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Abstract

We present a solution to the CLEF 2025 [1] animal species identification task, leveraging pretrained embedding
models and a boosting classifier for pairwise similarity learning. Our pipeline combines pretrained feature
extraction, pairwise embedding comparison, and supervised boosting to determine species-level similarity
between image pairs. As a team "Tim Riggins" we have achieved competitive performance, obtaining scores
of 0.618 target metric for our selected submission and 0.629 target metric for our best submission on the CLEF
private leaderboard.

Keywords

Entity matching, wildlife, gradient boosting, images similarity

1. Introduction

Accurate recognition of individual animals from images plays a key role in ecological research, popula-
tion tracking, and conservation efforts. The CLEF 2025 animal identification challenge [2] addresses
this problem by providing a dataset aimed at identifying exact individuals across diverse environmental
conditions and viewpoints. This task presents significant challenges due to limited labeled examples
per individual, intra-species similarity, and natural variability in appearance. We propose a hybrid
approach that leverages pretrained visual matchers and a boosting-based binary classifier to predict
whether two images represent the same animal. This combination allows us to integrate robust visual
features with supervised decision boundaries for improved entity-level recognition.

2. Related Work

2.1. Metric Learning

Metric learning aims to project images into an embedding space where semantically similar items are
close and dissimilar items are far apart. Common approaches include triplet loss [3], which optimizes
relative distances between anchor, positive, and negative samples, and contrastive loss [4], which
operates on pairs of examples. These methods often require careful sampling or mining strategies to be
effective. ArcFace [5] improves stability and discriminative power by adding an angular margin to the
softmax loss, making it particularly effective for tasks with large numbers of classes.

2.2. Boosting Methods

Gradient boosting methods are widely used for structured and tabular data due to their strong per-
formance, robustness to overfitting, and ability to handle heterogeneous feature types. These models
iteratively build an ensemble of weak learners, typically decision trees, to minimize a loss function
through stage-wise additive modeling. Among popular implementations, LightGBM [6] offers efficient
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training with support for large-scale datasets, categorical features, and custom objective functions. In
the context of similarity learning, boosting models can be trained to predict whether a given pair of
examples belongs to the same class by using handcrafted features derived from image embeddings.

2.3. Open Set Recognition

Open Set Recognition (OSR) aims to address the realistic scenario where a model may encounter
inputs from classes not seen during training. Unlike traditional closed-set classifiers, OSR models must
detect and reject unfamiliar samples rather than misclassify them. Techniques such as OpenMax [7]
extend softmax classifiers by fitting Weibull distributions to activation vectors, enabling detection of
out-of-distribution inputs. Other methods apply thresholding in embedding space using distances to
class centroids or Mahalanobis scoring [8], making them compatible with metric learning approaches.

2.4. Energy-Based Models

Energy-Based Models (EBMs) provide a principled framework for modeling uncertainty and detecting
out-of-distribution inputs. Instead of outputting class probabilities directly, these models compute
an energy score that reflects the compatibility of input and model. In the OSR context, inputs with
high energy are flagged as unfamiliar or anomalous. Liu et al. [9] propose training classifiers to
minimize energy on in-distribution samples while maximizing it on out-of-distribution data using
Outlier Exposure. EBMs can be seamlessly integrated with pre-trained embedding networks and have
shown superior calibration and robustness compared to traditional softmax classifiers.

3. Dataset

The CLEF 2025 dataset includes images of individual animals across several species, such as lynxes,
salamanders, and sea turtles with the distribution shown in the Table 1, supported along with rich
metadata (e.g., species ID, individual ID, timestamp, and orientation) [10]. The primary task is to
determine whether two images depict the same animal, making it a fine-grained entity recognition
problem. Each species presents unique challenges due to differences in visual variability, camera
conditions, and availability of labeled examples. The dataset also includes both known and unknown
individuals, requiring models to generalize beyond the training set.

Table 1

Species population in train and test datasets
Species Train Population | Test Population
Lynx 2,957 946
Salamander 1,388 689
Loggerhead Turtle 8,729 500

4. Task Description

The goal of the entity matching task is to determine whether a query animal image belongs to a known
individual from a reference database or represents a previously unseen individual. The challenge spans
multiple species and requires models to handle significant visual variability while generalizing to novel
instances. Evaluation is based on two core metrics [10]: BAKS (Balanced Accuracy on Known Samples),
which measures class-balanced accuracy over known individuals, and BAUS (Balanced Accuracy on
Unknown Samples), which assesses performance on identifying novel individuals. The final score is
computed as the geometric mean of BAKS and BAUS, encouraging balanced performance between
identification and novelty detection.



Figure 1: Automatically extracted keypoints and their matches between turtle images. Image provided by the
competition hosts [11].

5. Method

5.1. Image Preprocessing

To preserve the aspect ratio of the original images, we applied padding before resizing. Images were
then resized to 384 x 384 pixels when using the MegaDescriptor model, and to 512 x 512 pixels for
all other local descriptor extractors. This preprocessing ensured consistency across the input pipeline
while maintaining the structural integrity of key visual features.

For normalization, we used ImageNet statistics (mean and standard deviation) when working with
MegaDescriptor. For the other models, min-max normalization.

5.2. Global Feature Extraction

MegaDescriptor [12] was used as our primary model for global feature extraction. Although originally
designed for local descriptor learning, MegaDescriptor can also produce dense feature maps that serve
as strong global representations when properly combined. We extracted fixed-length embeddings for
each image without any additional fine-tuning, using these as input for direct similarity comparisons.
The embeddings were used as the foundation for cosine similarity baselines. This approach allowed us
to leverage powerful pre-trained representations while maintaining a training-free feature construction
pipeline.

5.3. Local Feature-Based Matching

We experimented with local descriptor extractors to match animal instances based on fine-grained
visual details. Specifically, we used three pre-trained models: ALIKED [13], Disk [14], and SuperPoint
[15], all designed for keypoint detection and local descriptor extraction. Each model extracts sets
of keypoints and associated descriptors that can be matched across images to establish local visual
correspondences. These matches serve as a complementary signal to global embeddings, especially in
cases where texture, pose, or background differences make purely global similarity less reliable.



5.4. Keypoints Information Aggregation

To combine keypoint information from multiple local descriptor extractors, we used LightGlue [16] as
a lightweight and flexible matching framework. LightGlue was applied to the outputs of ALIKED, Disk,
and SuperPoint, performing keypoint matching between image pairs for each method independently.
The resulting correspondences were then aggregated to produce a richer and more reliable representation
of local visual similarity. This aggregation step allowed us to leverage complementary strengths
of different detectors—such as scale invariance, robustness to viewpoint changes, and localization
precision—to improve the quality of our pairwise features. The combined matches were used as part of
the input to our boosting model for final prediction.

5.5. Pairwise Feature Construction

For each image pair, we compute cosine similarity and the number of corresponding points from local
feature extractors Table 2 ending up with 9 features per sample pair. These serve as input features for
the boost classifier.

Table 2
Descriptions of input features used for pairwise image similarity classification.

Orientation Metadata

First image orientation

Second image orientation

Global Descriptor Similarity
MegaDescriptor similarity

Number of SuperPoint Keypoint Matches
SuperPoint (score > 0.5)

SuperPoint (score > 0.8)

Number of DISK Keypoint Matches

DISK (score > 0.5)

DISK (score > 0.8)

Number of ALIKED GLUE Keypoint Matches
A-Liked (score > 0.5)

A-Liked (score > 0.8)

To improve the robustness of local feature-based similarity, we applied a top-k filtering strategy
using the MegaDescriptor model. For each pair of images, we extracted local descriptors and retained
only K the most similar keypoint correspondences based on the distance of the descriptor. This step
helps to reduce the noise from irrelevant or weak matches and emphasizes the most confident local
alignments between images.

Utilizing cross-validation scheme, a smaller value of K = 40 was sufficient for lynxes and turtles,
while salamanders required a higher threshold of K = 150 to maintain performance, likely due to
greater visual similarity and more challenging matching conditions within that class.

5.6. Boosting Classifier
We train a LightGBM binary classifier to predict whether a given pair of images represents the same
entities. Positive pairs consist of the same entities; negative pairs consist of different entities.

5.7. Validation

To better simulate the conditions of the test set, we leveraged the timestamp information available in
the Kaggle dataset to construct train—test splits that follow the natural chronological order of image
collection.



Table 3
LightGBM parameter configuration used for pairwise classification.

Parameter Value
num_trees 50
num_leaves 32

learning_rate 0.1

boost gbdt
metric auc
objective binary
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Figure 2: Overview of the Prediction and Training Workflow per Pair.

In addition, we held out 20% of the individuals during training and used them as unseen entities.
This setup allowed us to evaluate both identification of known individuals and detection of new ones,
closely aligning with the evaluation protocol of the challenge.

Based on our validation results, we selected a threshold of 0.65 to distinguish new individuals from
known ones.

5.8. Inference

During inference, we followed the same procedure as in training. For each query image, we identified its
K most similar reference images based on embedding similarity. These top-K pairs were then passed
through the boosting model to obtain binary match scores. The final prediction was assigned based on
the reference image with the highest predicted similarity score among the K candidates. Approach
depicted in the Figure 2 allowed us to efficiently combine retrieval-based filtering with supervised
matching for robust entity recognition.

6. Experiments and Results

Table 4
Ablation results comparing different combinations of global features, local features, and meta-model types.
Scores are reported for private and validation splits.

Global Features Local Features Meta-model TH Private Score Validation Score Padding

Yes Yes Boosting 0.75 0.629" 0.681 Yes
Yes Yes Boosting 0.6 0.618 0.686 Yes
Yes Yes Average 0.6 0.608 0.669 Yes
Yes Yes Average 0.6 0.597 0.652 No
Yes No Boosting 0.6 0.322 0.341 No
Yes No Average 0.6 0.308 0.313 No

We report performance in the Tables 4, 5 using the official CLEF evaluation metrics. Our model
outperforms simple cosine thresholding and benefits from the added discrimination of the supervised
boosting model. Both the use of boosting instead of averaging, and the application of padding, lead to
improved results.



Table 5
Performance on different datasets at threshold TH = 0.75.

Dataset Score @ TH =0.75
Lynx 0.7470
Salamander 0.5769
SeaTurtle 0.7272

Despite the overall consistency between validation and private leaderboard scores, some discrep-
ancies were observed. For instance, the configuration with a threshold of 0.75 achieved the highest
private score (0.629), while a lower threshold of 0.6 yielded the best validation score (0.686). This
suggests that our validation split, although timeline-based and stratified, may not perfectly reflect the
distribution or difficulty of the private test set. Overfitting to the validation threshold likely accounts
for this performance gap, highlighting the importance of evaluating across multiple thresholds and data
partitions. In future work, incorporating more robust cross-validation or ensembling across decision
thresholds could help bridge this mismatch.

Finetuning MegaDescriptor within a multi-class classification framework led to noticeable perfor-
mance improvements over using frozen embeddings. The model was trained to predict individual
entities directly, which encouraged more discriminative representations. However, this approach
proved computationally expensive and required extensive training data for convergence. In contrast,
keypoint-based matching methods offered a more efficient alternative, especially when used with pre-
trained extractors and lightweight post-processing. As a result, we prioritized methods that combined
pretrained descriptors with retrieval and pairwise scoring.

This pipeline demonstrated strong generalization performance and remained stable across validation
and test scenarios. By combining global and local features with a lightweight boosting classifier, it
effectively captured both coarse and fine-grained visual similarities. The method required minimal
finetuning and was computationally efficient at inference time. As a result, it secured 7th place on the
private leaderboard of the CLEF 2025 animal re-identification challenge.

6.1. Ablation Study

We evaluated several baseline strategies to understand the contribution of each component in our
pipeline. A simple cosine similarity between pretrained embeddings yielded limited performance,
especially in distinguishing hard negative pairs. We also experimented with training classification
models and using their penultimate-layer embeddings for cosine-based retrieval; while this improved
over the vanilla approach, it still lacked robustness. In contrast, our boosting-based method, which
leverages pairwise features, consistently outperformed both baselines by capturing more nuanced
relationships between image pairs. This highlights the value of supervised modeling on relational
features beyond raw embedding distances.

7. Discussion

The pretrained embedding model captured useful semantic structure. Boosting provided flexible decision
boundaries in embedding space. Triplet-based training was unstable in our setup, and the pretrained
matcher consistently outperformed self-trained models.

8. Conclusion and Future Work

We presented a simple yet effective framework for entity matching based on pretrained visual embed-
dings and a supervised boosting model trained on pairwise features. Rather than relying solely on
embedding distance thresholds, our approach learns to model similarity through handcrafted relational
features and a gradient boosting classifier, providing more flexibility and robustness to noise or domain



shifts. This framework proved particularly useful in scenarios where the embedding space alone was
insufficient to capture fine-grained species-level distinctions. In future work, we plan to explore self-
supervised pretraining to improve the embedding quality, incorporate graph-based label propagation to
exploit the structure of embedding similarity graphs, and investigate hierarchical clustering techniques
to capture taxonomic relationships between species.
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A. Online Resources

All code can be found at the github repository https://github.com/SergeyFedorchenko/Animal CLEF25_
7th.git.
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