By standardizing the descriptive text in this manner, the model is better equipped to understand the
questions embedded within the images. Given that the dataset D encompasses question-answer pairs in
various languages, with slightly differing option symbols, it is imperative to further standardize the
format of the output options within the prompt. This standardized prompt is henceforth referred to as
𝑃𝑠.A specific example is shown in the Figure 2.

Subsequently, the standardized prompt 𝑃𝑠, along with the image 𝐼𝑖 and its descriptive text 𝑇𝑖, are
combined to form a data pair, creating a multimodal prompt pair 𝑀𝑃𝑖 = (𝑃𝑠, 𝐼𝑖, 𝑇𝑖).



Figure 1: (a)This section describes the creation of multimodal prompt pairs by combining standardized prompts
with descriptive texts generated from images.(b)Text is tokenized, embedded, and encoded with positional
information before being processed by a Large Language Model (LLM) to produce text feature representa-
tions.(c)Images are preprocessed, divided into patches, embedded, and encoded with positional information, then
processed by a Vision Transformer (ViT) to generate image feature representations.(d)Image and text features
are fused using cross-attention and positional encoding to form a comprehensive multimodal representation for
input into the LLM.

2.2. Multimodal Feature Alignment

The multimodal feature alignment method is designed to deeply integrate image and text information
for efficient multimodal understanding and generation[11]. This method consists of the following key
components:

• Large Language Model (LLM): The foundational component responsible for processing text
inputs and generating linguistic responses.

• Visual Encoder: Utilizes the Vision Transformer (ViT)[12, 13] architecture to transform image
data into feature representations that can be fused with text data.

• Position-aware Vision-Language Adapter: Aligns and integrates visual features with textual
features, ensuring effective interaction between image and text information.

Text Encoding

The text encoding process is based on a pre-trained LLM and follows these steps:



Figure 2: A sample standardized prompt

• Input Text Representation: The input text 𝑇𝑖 is tokenized into a sequence of tokens, denoted
as 𝑇𝑖 = {𝑡1, 𝑡2, . . . , 𝑡𝑚}, where 𝑚 is the length of the text.

• Embedding Layer: Each token 𝑡𝑖 is converted into a fixed-dimensional vector e𝑖 through an
embedding layer, i.e., e𝑖 = Embed(𝑡𝑖).

• Positional Encoding: To preserve the sequential information of the text, positional encoding p𝑖

is added to each embedded vector, resulting in e′𝑖 = e𝑖 + p𝑖.
• Large Language Model Encoding: The embedded text vector sequence {e′1, e′2, . . . , e′𝑛} is fed

into the LLM to generate the text feature representation H𝑇 = {h1,h2, . . . ,h𝑚}.

Visual Encoding

The visual encoding process utilizes the Vision Transformer (ViT) architecture and follows these steps:

• Input Image Preprocessing: The input image 𝐼𝑖 is resized to a specific resolution 𝑅×𝑅, such
as 448× 448.

• Patch Embedding: The image is divided into patches of size 𝑃 × 𝑃 . Each patch is flattened and
embedded into a fixed-dimensional vector. Suppose the image size is 𝑅×𝑅 and the patch size is
𝑃 × 𝑃 ; the image is divided into 𝑁 =

(︀
𝑅
𝑃

)︀2
patches. Each patch 𝐼𝑗 is embedded into a vector v𝑗 ,

i.e., v𝑗 = PatchEmbed(𝐼𝑗).
• Positional Encoding: To preserve the spatial information of the image, positional encoding p𝑗

is added to each patch embedding vector, resulting in v′
𝑗 = v𝑗 + p𝑗 .



• Transformer Encoding: The patch embedding vector sequence {v′
1,v

′
2, . . . ,v

′
𝑁} is fed into

the Vision Transformer to generate the image feature representation H𝐼 = {h′
1,h

′
2, . . . ,h

′
𝑁}.

Vision-Language Fusion

The fusion of visual and language features is achieved through the position-aware vision-language
adapter, following these steps:

• Feature Compression: Since the length 𝑁 of the image feature sequence H𝐼 is usually much
larger than the length𝑚 of the text feature sequenceH𝑇 , the image features need to be compressed.
The adapter uses a single-layer cross-attention module to achieve this. Let the learnable query
vectors be Q = {q1,q2, . . . ,q𝐾}, where 𝐾 is the number of query vectors. The cross-attention
operation is defined as:

A = Softmax
(︂
QH𝑇

𝐼√
𝑑

)︂
H′

𝐼 = AH𝐼

where 𝑑 is the feature dimension, A is the attention weight matrix, and H′
𝐼 is the compressed

image feature representation with length 𝐾 .
• Position Information Injection: To preserve the spatial information of the image, 2D absolute

positional encoding P is injected into the cross-attention operation, i.e.,

A = Softmax
(︂
(Q+P)H𝑇

𝐼√
𝑑

)︂
where P is the positional encoding matrix with the same dimension as the query vectors Q.

• Fusion Representation: The compressed image features H′
𝐼 and the text features H𝑇 are fed

into the LLM for further integration, generating the final multimodal representation Hfusion.

The above methods can efficiently integrate image and text data, achieving superior performance in
multimodal tasks.

3. Experiments

3.1. Data Pre-processing

The EXAMS-V dataset provided by ImageCLEF 2025 for multimodal reasoning tasks consists of
24,856(training set: 16,494, validation set: 4,797, test set: 3,565) multiple choice questions (MCQ)
collected from real school exams and other educational sources, presented in the form of images[14].
The data set features:

• Diverse: The content covers pure text questions as well as visual elements such as tables, figures,
graphs, or scientific symbols.

• Multilingual: A multilingual corpus covering 13 different languages, such as English, Arabic,
and Chinese.

• Interdisciplinary: A wide coverage of academic subjects, including biology, chemistry, physics,
and more.

Table 1 presents the proportion of various data formats, while Figure 3 illustrates the distribution of
languages and subjects within the dataset.

This study employs Qwen-VL-Max (7B parameters, 131K-token context window, 448×448 im-
age resolution) as the foundational vision-language model—selected for its state-of-the-art perfor-
mance with 58.7% accuracy on the MMMU benchmark, representing a 12.3-point improvement
over Qwen-VL-Plus(for more information, please visit the official Qwen-VL-Max repository at
https://github.com/QwenLM/Qwen-VL. ). The raw data is processed through the following steps:

https://github.com/QwenLM/Qwen-VL


(a) (b)

Figure 3: (a)The following is a histogram showing the distribution of languages in the EXAMS-V dataset. The
chart reflects how many samples exist for each language across the full dataset (train, validation, and test).(b)The
following sunburst chart shows the distribution of subjects across different languages in the EXAMS-V dataset.
The inner ring represents languages, while the outer ring shows the subjects present within each language. This
visualization highlights the multilingual and multi-domain nature of the dataset[14].

Table 1
Summary of Question Types and Visual Elements

Category Visual Qs. Text Only Table Figure Graph Total
Count 6,460 18,396 694 4,422 1,266 24,856
Percentage 26.0% 74.0% 2.8% 17.8% 5.1% 100.0%

Table 2
Comparison of Accuracy between Different Methods on the Validation Set

Language Qwen-VL-Max Qwen-VL-Max Qwen-VL-Max
(Direct) (Prompt-Engineering) (Prompt-Engineering + Pair)

Multilingual 0.6755 0.7197 0.7456
Arabic 0.5493 0.6364 0.7060
Bulgarian 0.6813 0.8575 0.8625
Chinese 0.6317 0.6750 0.7200
Croatian 0.7641 0.7795 0.8017
English 0.4017 0.4611 0.4784
French 0.8348 0.8348 0.8438
German 0.7878 0.7849 0.7993
Hungarian 0.6467 0.6766 0.7140
Italian 0.7509 0.7633 0.7954
Polish 0.5000 0.5600 0.5800
Serbian 0.7191 0.7629 0.7968
Slovakian 0.8043 0.8043 0.8043
Spanish 0.7100 0.7600 0.7900

• Binary Encoding Conversion: The binary image encoding is converted into Base64 format, an
encoding method that transforms binary data into ASCII strings for convenient transmission and
processing in text-based systems.

• Image Description Generation: The Qwen-VL-Plus model is utilized to analyze the image and
generate a descriptive text for it. The purpose is to extract key information from the image to
facilitate better understanding of its content by subsequent models.



Table 3
Comparison of Accuracy between Qwen-VL-Max and Baseline on the Test Set

Language Qwen-VL-Max(Prompt-Engineering + Pair) Baseline
Multilingual 0.5619 0.2701
English 0.5312 0.2480
Bulgarian 0.7500 0.2450
Chinese 0.5799 0.2678
German 0.6860 0.3101
Arabic 0.3243 0.2703
Italian 0.6059 0.2414
Spanish 0.6608 0.3156
Urdu 0.3569 0.3011
Serbian 0.6059 0.2365
Hungarian 0.5425 0.2348
Croatian 0.6207 0.2709
Polish 0.5792 0.2934
Kazakh 0.4938 0.2738

• Data Pair Construction: The generated image description text is combined with the Base64-
encoded image to form a data pair, which is then passed as input to the Qwen-VL-Max model.

After the model processes the data, the output results are organized in the following format:

• id: A unique identifier(matching to a sample from the Test set).
• language: The language used in the sample.
• answer_key: The identifier for the correct answer option(one of A, B, C, D, or E).

3.2. Experimental Results

The official evaluation metric for this task is accuracy. In this experiment, we use Prompt 2 provided by
ImageCLEF 2025 (a step-by-step reasoning prompt encouraging deeper analysis of textual and visual
cues) as the standardized prompt. Table 2 shows the accuracy of Qwen-VL-Max on the validation set
using the following three methods:

• Qwen-VL-Max (Direct): This method directly applies the Qwen-VL-Max model without any
prompt engineering or additional data pairing.

• Qwen-VL-Max (Prompt-Engineering): This method adjusts the prompt to guide the model
towards more accurate reasoning.

• Qwen-VL-Max (Prompt-Engineering + Pair): This method combines the adjusted prompts
with multimodal data pairs to form multimodal prompts.

Table 3 presents the comparison of accuracy between Qwen-VL-Max and the baseline methods on
the test set.

The experimental results show that by introducing multimodal prompts, the Qwen-VL-Max model
has achieved enhanced performance in multimodal reasoning tasks. On the validation set, the model’s
accuracy across all languages has surpassed both the direct use of the model and the use with adjusted
prompts, reaching 74.56% in multilingual settings. On the test set, compared to the baseline methods,
Qwen-VL-Max with prompt Engineering and data pairing has seen a comprehensive improvement
in accuracy across all languages, with a 29.18% increase in multilingual accuracy, reaching 56.19%.
This indicates that the proposed method in this paper can effectively enhance the model’s ability to
understand and reason with complex multimodal inputs.



4. Conclusion

This paper presents a multimodal prompting strategy for the Qwen-VL-Max model, focusing on en-
hancing the performance of Vision-Language Models (VLMs) in multimodal reasoning tasks. The
core objective of this study is to enhance the model’s comprehension and reasoning abilities for both
image and text information through meticulously designed multimodal prompts and feature alignment
methods, thereby effectively addressing complex multimodal reasoning tasks. The research findings
and experimental results on the EXAMS-V dataset provided by ImageCLEF 2025 are detailed in this
paper. The experiments demonstrate that the introduction of multimodal prompts can significantly
enhance the image understanding capabilities of VLMs.

However, this method, which solely relies on prompting to guide model learning, is highly efficient
and easy to implement but has limitations in enhancing the image understanding and reasoning
capabilities of VLMs. Future research may further explore the design and optimization of prompts and
integrate prompt learning with model fine-tuning to improve the models’ reasoning abilities in complex
multimodal tasks.
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