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Abstract

The FungiCLEF 2025 challenge encourages improvement on few-shot fine-grained classification with large scale
(2,427 classes). This represents a real-world application with a dataset of rare species in Danish Fungi. In this
paper, we present our approach to the challenge, which aims to classify images of fungi given few example
images per species. This method utilizes pretrained embedding models DINOv2, BEIT, and SAM. Simple image
augmentations are applied at both train and test time. Embeddings from each model are concatenated into a single
embedding along the feature dimension per augmented version of the image. A simple projection network was
trained to improve the discriminative performance of the embeddings on the training samples. Cosine similarity
between the class centroid and the observation centroid is used for class prediction, as in Prototypical Networks.
Finally, an ensemble of these pipelines is utilized to further boost performance. Image augmentation is shown to
be the largest contributor to the performance of the solution, followed by learning an embedding projection, and
utilizing multiple embedding models. Our method secured 1* place in the FungiCLEF 2025 competition on the
private leaderboard. Code is available at https://github.com/Jack-Etheredge/fungiclef2025.
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1. Introduction

FungiCLEF 2025 [1] is a competition held as part of the LifeCLEF 2025 [2] lab !. FungiCLEF 2025 is
a fine-grained few-shot classification task. This represents a real-world scenario as described in the
study associated with the FungiTastic dataset [3]. Namely, the distribution of fungi species observed in
the parent FungiTastic dataset is long-tailed and there are many rare fungi species, which means that
these rare species must be considered for few-shot learning, treated as unknown species, or otherwise
excluded from the dataset. The FungiCLEF 2025 challenge dataset represents this long tail of the
FungiTastic dataset. This work describes the top-ranked solution to the competition. The primary
contributions of this work, in order of their impact on the final performance according to ablation
studies, are to 1) supplement prototypical networks with geometric augmentations of the images at both
training and test time, 2) learn a projection of the embedding, 3) use multiple pretrained embedding
models instead of a single model, and 4) ensemble multiple of these prototypical network embedding
pipelines.

2. Related work

FungiCLEF 2025 is a few-shot fine-grained image classification task. It has 2,427 classes, which is
many more than most few-shot benchmarks. Even in cases where there are more classes available,
most performance benchmarks report the 5-way performance on a fraction of a larger dataset (e.g.,
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5-way, 5-shot). ImageNet [4] (21,841 classes, but most commonly used with 1,000 classes), Omniglot [5]
(1,623 classes), Meta-Dataset [6] (which comprises 10 datasets including ImageNet and Omniglot), and
iNaturalist [7] with 5,089 classes are some of the only other example datasets that are commonly used
for large-scale few-shot image classification with over 1,000 classes.

Last year’s FungiCLEF 2024 challenge [8] focused on open-set recognition and minimizing confusion
between poisonous and edible species. The average number of training and validation images per class
were comparatively much greater, with 1,604 known species and 1,629 unknown species represented
across a combined 222,191 observations with 387,169 total instances. The training set for FungiCLEF
2024 was from Danish Fungi 2020 [9], while the validation set was collected from 2022.

3. Methodology

3.1. Dataset

The FungiCLEF 2025 challenge [1] tasked participants with classifying fungi species from images. The
dataset is created from images and metadata submitted to the Atlas of Danish Fungi before the end of
2023. Each species label was assigned by mycologists. The challenge dataset is drawn from the few-shot
dataset from [3], which describes the dataset in depth.

An observation refers to a real-world occurrence of fungi, which may include, but is not limited to,
an individual mushroom, a cluster of mushrooms, or mold growing on a surface, either in a natural
environment or as a collected sample. Each observation comprises one or more instances. An instance is
an individual data point associated with an observation and consists of an image, its associated metadata,
and a generated caption. For example, an individual mushroom may constitute an observation, but
multiple images of this mushroom might be captured from different angles. Each of these images (along
with its metadata and caption) would represent a distinct instance linked to the same observation. The
solution proposed in this paper only utilizes the images, since initial experiments with captions and
metadata were not promising (data not shown).

The dataset contained 2,427 classes with 5,392 observations comprising 10,104 instances between
the training and validation sets. Most classes have a single observation and most observations have a
single instance. All classes had fewer than 5 observations. Combining the training and validation sets
into a single dataset, the class with the most instances has 39 instances. Though not as extreme as the
parent FungiTastic dataset, the challenge dataset still exhibits severe class imbalance, with most classes
having only a single observation while the largest class by instance count has 39 instances, creating a
long-tailed distribution.

3.2. Competition objective and evaluation metrics

The objective of FungiCLEF 2025 was to achieve the best average performance predicting the class of
each test observation given one or more instances per observation. The public and private leaderboards
for the competition both used average recall at rank k = 5 (recall@5), which we refer to as Top-5
accuracy or simply Top-5 hereafter.

For each test observation x, let y, denote its true class label, and {J;, 3», ..., J5} be the top 5 predicted
classes. The recall@5 for observation x is defined as:

1 ifye € {1, 9,0, 5}

recall@5(x) = ; (1)
otherwise
The average recall@5 over the entire test set  is then computed as:
Average Recall@5 = L Z recall@5(x). (2)
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3.3. Overall solution architecture

The overall solution is illustrated in Figure 1. Figure 1A shows that training and test time differ only by
the level of hierarchy that the embeddings are averaged to. For creating the prototype embeddings, all
augmented versions of images belonging to each class are averaged together. Since the competition
expects observation-level predictions, all instances belonging to each test observation and all augmen-
tations of the instance images are averaged into a single embedding. For training of the projection
network, all the augmented versions of the training images are used with their class labels as targets.
Predictions are made by calculating the cosine similarity between the class-level prototype embeddings
and the observation-level test embeddings. Hereafter, this series of functions to transform a collection
of training images into prototype embeddings and test images into observation embeddings to produce
class-wise cosine similarities through the use of a specific combination of image augmentations, frozen
embedding models, and a trained projection network will be referred to as an embedding pipeline.
Figure 1B shows how multiple of these pipelines are combined into an ensemble using the softmax
probability of the cosine similarities. The only difference between members of the ensemble is the
random initialization of the projection network and the random training-validation split at the instance
level for training the projection network. Figure 1C shows how embeddings from multiple models are
generated for each augmented image. The embedding from each model is normalized to unit length
through L2 normalization. Per augmented image, these normalized embeddings are concatenated along
the feature dimension. The four models used were: BEiT-Base/p16 [10] trained on the FungiTastic
dataset [3], DINOv2-base [11], DINOv2-large [11], and Segment anything model (SAM) ViT Huge
(ViT-H) [12].

Prototype embeddings were computed as the mean class embeddings, averaged over all augmentations,
instances, and observations from all the provided data (both the training and validation datasets). To
generate predictions, embeddings were averaged over all augmentations and instances in the test
observation.

Let f(-) be an embedding function, defined as the concatenation of multiple frozen embedding model
outputs along the embedding dimension, followed by a projection via a multilayer perceptron, and
parameterized by ¢. Let &, denote the support set for class c. The class prototype p, € R? is defined as:

1
Pc= @ Z f¢(xl) 3)

X€S,

Each observation x consists of a set of images .7, = {x, Xy, ..., X}, and each image x; has a set of
augmentations & (x;) = {xi(o), xl-(l), . xi(ki)}, where xi(o) is the original image. Let N, denote the total

number of augmented images in the observation:

Ne= ), (%) (4)

x€Sy

The final observation embedding z, € R is computed as the mean of all augmented instance image
embeddings belonging to the observation:

2e=— Y Y 5D (5)

T et )

Per embedding pipeline, the embeddings used for the prototype embeddings and the test observation
embeddings were projected using the same trained projection network. An ensemble of 5 embedding
pipelines was used to generate the final predictions. These embedding pipelines differed only by the
training-validation split and initialization of the projection network. The validation portion was used
for early stopping during training of the projection network. The softmax probabilities over the classes
for each model were generated from the cosine similarities between each test observation and the
prototype embedding for each class. The ensemble average softmax probability of the cosine similarities
was used to rank the classes per observation. The top 10 classes were returned per observation as was
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Figure 1: Solution overview. (A) Augmented image embeddings are used to train a projection network used to
create prototype embeddings and observation embeddings. Predictions are made based on the cosine similarity
between the prototype embeddings and the observation embeddings. (B) Ensemble of multiple embedding
pipelines. Softmax is used to generate class probabilities from the cosine similarities for each pipeline. The
probabilities from each pipeline are averaged to create the final class probabilities for each observation. (C)
Creation of the embeddings from each augmented image. Multiple embedding models are used to create
embeddings of augmented images. These embeddings are normalized to unit length and then concatenated.

expected of the participants. Only the first 5 of these 10 classes factored into the leaderboard ranking,
however, since the competition evaluation metric was the recall at top-5.

3.4. Image augmentation

The same image augmentations were performed for both the training samples and test time augmenta-
tions. This was done both for simplicity and also to maximize agreement between the prototypes and
the test embeddings. Only geometric augmentations were used in the winning solution. The specific
augmentations utilized were: 80% center crop, 80% top left crop, 80% top right crop, 80% bottom left
crop, 80% bottom right crop, horizontal flip, 90-degree rotation, 270-degree rotation, 15-degree rotation,
and 345-degree rotation.

3.5. Embedding models

All experiments were performed on a machine with a single NVIDIA RTX 3090 graphics card and all
models were trained using PyTorch [13]. Embeddings were generated from augmented images using
pretrained models. A simple two-layer network was trained to project the embeddings from these
models into a new embedding space as described in the follow section, but the pretrained models were



Table 1

Learned loss weight values. Weights explore widely during training but converge to stable values. Final
epoch values show mean + standard deviation across 5 seeds. Full training range shows min-max values
across all epochs and seeds; final epoch range shows min-max values at the end of training across seeds.

Loss Weight  Final Epoch Value  Full Training Range  Final Epoch Range

cross-entropy 1.178 £ 0.041 0.849-1.220 1.120-1.220
InfoNCE 1.627 + 0.057 1.001-1.687 1.549-1.687

not fine-tuned.

For all models, after the geometric augmentations were performed, the augmented image was resized
with bicubic interpolation to 1.14x the final image size used for that model and then center cropped to
the final image size. 1.14 was taken from the widely adopted practice of resizing to 256 before taking a
square crop of 224. This is common in ImageNet [4] pre-processing and can be seen in AlexNet [14].

The final image sizes used are as follows:

- BEiT-Base/p16: 384°

- DINOv2-Base: 434

- DINOv2-Large: 5182

- SAM-ViT-Huge: 10242

3.6. Projection network training

A two-layer network was trained to project the concatenated embeddings into a new embedding that
better discriminated between the classes. Using the labels for each augmented image per instance, the
network was trained using PyTorch to project the concatenated embeddings into an embedding with
dimensionality of 768. The model consists of an input layer mapped to a hidden layer with dimensionality
2048, followed by an output layer with dimensionality 768. Both layers are fully connected, with ReLU
activation after the first layer. A batch size of 64 was used. The AdamW optimizer [15] was used
with a learning rate of 1e-4 and a weight decay of le-4. Early stopping was used with a patience of 5
along with a random validation split. Training was stopped when the projection model validation loss
did not improve for 5 consecutive epochs and the weights with the best validation loss were restored.
The model was trained with cross-entropy and infoNCE [16] with temperature of 0.07. The infoNCE
implementation was used from [17]. The per-class probability for cross-entropy was determined based
on the softmax of the cosine similarity. The balance between the cross-entropy and infoNCE losses
was determined through two additional learned loss weighting parameters as in [18]. Across 5 random
seeds, we report the final learned weights immediately before early stopping was triggered, as well
as the range of values both weights explored during training (Table 1). These results indicate that
while both weights are learned dynamically, they converge to stable values with modest variation
across seeds. We observe a consistent upward trend in the InfoNCE weight over training, while the
cross-entropy weight first decreases and then increases again over the course of training. The mean
projection network wall-clock training time for 5 seeds was 294 seconds. For an ensemble, this scales
linearly with the number of pipelines.

3.7. Embedding pipeline ensemble

Multiple embedding pipelines are combined into an ensemble for the final predictions. For each
embedding pipeline in the ensemble, the softmax of the cosine similarities between the prototype
embedding for each class and the test embedding were calculated. The softmax probabilities per
embedding pipeline in the ensemble were then averaged to get the final class probabilities. The mean
inference wall-clock time for 5 seeds was 7.83 milliseconds per observation. For an ensemble, this scales
linearly with the number of pipelines unless inference is performed in parallel.



Table 2

Augmentation ablations. Geometric augmentations are critical to the performance of proposed solution.
Interestingly, the inclusion of 90-degree or 270-degree rotation alone performs nearly as well as the
combination of the 10 augmentations used. Results show Top-5 mean and standard deviation over 5
random seeds.

Original
Center crop
Top left crop

Top right crop
Bottom left crop
Bottom right crop
Horizontal flip
Rot 90
Rot 270
Rot 15
Rot 345

1
1
[ N N
1
1
1
1
1
1
1
1
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Top-5 Mean 63.5 36.4 61.7 622 621 61.7 612 617 627 628 620 619
Top-5 Std Dev 0.6 0.7 0.9 0.5 0.7 0.6 0.0 0.5 0.6 1.0 0.7 0.4
A - -27.1 -1.8 -1.3 1.4 -1.8 23 -1.8 -0.8  -0.7 -1.5 -1.6

Table 3

Impact of test-time augmentations. Test-time augmentations (TTA) are extremely important for model
performance. Their removal causes a 42% reduction in the Top-5 accuracy. Results show mean + standard
deviation over 5 random seeds.

TTA Top-5 A

True 63.5+0.6 -
False 37.1+0.6 -264

4. Evaluation performance and ablation studies
The solution described in this study achieved 1% place on the private leaderboard for FungiCLEF 2025.
This section details the results of ablations for the various components of the solution described in the
previous section. For ablation experiments, models were trained using a split of the official training
set into new training and validation subsets (used for early stopping), and evaluated on the official
validation set (treated as a test set). Unless explicitly stated otherwise (e.g., Table 8 showing the private
leaderboard performance for the top teams), all results are reported on this official validation set. The
baseline for each of these ablations is a single embedding pipeline (instead of the final ensemble)
with the same seed for the training-validation split and projection network initialization. All ablation
experiments use deterministic seeding as described in Section 4.4.

4.1. Image augmentation

As shown in Table 2 and Table 3, the inclusion of train and test time augmentations are the largest
contributors to the performance of this solution. The inclusion of train time augmentations without test
time augmentations results in a Top-5 accuracy reduction of 26.4 percentage points while the removal
of both train time and test time augmentations results in a reduction of 27.1 percentage points.

4.2. Learned Projection

Learning a projection of the concatenated embeddings improves model performance as shown in
Table 4. The projection networks utilized by our top-ranking solution were trained with a combination
of cross-entropy and infoNCE losses. Table 5 shows that this combined loss outperforms either loss
alone.



Table 4
Impact of learned projection. The removal of the projection network causes a large reduction in the
Top-5 accuracy. Results show mean + standard deviation over 5 random seeds.

Projection Top-5 A

True 63.5x0.6 -
False 54.6+00 -89

Table 5

Impact of projection network loss function choice. A learned weighted combination of cross-entropy
and infoNCE outperforms either loss function alone. Results show mean + standard deviation over 5
random seeds.

Loss Top-5 A

combined cross-entropy + InfoNCE  63.5+0.6 -
cross-entropy  61.4+04 -2.1
InfoNCE  61.9+1.0 -1.6

Table 6

Model ablations. The combination of multiple models achieves better performance than any single
model. SAM-ViT-H does not perform well alone and its removal from the model combination does not
appear to degrade performance. Note: In all cases, a projection of the embedding is learned as in the
overall solution. Results show mean + standard deviation over 5 random seeds.

FungiTastic-BEiT-Base/p16 4 v v - - -
DINOv2-Base v v - 4 - -
DINOv2-Large v 4 - - v -
SAM-ViT-H v - - - - v
Top-5 635+06 63.6+08 584+04 576+x06 598+06 124+04
A - +0.1 -5.1 -5.9 -3.7 -51.1

4.3. Combining multiple embedding models

Both combining models at the feature level and also ensembling predictions from multiple learned pro-
jections of those embeddings improve performance. Table 6 shows that concatenating the embeddings
from multiple pretrained models outperforms using the embedding from a single pretrained model.
DINOv2-Large proves to be a particularly strong performer as a single model. Conversely, SAM-ViT-H
performs quite poorly without the context of the other embedding models. It appears that SAM-ViT-H
can be removed from the embedding model combination to decrease the computational demands of the
solution without degrading performance.

Table 7 shows that an ensemble of embedding pipelines outperforms a single embedding pipeline. As
previously described, each member of the ensemble differed only by the training-validation split used
to train the projection model and the random initialization of the projection model. For this ensemble,
the seed for the training-validation split and the projection network initialization were different for
each member of the ensemble, since otherwise predictions from the ensemble would be identical to that
of a single pipeline.

4.4. Seeding and Replicability

To ensure reproducibility and statistical robustness, all ablation experiments used deterministic seeding.
Each configuration was run with 5 independent replicates, and we report mean + standard deviation.
Seeds were computed hierarchically as

Sym = 1000 -7 +m, (6)



Table 7
Impact of embedding pipeline ensemble. An ensemble of 5 pipelines outperforms a single pipeline.
Results show mean + standard deviation over 5 random seeds.

Ensemble Top-5 A
55 64.7+0.2 +1.2
No 63.5+0.6 -
Table 8
Private leaderboard performance for top 10 teams.
Rank TeamName Top-5
1 Jack Etheredge (ours)  78.9
2 hard_work 78.1
3 aixiaodeyanjing 76.6
4 hahahahahal 76.2
5 skhhhh 75.3
6 hahahalll 75.2
7 aurora_aur_ 74.4
8 zhangchaol11 73.9
9 Hasan Oetken 73.9
10 team 73.4

where r € {0, 1, 2, 3, 4} indexes the experimental replicate and m € {0, 1,..., M—1} indexes the ensemble
member (m = 0 for single pipelines, and M is the ensemble size). This structure ensures non-overlapping
seeds across replicates and ensemble members while maintaining reproducibility.

For single pipelines, the same seed was used for both the training-validation split and the projection
model initialization. In ensembles, each member differed only by its corresponding seed, ensuring
diversity through variation in both data splits and projection model initializations.

4.5. Leaderboard performance

Private leaderboard performance for the top 10 ranking teams is shown in Table 8. Our models achieved
the best performance for the competition metric (Top-5 accuracy).

5. Conclusions

Simple methods are sufficient to achieve state-of-the-art performance for few-shot classification of fungi
from image data. In this study, we described our winning approach for the FungiCLEF 2025 challenge.
Using pretrained image classification and feature extraction networks, embeddings can be cached and
subsequently used to train lightweight projection networks. These networks can be ensembled to
further boost performance. Concatenation of embeddings from multiple frozen embedding models
and averaging embeddings from multiple image augmentations perform well despite their simplicity.
Importantly, we show that test-time augmentation is critical to the performance of this method.

Declaration on Generative Al
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