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Abstract
This paper discusses our submission to the PlantCLEF 2025 challenge, identical to PlantCLEF 2024, where the
objective is to predict multiple plant species within vegetation plot images. The difficulty of this challenge stems
from multi-class classification, domain shifts, and predictions on high resolution, evidenced by the macro-averaged
F1 score not exceeding 0.37. The training data made available consist of more than 1.4 million single-class images,
while the test plot set contains 2,105 high-resolution vegetation plot images taken from above. The plots exhibit
multiple domain shifts including blurs, plant life cycle, occlusions (via organic or inorganic matter), and seasonal
changes. Given the success of using patch-wise inference from last year’s challenge, we opted to continue with
this method while also exploring domain-aware pretext tasks to finetune the provided DinoV2 vision transformer
to address the domain shifts but yielded limited performance, possibly due to using a limited subset of the training
data. In contrast, we performed ablation studies using only the base model, focusing on post-hoc techniques
including aggregation and filtering. Surprisingly, we found that we were able to post challenge score of 0.35
macro-average F1; surpassing all our model-centric attempts including all but first place. Relevant code and runs
will be made available on GitHub
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1. Introduction

The PlantCLEF 2025 [1] challenge, part of the larger LifeCLEF 2025 initiative [2], is a continuation of
PlantCLEF 2024 [3]; identifying all plant species visible in high-resolution vegetation plot images. Unlike
traditional single-species classification, this challenge presents unique difficulties, including multi-label
prediction, domain shift between training and test data, and the processing of large, high-resolution
images. The difficulty is underscored by the 2024 winning submission achieving a macro F1 score of
just 28.73 on average per plot.

The primary difference between the 2025 and 2024 challenge lies in the expanded evaluation set,
which now includes 2,105 vegetation plots (up from 1,695). The difficulty, however, remains the same.
The most widely adopted and effective strategy has been to divide each high-resolution image into
non-overlapping patches, typically 64 or 16 per image although some teams opted for 4,9 and 25 [4],
and run inference patch-wise. These predictions are then aggregated to infer the species composition
of the whole plot. Some teams have also explored segmentation-based approaches using tools such
as Segment Anything Models (SAMs) [5], which help isolate vegetation from background noise and
non-organic material

Our own approach [6] combined convolutional neural networks (CNNs) and vision transformers
(ViTs) [7], specifically leveraging the DINOv2-based models provided by the challenge organisers [8].
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Figure 1: Observations of four different species, Lactuca virosa L., Pistacia lentiscus L., Trigonella procumbens
(Besser) Rchb., and Hypochaeris radicata L. , showcasing the varying sample types within classes

We employed an aggregation method similar to Bayesian Model Averaging (BMA) [9] to aggregate
patch-level predictions, achieving second place in the 2024 leaderboard.

For 2025, we extended our investigation by exploring Self-Supervised Learning (SSL) with pretext
training tasks aimed at improving the species-level representation learned by DINOv2. However, none
of these modifications surpassed the base model’s performance due to a limited subset of data used for
fine-tuning the model. This result shifted our focus: rather than changing the model itself, we studied
the post-hoc aggregation pipeline in depth. Our ablation experiments demonstrated that, with no model
fine-tuning, we could surpass our official submission and achieve a post challenge macro F1 score of
0.3518; a score that would have placed second overall.

2. Dataset

The dataset is reused from the PlantCLEF 2024 [3] challenge, with the exception of a larger vegetation
plot set and an additional unlabelled training set, which we have not used.

2.1. Training set

The training set is a subset of the Pl@ntNet training data [10], consisting of 1,408,033 images across
7,806 species predominantly found in South Western Europe. The dataset has a large class disparity, as
found in previous PlantCLEF challenges, with some classes exceeding 500 images, while others have
less than 10. The images vary from isolated samples to wild samples among other species, including
different organs of the plants such as leaves or flowers, as shown in Figure 1. Table 1 explains the
training set in more detail. The train dataset provided including both training and testing, amounting
to more than 1.3 million images, with an additional 51,194 images separated for validation.

2.2. Test set

The test set consists of 2,105 high-resolution vegetation plot images (from 2000 to 4000 pixels per
side), significantly more as compared to PlantCLEF 2024 [3] which only had 1,695, taken by experts
in multiple ecological contexts from Pyrenean and Mediterranean floras. The plot images are taken



Table 1
Single class training set

Dataset Subset folder No. of images No. of species

Train train + test 1,356,839 7,806
Validation val 51,194 5,912

Figure 2: Observations of two plots, CBN-Pla-F4 and CBN-Pla-E6, displaying temporal domain shifts as plants
wither and regain vitality

from above, though inconsistent and may vary slightly in elevation as opposed to being strictly taken
overhead. The vegetation plots exhibit a variety of domain shifts, such as seasonal where plants maybe
withered as shown in Figure ??. Other domain shifts include occlusions by measuring tools, rocks, or
other plants, visual blurs due to motion or shadows. An important distinction is that a single vegetation
plot may have from 1 to many species within them, such is the nature of the challenge as it differs from
the training set. The individual species may themselves be in different stages of their life-cycle adding
another layer of complexity to this challenge.

3. Methodology

Following our work on PlantCLEF 2024, we chose to continue our work using the vision transformers
provided by the organizers [8]. Two models were provided, both based on the DinoV2 [11] architecture
and pretrained on the PlantClef 2025 dataset, the difference being one only had the classifier heads
trained while the other continued training of the entire backbone as well. We opted to use the fully
trained model as the backbone for all our models and attempts. Due to the competitive nature and
exploratory scope of the task, this report presents both official results and an extensive series of post-
evaluation experiments. Owing to time constraints, not all results were submitted officially. These will
be clearly marked and discussed accordingly.

A tiling approach, similar to multiple teams last year, was also implemented to infer species on the
entire vegetation plot by splitting the image into 64 or 16 patches and inferring independently, and



Figure 3: Our training pipeline which involves applying a pretext task and a dual head classifier, one for species
and the other to classify which variant of the pretext task was applied

Table 2
Details of our training pipeline

Hyperparameter Values

Image input size 244× 244× 3
Epochs 50
Unfreeze layer 20
Batch size 128
Initial heads learning rate 0.05
Post un-freezing heads learning rate 0.005
Backbone learning rate 0.0001
Weight decay 0.00001
Momentum 0.9
Optimiser SGD
Loss function Cross Entropy

then aggregating them in post to get the overall results for the entire plot, as will be discussed in the
Inference method section.

The dataset we used was the training set provided, however we chose to limit each class to a maximum
of 50 images per class as to combat the class imbalance, as well as computational constraints. Although
50 is low for amount of samples, we employed a higher than normal learning rate to accelerate training,
as will be discussed in our Architecture section.

3.1. Architecture and training

Our base architecture consists of two parts; the backbone, which is the aforementioned pretrained
DinoV2 model, as well as classifier heads using the hyperparameters described in Table 2. We opted
to use pretext tasks as a method to finetune our models with two heads, one for species classification
and the other for pretext labels, as shown in Figure 3. Both heads were just a simple linear layer. The
classifier heads were trained first for 20 epochs while the backbone was frozen, then for the remaining
30 the full model was trained with the last two layers of the backbone unfrozen at a lower learning rate.

3.2. Pretext tasks

Pretext tasks, also known as auxiliary tasks, are intermediate tasks a model performs in tandem with the
main objective task . Typically employed in Self-Supervised Learning (SSL), it serves as to reinforce the
model’s internal representation of classes by evaluating different versions of an image which undergo
transformations, such as rotation [12], jigsaw [13] or colourisation [14].

SSL tasks have been used in the vegetation domain [15] as well as plant-disease identification using
translational augmentations [16], contrastive learning [17] and auto-encoders [18]. However in our
case, spatial augmentations such as rotation or flipping were deemed less beneficial as vegetation plot



Figure 4: Top: Different spatial transformations applied to both dense and sparse plots, showing that such
augmentations do not effect on a larger, plot level scale. Bottom: Different chromatic transformations, showcasing
the broader range and capacity of utilising colour as an augmentation

images are largely invariant to such transformations. Instead, we focused on colour-based pretext
tasks, motivated by the assumption that robust species recognition requires sensitivity to chromatic
variation across different plant life stages. As shown in Figure 4, spatial transformations do little to add
any variety as the overall semantic relationship between species is unchanged. Regardless of flipping
or rotation and regardless of sparse or dense plots, plant density is preserved, as well as inter-spatial
relationships between the plants themselves. These transformations do not meaningfully change the
species-level semantic content, which limits their usefulness as supervision signals. Chromatically
however, contains strong species-level cues. Removing or distorting colour degrades visual distinctions
between species, unlike geometric transforms. Thus, colour-based augmentations or tasks may better
guide self-supervised feature learning. Previous attempts of exploiting the chromatic space as opposed
to the translational space have proven fruitful [19], although to our knowledge none have been applied
specifically to the plant domain. We hypothesize that a model that learns to associate a species with
its colour variants, such as discoloured leaves due to ageing or shading, may generalize better under
natural variations found in test plots. Examples of the pretext tasks used are shown in Figure 5. Each
pretext task was trained with its own model; the training pipeline does not incorporate more than one
pretext task at a time. We note that the pretext tasks were applied only to the training set as shown in
Figure 5 and not on the vegetation plots.

3.2.1. RGB elimination

In this pretext task, we exploit the three primary colour channels: red, green, and blue, by selectively
removing one of them from an image and training the model to predict which channel was eliminated.



Figure 5: Visualisation of different SSL tasks used in training

This yields four possible classes for the task: red removed, green removed, blue removed, and no
modification. Only one channel is removed at a time per image.

The underlying motivation is to simulate chromatic degradation or variation that may occur in
real-world vegetation imagery due to environmental conditions such as lighting, seasonal changes, or
plant life cycle stages. By forcing the model to distinguish which colour component is missing, we
hypothesize that it will learn more robust internal representations that are invariant to certain types of
colour-based distortions.

3.2.2. HSV elimination

Building on the RGB elimination task, we also explore a secondary chromatic representation: the
HSV colour space: Hue, Saturation, and Value. This colour space is often more aligned with human
perception of colour properties. Hue refers to the dominant wavelength of a colour (e.g., red, green, blue),
essentially defining its "type." Saturation indicates the intensity or purity of the colour, where higher
values correspond to more vivid colours. Value represents brightness, with lower values producing



Figure 6: Overall inference method for an image.

darker tones, and zero resulting in black, though for our runs we set a limit of 0.25 to avoid a completely
black image.

Here we selectively eliminate one of the three HSV components at a time, setting the corresponding
channel to zero and train the model to predict which component has been removed. The objective is
not to alter colour directly (as with RGB), but to manipulate properties such as darkness and vibrancy.
Our motivation is that by exposing the model to colour variants that simulate environmental effects
like shadows (low value) or faded pigmentation (low saturation), it may develop more invariant and
generalizable feature representations of plant species under diverse conditions.

3.2.3. HSV addition

The direct inverse of HSV elimination, where the value of the channels are multiplied by 1.5 to increase
Hue, Saturation and Value.

3.2.4. Contrast boost

For this pretext task, we apply varying levels of contrast enhancement to the input image and task the
model with identifying the applied contrast level. The contrast adjustment is implemented via a simple
scaling of pixel intensities, where the image is multiplied by a factor ranging from no change (1.0×) to a
significant boost (up to 1.5×, i.e., +50% contrast). The task includes four possible classes: unchanged,
+10%, +25%, and +50%.

This task aims to teach the model to become sensitive to intensity-based variations that may occur in
real-world scenarios such as overexposure, harsh lighting, or high reflectance from leaves or soil. By
learning to recognize plant structures under different contrast levels, the model can develop robust-
ness to varying imaging conditions and enhance its feature extraction across heterogeneous lighting
environments.

3.3. Inference method

In line with our previous approach from PlantCLEF 2024, we continue to use patch-wise inference as
the primary method for prediction. Each vegetation plot image is first divided into multiple smaller
patches, both 64 and 16 per plot. These patches are then passed individually through the model to
generate class-wise predictions. The outputs are aggregated using a Bayesian Model Averaging [9]
scheme, where predictions from each patch are treated as individual, noisy estimations of the true class
distribution. These are then combined to form a more confident and robust final prediction per plot.



3.3.1. Bayesian Model Averaging

Bayesian Model Averaging (BMA) typically combines multiple models by weighting their outputs
according to their posterior probabilities given the observed data. It consists of two key components:
the likelihood of each model 𝑀𝑘 given the data 𝐷, and the prior probability of the model 𝑀𝑘 before
observing the data.

𝑃 (𝑀𝑘|𝐷) =
𝑃 (𝐷|𝑀𝑘)× 𝑃 (𝑀𝑘)∑︀𝐾
𝑙=1 𝑃 (𝐷|𝑀𝑙)× 𝑃 (𝑀𝑙)

(1)

Here 𝑃 (𝐷 | 𝑀𝑘) is the likelihood measuring how well 𝑀𝑘 explains the data 𝐷, 𝑃 (𝑀𝑘) is the prior,
representing the assumed probability of 𝑀𝑘 before seeing any data, and the denominator is the sum of
all models 𝐾 product of their respective likelihoods and priors.

An important distinction to make is that though BMA is used for ensemble models, we applied its
weighting calculations for our case, substituting model performance for prediction confidence.

This aggregation method is particularly useful in our case, as it inherently handles uncertainty across
patches. Moreover, due to the multi-label nature of the task, we compute a posterior probability for
each class independently across patches, assuming conditional independence between them. Figure 6
illustrates our overall inference for an image in detail.

This method remains unchanged from our 2024 submission [6] due to its proven reliability and
performance across unseen domains and its interpretability in post-hoc adjustments, however we do
alter how the likelihood is calculated.

Similarly we also incorporated using z-score as the threshold. Equation 2 describes the z-score, which
is a measure of how many standard deviations a data point is from the mean of a set.

𝑧 =
𝑥− 𝜇

𝜎
(2)

Where 𝑥 is the data point, 𝜇 is the mean and 𝜎 is the standard deviation of the set. Typically used
to find outliers, we implemented this calculation to find any classes that are significant enough to be
considered as present in a plot and as such we set our threshold to 2.

3.3.2. BMA Likelihood

As stated in our previous working notes [6], we note that since we only use one model, the prior would
be irrelevant as it is based on the model’s probability before seeing any data. The likelihood then would
act as the weight to our aggregation as prior would be cancelled out in calculations. Assuming we
use the number of patches, 𝑁 , as the prior, it would then be 1

𝑁 for each patch. Denoting 𝐿𝑘 as the
likelihood of a patch 𝑘:

𝑃 (𝐿𝑘|𝐷) =
𝐿𝑘 × 1

𝑁∑︀𝑁
𝑛=1 𝐿𝑛 × 1

𝑁

(3)

This can then be simplified to:

𝑃 (𝑖|𝐷) =
𝐿𝑘
𝑁∑︀𝑁

𝑛=1 𝐿𝑛

𝑁

(4)

𝑃 (𝑖|𝐷) =
𝐿𝑘∑︀𝑁
𝑛=1 𝐿𝑛

(5)

Leaving the final probability of a patch 𝑘 as a fraction of the sum of all likelihoods of all patches.
We chose 3 metrics to calculate the likelihood of the patches, namely variance, entropy, and plant
percentage. Each method was used one at a time, using each method to assign a weight to each patch
in a plot.



3.3.3. Variance

Variance is a statistical term that describes the spread of a given data based on the standard deviation
and mean of the set. Typically, the higher the variance, the higher the spread and the more skewed the
set is.

𝑠2 =

∑︀𝑁
𝑖=1(𝑥𝑖 − 𝑥̄)2

𝑁 − 1
(6)

Equation 6 describes variance where 𝑠2 is the sample variance, 𝑁 is the number of samples and 𝑥̄
is the mean of all the samples. Hence variance was used as a proxy for how ’confident’ the model is;
a higher variance suggests a few classes score disproportionately higher than the rest, therefore the
variance of the set as a whole would increase, and we can assume the model is confident. Likewise, if
the model is confused and produces a probability distribution that is less exaggerated or more spread
out, we assume the model is not confident.

Typically variance values are in the range of 0 to 1, and in our case typically less than 0.01. To amplify
the score we used the absolute common log (log10) of the variance to get a range that is easier to work
with as in Equation 7.

𝑣𝑎𝑟 = |𝑙𝑜𝑔10(𝑠2)| (7)

Another challenge would be mapping the variance to a usable range. while normalizing all the values
could be an option, we opted to use a custom curve that would penalize higher values less as shown in
Equation 8

𝑦 =

√︂
𝑎+ 0.5− 𝑥

𝑎+ 0.5
(8)

Where 𝑎 is the maximum absolute log of variance across all patches and 𝑥 is the absolute log of
variance of a given patch

This would provide a mapping function from the absolute log of variance to a confidence score, which
could then be used as a likelihood for the patch.

3.3.4. Entropy

Entropy, or Shannon Entropy [20], is another confidence metric we use to evaluate prediction uncertainty
across image patches. Unlike variance, which captures dispersion across patch predictions, entropy
focuses on the internal uncertainty within each prediction itself. The assumption is similar to using
variance; a plot that has more distinct species will cause a spike in the probability distribution, thus
increasing its entropy. Given a probability distribution 𝑃 = {𝑝0, 𝑝1...𝑝𝑛}, entropy is calculated as:

𝐻(𝑃 ) = −
𝑁∑︁

𝑛=1

𝑝𝑛𝑙𝑜𝑔(𝑝𝑛) (9)

The entropy of the patch’s distribution is then used directly as the likelihood.

3.3.5. Plant percentage

In an attempt to classify a patch as truly plant based, we developed a small regression model that would
give a score from 0 to 1. The goal was to have the model distinguish between organic (plants) and
inorganic (rulers, wooden planks, rocks, dirt) and produce a score for the patch as a whole. The training
set was 3000 images taken randomly from all the patches across all plots, specifically where each plot is
split into 64 patches. Using a custom labelling software, shown in Figure 7, a patch’s plant percentage
was estimated by overlaying an 8 by 8 grid onto the patch, and calculating the percentage of squares
contain plants.



Figure 7: Overview of the labelling software showing the grid for manual annotation, with the image on the
right showing the highlighted squares where a plant is visible

Table 3
Details of our regression models

Hyperparameter Values

Epochs 100
Batch size 32
Learning rate 0.0001
Optimiser SGD
Loss function MSELoss
Evaluations 𝑅2 and MAE

Table 4
Testing results on the various regression models

Model 𝑅2 MAE

ResNet50 0.8138 8.1912
MobileNet 0.7911 9.4496
MobileViT 0.7004 10.9209

3 models were tested, namely ResNet50 [21], MobileNet [22] and MobileViT [23], all following the
same training parameters as shown in Table 3, with their performance in Table 4. Ultimately we decided
on using the ResNet50 model as it performed the best overall. Figure 8 shows the results on a patch
using this model, where the clearer the square is the higher the plant percentage The output of the
regression model was then used as the likelihood.

4. Submissions

Due to overlapping commitments within the limited competition timeline only 5 runs were officially
submitted. Originally there were a planned 17 including the official runs, however the remaining 12
were submitted after the deadline and will be included but noted as unofficial scores.

4.1. Evaluation metrics

The evaluation metric used was macro-averaged F1 score per sample, to balance both false positives
(incorrectly predicting species that are not present) and false negatives (not predicting species that are



Figure 8: Visualisation of the regression model on different plots, the clearer the square the higher the probability
a plant exists within the square

present), using Precision and Recall. Equation 10 describes how macro-averaged 𝐹1 is calculated

𝑀𝑎𝑐𝑟𝑜 𝑎𝑣𝑔 𝐹1 =
1

𝑁

𝑁∑︁
𝑖=1

(
1

𝑇𝑖

𝑇𝑖∑︁
𝑗=1

𝐹1𝑗) (10)

Where 𝐹1𝑗 is calculated by:

𝐹1 =
2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑗 ×𝑅𝑒𝑐𝑎𝑙𝑙𝑗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑗 +𝑅𝑒𝑐𝑎𝑙𝑙𝑗

(11)

Precision (Equation 12) serves to calculate how many true positives 𝑇𝑃 were predicted from a full
set of true positives 𝑇𝑃 and false positives 𝐹𝑃 , while Recall (Equation 13) relates to how many true
positives 𝑇𝑃 were predicted from a full set of true positives 𝑇𝑃 and false negatives 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑗

𝑇𝑃𝑗 + 𝐹𝑃𝑗
(12)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑗

𝑇𝑃𝑗 + 𝐹𝑁𝑗
(13)

Two scores were produced: a public score that was calculated on 11% of the test data during the
competition, and the private score which was shown for all teams at the end of the competition using
the remaining 89%.

4.2. Model and runs

Given the 4 pretext tasks discussed and an additional base configuration where the model was taken
as-is, and the 3 methods of calculating likelihood, 15 runs were produced. We also submitted a baseline
using the base configuration and only using 64 patches per plot, whereas all the runs used an both 64
and 16 patches per plot, as well as another baseline which utilised of simple aggregation, which added



Table 5
Results of our submitted runs. Official runs are marked with an asterisk (*) and bolded. Note that the suffix
p_np refers to the Plant Percentage (plant_non plant) calculations for likelihood

Run Private Score Public Score

dinov2_base_variance 0.34318 0.31732
dinov2_simple_aggregation 0.33856 0.31426
dinov2_base_entropy 0.3385 0.31432
dinov2_base_p_np 0.33024 0.32458
baseline* 0.31457 0.30619
dinov2_hsv_add_variance 0.29286 0.29295
dinov2_hsv_add_entropy 0.29161 0.2901
dinov2_rgb_elim_entropy* 0.28822 0.2918
dinov2_rgb_elim_variance* 0.28801 0.29349
dinov2_hsv_elim_variance* 0.28579 0.28062
dinov2_hsv_elim_p_np 0.28572 0.28547
dinov2_rgb_elim_p_np 0.28517 0.28689
dinov2_hsv_elim_entropy 0.28501 0.28219
dinov2_hsv_add_p_np 0.27909 0.2975
dinov2_contrast_variance* 0.2408 0.28983
dinov2_contrast_entropy 0.24051 0.28769
dinov2_contrast_p_np 0.23229 0.28444

up all the class probabilities across all plots and applied the threshold. Table 5 shows the results of the
17 runs.

5. Results

Among our official submissions, the highest-scoring model, ironically, was our baseline, placing 7th
overall. Our other runs placed 13th through 15th, with the lowest being dinov2_contrast_variance
at 18th. Due to limited time and resources, we were unable to submit our strongest runs during the
competition window. Frustratingly, these also turned out to be simple base models. One such post-hoc
run using straightforward aggregation with the provided ViT model achieved a macro-F1 score of
0.33856, which would have outperformed the official 3rd place. The strongest unofficial result came
from dinov2_base_variance, scoring 0.34318, again placing at 3rd had it been submitted.

6. Ablation study

Given the success of our best, albeit unofficial, run of dinov2_base_variance, we opted to explore the
parameters that may increase its performance. For this run we would like to emphasise that no model
tuning was done, and the only parameters were related to post processing the model’s prediction. All
results are derived using the pre-trained model provided by the organisers and the variation lies solely
in the aggregation of patch-level predictions.

For every plot, both 64 and 16 patch per plot predictions were obtained and aggregated using our
Bayesian Model Averaging (BMA) framework. In this setup, we employed variance as the model
likelihood, motivated by its consistent performance; it outperformed both entropy and plant-percentage
based measures in 4 out of 5 models, with only a marginal exception (dinov2_rgb_elim_entropy,
outperforming by 0.00021).

Our motivation was straightforward: since all finetuned models underperformed the baseline, we
hypothesized that substantial gains could be made by tuning post-processing alone, treating the model
as fixed and optimizing everything around it.



Accordingly, we explored a range of hyperparameters within the aggregation pipeline to better
understand their influence on performance.

6.1. Parameters

6.1.1. Logit type

We first identified the inputs to the pipeline. In prior runs we relied on prediction probabilities after
softmax has been applied, which normalises all logits, across 7,806 classes, from 0 to 1. However we
argued that if the disparity between the probabilities of the highest predicted class and the lowest
predicted class is too large, it may exaggerate some predictions, particularly in the lower end of top-𝑛,
to be included into the final scores which may be false negatives.

To address this, we experimented with using raw logits directly. Instead of applying softmax across
all classes, we first sorted the raw logits per class in descending order and then applied softmax to a
truncated subset. This allowed for finer control over the distribution of logits within the top-𝑘 classes
without distorting the relative magnitude of the raw outputs.

6.1.2. K values

Following the adjustment to logits, we examined the effect of varying the number of top predictions
(𝑘) considered per plot. Under the assumption that typical patches may contain fewer than 10 distinct
species, we hypothesized that limiting 𝑘 could reduce prediction noise. All our previous runs used a
k-value of 100. We evaluated 𝑘 values of 100, 500, 1,000, and 5,000

6.1.3. Z-score

Finally, we investigated the z-score threshold used in the final selection step. While a threshold of 2.0
was initially chosen as a conventional outlier cutoff, this value was largely arbitrary. We suspected that
adjusting this threshold might allow borderline-relevant classes to be included in the final predictions.

To evaluate this, we varied the threshold from 1.0 to 2.0 in increments of 0.1. This allowed us to
assess whether loosening the strictness of the filter could yield improvements without introducing
excessive noise.

Another hyperparameter does exist regarding z-score, pertaining to how many values out of the final
set are considered. Our previous runs use 100 (similar to 𝑘-value) to calculate the z-scores, however for
these experiments we opted to keep it at 100 regardless if 𝑘 is higher than 100.

6.2. Results

To assess the impact of the identified hyperparameters, we conducted a full permutational sweep across
all configurations, resulting to 88 distinct runs, with top 10 shown in Table 6.. The following section
outlines key performance trends and notable takeaways.

The ablation results were surprising; not only did the best-performing configuration exceed expecta-
tions, but it also significantly outperformed the second-ranked configuration by a margin of 0.00639 in
macro-F1 score, and was only 0.01351 behind the top-performing entry overall. Notably, these results
were achieved without any model fine-tuning or architectural changes; purely through adjustments
to post-processing parameters. This highlights the potential of post-hoc methods, particularly when
starting from a strong pretrained model.

Among the hyperparameters, the z-score threshold had the most pronounced effect. The performance
curve was smooth and showed a clear optimum around z = 1.6 as shown in Figure 9, validating the idea
that threshold tuning alone can yield substantial gains.

In contrast, varying the 𝑘-value (i.e., the number of top predictions considered) showed less consistent
trends as seen in Figure 10. While higher 𝑘-values (e.g., 𝑘 = 5000) produced some of the top-performing
runs, suggesting increased stability, other top-10 runs were found even at 𝑘 = 100. This lack of a clear



Table 6
Top 10 scores in our ablation study and their configurations, with 0.35128 being the highest score achieved

Run Logit K-value Z-score Private Score Public Score

exp_RAW_k5000_z1.6.csv RAW 5000 1.6 0.35128 0.32586
exp_SOFTMAX_k5000_z1.6.csv SOFTMAX 5000 1.6 0.35126 0.32586
exp_SOFTMAX_k100_z1.6.csv SOFTMAX 100 1.6 0.35103 0.32174
exp_RAW_k1000_z1.5.csv RAW 1000 1.5 0.35080 0.32365
exp_SOFTMAX_k1000_z1.6.csv SOFTMAX 1000 1.6 0.35076 0.32578
exp_SOFTMAX_k500_z1.6.csv SOFTMAX 500 1.6 0.35055 0.32578
exp_RAW_k100_z1.6.csv RAW 1000 1.6 0.35051 0.32231
exp_RAW_k500_z1.6.csv RAW 500 1.6 0.34935 0.32057
exp_RAW_k500_z1.5.csv RAW 500 1.5 0.34925 0.31851
exp_SOFTMAX_k5000_z1.7.csv SOFTMAX 5000 1.7 0.34898 0.32177

Figure 9: Visualisation of the impact of z_scores on private scores, with 1.6 yielding the highest results

pattern suggests that the optimal 𝑘 might be more sensitive to interactions with other parameters,
rather than being independently influential.

Regarding logit type, there was no conclusive advantage between using raw logits versus softmaxed
probabilities. The top 10 runs included a near-even split between the two approaches (5 raw, 5 softmax),
and this ratio remained balanced in the top 20 (11 softmax vs. 9 raw), indicating that neither consistently
outperformed the other.

All results, including full parameter sweeps, are provided in the Appendix for further inspection.

6.3. Discussion

One of the most surprising outcomes of our study was how often the baseline model outperformed
pretext task driven models. Despite applying a range of pretext tasks and transformations, as well as
other competitors, it was consistently the base DinoV2 model with variance-based post-processing that
yielded the highest scores. This outcome could, however, be due to the foundation itself was simply too
limited to benefit meaningfully from added complexity, either due to architecture or the subset of the
dataset used for training. Our suspicion leans toward the latter. Without a more robust or discriminative
model backbone, the benefits of post-hoc refinements seem capped, regardless of how effective the



Figure 10: Visualisation of the impact of k_value on private scores

aggregation or filtering strategy may be.
This realization brings us to an important point: post-hoc methods may have their strongest im-

pact when paired with an already competitive model. In our case the organiser-provided model,
despite being a provided baseline, performed significantly better once we applied Bayesian model
averaging and variance driven confidence filtering. Even so, simple aggregation as in the case with
dinov2_simple_aggregation already posted a competitive score with 0.33856. This suggests a com-
pelling argument for future work: using strong, pretrained models as fixed feature extractors and then
relying entirely on lightweight inference-stage adaptations. This approach is particularly attractive in
resource-constrained or low-data settings, where full fine-tuning is infeasible.

A particularly illustrative failure case was the plant/non-plant binary classifier model. Despite being
trained on a dedicated, hand-labeled dataset of over 3,000 examples, the model failed to surpass even
the baseline in final leaderboard scores. One possible reason is that the classifier became too certain;
overconfident in rejecting ambiguous or noisy predictions. While this may reduce false positives, it
also risks discarding correct, albeit uncertain, labels. Another reason we suspect is that the regression
model assigns scores of ’0’, which results in the patch’s predictions being nullified completely where as
a lesser penalty might still include the predictions at a lower weight.

In contrast, our post-hoc confidence methods (e.g., variance-based z-score filtering) allowed for just
enough uncertainty to admit potentially correct outliers. This demonstrates a kind of useful noise
tolerance, where not everything that is low-confidence should be discarded outright. Also evidenced
by higher 𝑘-values where predictions, while intuitively would have been discarded due to perceived
irrelevance, may still contribute indirectly by amplifying classes that are certainly present.

Finally, the broader implication of these findings is a shift in emphasis. Rather than focusing solely
on making the model better through training, it may be equally (if not more) productive to improve
what we do after the model makes its predictions. Given that state-of-the-art vision transformers are
increasingly capable out of the box, enhancing inference strategies might yield significant gains with far
less computational cost. Especially in large-class multi-label problems like this one, confidence-aware
methods provide a valuable mechanism for navigating uncertainty without retraining from scratch.

7. Conclusion

This work explored the potential of post-hoc methods to enhance prediction performance in the
PlantCLEF 2025 challenge. Without altering or fine-tuning any model architecture, we investigated



whether strategic filtering, ranking, and aggregation could push standard models beyond their baseline
performance. The answer, surprisingly, was yes, and by a notable margin.

Although regrettably due to constraints we were not able to fully test the extent of fine tuning models
or exploring SSL tasks more in depth, we opted to leave them in due to our motivations of using crafted
pretext tasks for ecological applications, and provide a starting line for future work exploring these
methods.

Using the organiser-provided DINOv2 ViT backbone, we implemented a lightweight post-processing
pipeline based on Bayesian model averaging, z-score filtering, and class ranking by variance-derived
confidence. This method alone was sufficient to outperform more complex pretext task-based models,
including those that incorporated domain-specific augmentations or external classifiers. Most notably,
our best-performing unofficial run would have placed 2nd overall on the leaderboard, beating out
fine-tuned models despite relying solely on inference-stage modifications.

These results affirm a broader insight: post-hoc methods are an underappreciated tool in large-scale,
large-set classification. While it is common to attribute performance gains to deeper networks or larger
datasets, we show that thoughtful post-processing of predictions, particularly when incorporating
uncertainty measures, can yield comparable if not superior improvements. Crucially, this comes with
minimal computational burden and no retraining costs.

Looking ahead, future work may explore this further in two directions. First, by pairing post-hoc
strategies with stronger or more targeted pretrained backbones, we may unlock even more performance.
Second, by expanding the space of inference-time adaptations—perhaps incorporating learned priors,
spatial or temporal context, species co-existence or adaptive thresholds, we might approach state-of-
the-art results with surprisingly simple setups.

8. Declaration on Generative AI

During the preparation of this paper, the author(s) used ChatGPT in order to paraphrase, reword and to
check grammar. After using this GenAI service, the author(s) reviewed the contents of the generated
content and take(s) full responsibility for the publication’s content.
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A. Appendix: Ablation study results

No. Run Logit K-value Z-score Private Score Public Score

1 exp_RAW_k5000_z1.6.csv RAW 5000 1.6 0.35128 0.32586
2 exp_SOFTMAX_k5000_z1.6.csv SOFTMAX 5000 1.6 0.35126 0.32586
3 exp_SOFTMAX_k100_z1.6.csv SOFTMAX 100 1.6 0.35103 0.32174
4 exp_RAW_k1000_z1.5.csv RAW 1000 1.5 0.35080 0.32365
5 exp_SOFTMAX_k1000_z1.6.csv SOFTMAX 1000 1.6 0.35076 0.32578
6 exp_SOFTMAX_k500_z1.6.csv SOFTMAX 500 1.6 0.35055 0.32578
7 exp_RAW_k1000_z1.6.csv RAW 1000 1.6 0.35051 0.32231
8 exp_RAW_k500_z1.6.csv RAW 500 1.6 0.34935 0.32057
9 exp_RAW_k500_z1.5.csv RAW 500 1.5 0.34925 0.31851
10 exp_SOFTMAX_k5000_z1.7.csv SOFTMAX 5000 1.7 0.34898 0.32177
11 exp_RAW_k5000_z1.7.csv RAW 5000 1.7 0.34896 0.32131
12 exp_RAW_k1000_z1.7.csv RAW 1000 1.7 0.34895 0.32102
13 exp_SOFTMAX_k500_z1.7.csv SOFTMAX 500 1.7 0.34893 0.32128
14 exp_SOFTMAX_k1000_z1.7.csv SOFTMAX 1000 1.7 0.34893 0.32128
15 exp_SOFTMAX_k100_z1.7.csv SOFTMAX 100 1.7 0.34870 0.32071
16 exp_SOFTMAX_k5000_z1.9.csv SOFTMAX 5000 1.9 0.34864 0.31942
17 exp_SOFTMAX_k1000_z1.9.csv SOFTMAX 1000 1.9 0.34849 0.31897
18 exp_RAW_k500_z1.7.csv RAW 500 1.7 0.34829 0.32170
19 exp_RAW_k100_z1.5.csv RAW 100 1.5 0.34821 0.32402
20 exp_SOFTMAX_k500_z1.9.csv SOFTMAX 500 1.9 0.34814 0.31824
21 exp_RAW_k5000_z1.9.csv RAW 5000 1.9 0.34801 0.31853
22 exp_SOFTMAX_k5000_z1.5.csv SOFTMAX 5000 1.5 0.34784 0.32819
23 exp_RAW_k5000_z1.5.csv RAW 5000 1.5 0.34783 0.32819
24 exp_SOFTMAX_k1000_z1.5.csv SOFTMAX 1000 1.5 0.34782 0.32817
25 exp_SOFTMAX_k5000_z1.4.csv SOFTMAX 5000 1.4 0.3478 0.33158
26 exp_SOFTMAX_k100_z1.9.csv SOFTMAX 100 1.9 0.34768 0.31734
27 exp_SOFTMAX_k500_z1.5.csv SOFTMAX 500 1.5 0.34745 0.32817
28 exp_RAW_k500_z2.0.csv RAW 500 2 0.34744 0.31821
29 exp_RAW_k1000_z2.0.csv RAW 1000 2 0.34717 0.31868
30 exp_SOFTMAX_k100_z1.5.csv SOFTMAX 100 1.5 0.34712 0.32814
31 exp_SOFTMAX_k100_z1.4.csv SOFTMAX 100 1.4 0.34705 0.33152
32 exp_SOFTMAX_k500_z1.4.csv SOFTMAX 500 1.4 0.34702 0.33156
33 exp_SOFTMAX_k1000_z1.4.csv SOFTMAX 1000 1.4 0.34702 0.33158
34 exp_SOFTMAX_k5000_z1.8.csv SOFTMAX 5000 1.8 0.34696 0.32188
35 exp_RAW_k5000_z1.4.csv RAW 5000 1.4 0.34694 0.33124
36 exp_RAW_k5000_z1.8.csv RAW 5000 1.8 0.34690 0.32170
37 exp_SOFTMAX_k1000_z1.8.csv SOFTMAX 1000 1.8 0.34683 0.32170
38 exp_SOFTMAX_k500_z1.8.csv SOFTMAX 500 1.8 0.34682 0.32170
39 exp_SOFTMAX_k100_z1.8.csv SOFTMAX 100 1.8 0.34682 0.32181
40 exp_SOFTMAX_k5000_z2.0.csv SOFTMAX 5000 2 0.34676 0.32122



No. Run Logit K-value Z-score Private Score Public Score

41 exp_SOFTMAX_k1000_z2.0.csv SOFTMAX 1000 2 0.34674 0.32135
42 exp_RAW_k5000_z2.0.csv RAW 5000 2 0.34674 0.32114
43 exp_SOFTMAX_k100_z2.0.csv SOFTMAX 100 2 0.34669 0.32114
44 exp_SOFTMAX_k500_z2.0.csv SOFTMAX 500 2 0.34668 0.32135
45 exp_RAW_k1000_z1.9.csv RAW 1000 1.9 0.34666 0.32172
46 exp_RAW_k1000_z1.8.csv RAW 1000 1.8 0.34636 0.32110
47 exp_RAW_k500_z1.8.csv RAW 500 1.8 0.34628 0.32039
48 exp_RAW_k1000_z1.4.csv RAW 1000 1.4 0.34598 0.33154
49 exp_RAW_k500_z1.4.csv RAW 500 1.4 0.34525 0.33124
50 exp_RAW_k100_z1.6.csv RAW 100 1.6 0.34515 0.31821
51 exp_RAW_k100_z1.7.csv RAW 100 1.7 0.34419 0.31937
52 exp_RAW_k100_z1.8.csv RAW 100 1.8 0.34414 0.31820
53 exp_RAW_k5000_z1.3.csv RAW 5000 1.3 0.34388 0.33619
54 exp_RAW_k500_z1.9.csv RAW 500 1.9 0.34385 0.32117
55 exp_SOFTMAX_k5000_z1.3.csv SOFTMAX 5000 1.3 0.34371 0.33609
56 exp_RAW_k100_z1.4.csv RAW 100 1.4 0.34366 0.32979
57 exp_SOFTMAX_k1000_z1.3.csv SOFTMAX 1000 1.3 0.34335 0.33609
58 exp_SOFTMAX_k500_z1.3.csv SOFTMAX 500 1.3 0.34334 0.33494
59 exp_SOFTMAX_k100_z1.3.csv SOFTMAX 100 1.3 0.34326 0.33502
60 exp_SOFTMAX_k5000_z1.0.csv SOFTMAX 5000 1 0.3423 0.33991
61 exp_RAW_k1000_z1.3.csv RAW 1000 1.3 0.34221 0.33658
62 exp_RAW_k5000_z1.0.csv RAW 5000 1 0.3422 0.33978
63 exp_RAW_k100_z2.0.csv RAW 100 2 0.34208 0.31438
64 exp_SOFTMAX_k1000_z1.0.csv SOFTMAX 1000 1 0.34206 0.33978
65 exp_RAW_k500_z1.3.csv RAW 500 1.3 0.34162 0.34101
66 exp_SOFTMAX_k500_z1.0.csv SOFTMAX 500 1 0.34147 0.33971
67 exp_RAW_k5000_z1.2.csv RAW 5000 1.2 0.34117 0.34054
68 exp_SOFTMAX_k500_z1.2.csv SOFTMAX 500 1.2 0.34112 0.34032
69 exp_SOFTMAX_k1000_z1.2.csv SOFTMAX 1000 1.2 0.34103 0.34032
70 exp_SOFTMAX_k5000_z1.2.csv SOFTMAX 5000 1.2 0.34096 0.34055
71 exp_RAW_k100_z1.3.csv RAW 100 1.3 0.3407 0.33985
72 exp_RAW_k500_z1.2.csv RAW 500 1.2 0.33967 0.34052
73 exp_RAW_k100_z1.9.csv RAW 100 1.9 0.33959 0.31902
74 exp_SOFTMAX_k100_z1.2.csv SOFTMAX 100 1.2 0.33942 0.34027
75 exp_RAW_k1000_z1.1.csv RAW 1000 1.1 0.33938 0.34056
76 exp_SOFTMAX_k100_z1.0.csv SOFTMAX 100 1 0.3389 0.33984
77 exp_RAW_k100_z1.2.csv RAW 100 1.2 0.33884 0.33602
78 exp_RAW_k5000_z1.1.csv RAW 5000 1.1 0.33869 0.34137
79 exp_SOFTMAX_k5000_z1.1.csv SOFTMAX 5000 1.1 0.33848 0.34155
80 exp_RAW_k500_z1.1.csv RAW 500 1.1 0.33822 0.33892
81 exp_SOFTMAX_k1000_z1.1.csv SOFTMAX 1000 1.1 0.33802 0.34154
82 exp_RAW_k1000_z1.0.csv RAW 1000 1 0.33773 0.34189
83 exp_SOFTMAX_k500_z1.1.csv SOFTMAX 500 1.1 0.33757 0.34154
84 exp_SOFTMAX_k100_z1.1.csv SOFTMAX 100 1.1 0.33679 0.34081
85 exp_RAW_k1000_z1.2.csv RAW 1000 1.2 0.33672 0.34277
86 exp_RAW_k500_z1.0.csv RAW 500 1 0.33578 0.34008
87 exp_RAW_k100_z1.1.csv RAW 100 1.1 0.33476 0.33775
88 exp_RAW_k100_z1.0.csv RAW 100 1 0.33096 0.34046
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