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Abstract
The BirdCLEF+ 2025 challenge requires classifying 206 species, including birds, mammals, insects, and amphibians,
from soundscape recordings under a strict 90-minute CPU-only inference deadline, making many state-of-the-art
deep learning approaches impractical. To address this constraint, the DS@GT BirdCLEF team explored two
strategies. First, we establish competitive baselines by optimizing pre-trained models from the Bioacoustics Model
Zoo for CPU inference. Using TFLite, we achieved a nearly 10x inference speedup for the Perch model, enabling
it to run in approximately 16 minutes and achieve a final ROC-AUC score of 0.729 on the public leaderboard
post-competition and 0.711 on the private leaderboard. The best model from the zoo was BirdSetEfficientNetB1,
with a public score of 0.810 and a private score of 0.778. Second, we introduce a novel, lightweight pipeline
named Spectrogram Token Skip-Gram (STSG) that treats bioacoustics as a sequence modeling task. This method
converts audio into discrete "spectrogram tokens" by clustering Mel-spectrograms using Faiss K-means and
then learns high-quality contextual embeddings for these tokens in an unsupervised manner with a Word2Vec
skip-gram model. For classification, embeddings within a 5-second window are averaged and passed to a linear
model. With a projected inference time of 6 minutes for a 700-minute test set, the STSG approach achieved a
final ROC-AUC public score of 0.559 and a private score of 0.520, demonstrating the viability of fast tokenization
approaches with static embeddings for bioacoustic classification. Supporting code for this paper can be found at
https://github.com/dsgt-arc/birdclef-2025.
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1. Introduction

The BirdCLEF+ 2025 challenge in the LifeCLEF Lab involves classifying fauna in the Middle Magdalena
Valley of Colombia [1] [2]. Participants are provided several thousand one-minute soundscapes and
must predict the probability that one of 206 species appears in non-overlapping 5-second intervals.
While previous iterations of the BirdCLEF challenge have focused on avian calls, this year includes
mammals, insects, and amphibians.

One important limitation of solutions is that they must fit within a 90-minute inference deadline on
a CPU-only instance provided on Kaggle. The computational constraint discourages solutions that rely
on gross computation to reach the top of the leaderboard through mechanisms like model ensembling.

We address the BirdCLEF+ challenge in two parts. First, we provide baseline transfer-learning
solutions by training a classification head on pre-trained birdcall classification models. We hypothesize
that the representation space of existing bioacoustic models will transfer well to the domain-shifted
dataset. Existing research has shown that birdcall classifiers, such as BirdNET and Perch, handle domain
shifts well [3] and even transfer to novel environments, including marine environments, with SurfPerch
[4]. We optimize models for CPU in order to meet competition inference timeouts.

We then experiment with a technique that utilizes discrete audio tokens for soundscape classification,
which we refer to as Spectrogram Token Skip-Gram (STSG). First, we convert audio into discrete tokens
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derived from Mel-spectrograms. We then contextualize tokens into continuous space via skip-gram
embeddings and average tokens within prediction intervals to build a classification head, offering
some reasonable defaults for the hyperparameters involved. Finally, we experiment with pretraining a
classification model on a surrogate task using a student-teacher model on unlabeled training soundscapes,
leveraging predictions from a strong bioacoustical model.

2. Related Work

The dominant strategy for bioacoustic classification, particularly in BirdCLEF, involves treating audio as
a computer vision problem and applying CNN ensembles to Mel-spectrograms, 2D time-frequency rep-
resentations of audio signals [5]. Solutions often utilize transfer learning from EfficientNet, ConvNeXt,
and similar backbones, as well as specialized bioacoustic models such as BirdNET and Perch [6]. How-
ever, the increasing computational cost of these large ensembles poses a challenge in the constrained
competition setting. This has made inference optimization a critical component of state-of-the-art
methods, particularly in model compilation using TFLite, ONNX, or OpenVINO [5].

In the broader field of audio processing, many newer models represent audio as compact sequences of
discrete tokens. This allows the use of powerful sequence modeling primarily used in the text domain,
including LLMs. These tokens can be divided into two types: acoustic tokens and semantic tokens.
Neural audio codecs, such as SoundStream [7] and EnCodec [8], produce acoustic tokens optimized for
reconstructing the original waveform, which is often expensive for discriminative tasks. In contrast,
models that produce semantic tokens capture abstract information but require large self-supervised
architectures like wav2vec [9]. While most audio tokenization efforts focus on speech data, this work
explores tokenization for resource-constrained scenarios in other audio domains.

The word2vec skip-gram model is a simple method for learning dense vector embeddings from
large text corpora [10]. It predicts surrounding context words given a single target word, learning a
low-dimensional vector for each word that captures semantic relationships. Our STSG method adapts
this principle to audio sequences, learning to embed spectrogram tokens that frequently co-occur in
time close to each other in the embedding space. This makes downstream classification more efficient, in
contrast to more complex models like AudioLM, which use expensive transformers to model sequences
of tokens [11].

3. Methodology

We split our methods into two main parts. We explore transfer learning in depth for the BirdCLEF 2025+
dataset using a variety of pre-trained soundscape backbones. Here, we establish baseline classification
and computational performance characteristics on state-of-the-art models and determine the engineering
work required to deploy them to resource-constrained systems. We then explore our central hypothesis
that a tokenized representation of spectrograms can be run with marginal classification degradation
while reducing inference computation by an order of magnitude.

3.1. Transfer Learning with Bioacoustics Model Zoo

We build a baseline for the competition by utilizing pre-trained backbones for bioacoustic fauna
classification. The process of building a new classification head transfers the knowledge of the backbone
to a new task, effectively reutilizing the representation space learned from the original task. A domain-
specific classifier for birds like Perch will be able to tightly cluster sounds that belong to specific classes
like those in Figure 2. These properties make pre-trained backbones desirable for similar domains.
We utilize the Bioacoustic Model Zoo to source our backbones, which serve as a companion to the
OpenSoundscape project [12]. We enumerate the available models in Table 1.

A large variety of models are available from the Bioacoustics Model Zoo, but they cannot be run
directly in the competition for various reasons. First, additional parameters and nodes in the computation



Figure 1: Overview of various experiments as a flow diagram. We utilize pre-trained bioacoustic classifiers
and transfer learning onto the BirdCLEF+ task using a surrogate classification task. We also experiment with
tokenized MFCC embeddings and student-teacher pre-training on top of these embeddings.

Figure 2: PaCMAP projection showing the distribution of Perch embeddings for the 10 most frequent species:
compau, grekis, roahaw, whtdov, laufal1, trokin, yercac1, trsowl, banana, and wbwwre1. We selected
species based on observation count and visualized to assess clustering behavior in the embedding space.

graph needed for training can be pruned, fused, and optimized for inference. We achieve an order of
magnitude speedup for Perch when using TFLite over TensorFlow, enabling the model to run within
competition time limits.

The other source of contention is the impedance mismatch between the clip length of models and the
clip length expected by the competition. The BirdNET model exemplifies this issue since it is lightweight
enough to deploy as-is but requires adaptation for the competition. In cases like this, we apply a sliding
window over the 5-second target frame and extract embeddings from each window. These embeddings



Table 1
Available Models in the Bioacoustics Model Zoo. We gather information from inference on a single 60-second
test soundscape.

Model Name Clip Length (s) Step Size (s) Rows Predict Embed
BirdNET 3 3 20 6522 1024
Perch 5 5 12 10932 1280
BirdSetConvNeXT 5 5 12 9736 1024
BirdSetEfficientNetB1 5 5 12 9736 1280
RanaSierraeCNN 2 2 30 2 512
HawkEars 3 3 20 333 2048
YAMNet 0.96 0.48 124 521 1024

can be aggregated by directly averaging them and applying a classification head or by running the
classifier on each window individually and averaging the resulting probabilities.

To simplify model training, we first train the classifier on the original window embeddings. During
inference, we average the window embeddings over the target frame and run the classifier on the
average embedding. A window is within the target frame if it overlaps with it by at least 50% of the
window size, ensuring that each window contributes to only one target frame. We plan to explore other
aggregation methods in the future, such as max pooling; however, averaging works sufficiently well as
a baseline.

3.2. Spectrogram Token Skip-Gram Embeddings for Classification

The requirements for the Spectrogram Token Skip-Gram (STSG) embeddings are computationally
efficient transformations that map raw waveforms into discrete token space and tokens into continuous
embedding space. One advantage of this representation is that we retain the sequential nature of audio,
allowing us to contextualize a discrete token of audio with the surrounding tokens in time. We approach
this problem in three parts, as shown in Figure 3, specifically through tokenization, embedding, and
model pre-training.

Table 2
Tuned hyperparameters for tokenization and sequence modeling. We also have a single parameter for the
total number of tokens (codebook generation), which is the number of K-means clusters used to quantize the
Mel-spectrogram.

(a) Mel-spectrogram Feature Extraction
Parameter Value
Sample Rate 32,000 Hz
Window Size 8,000 samples
Overlap Fraction 0.5
Hop Size 4,000 samples
Mel Bands 768
Frames per Second 8

(b) Word2Vec Training
Parameter Value Description
vector_size 384 Embedding dimensionality.
sg 1 Use Skip-gram algorithm.
window 80 Context size for co-occurrence.
negative 5 Negative samples for loss.
ns_exponent 0.0 Negative sampling distribution.
sample 1e-5 Subsampling for frequent tokens.
min_count 1 Pruning threshold for tokens.

3.2.1. Spectrogram Tokenization via Faiss on MFCCs

We choose a simple tokenizing scheme and sequence model to maximize inference throughput. Our
tokenizer clusters Mel-spectrograms across the training soundscape using K-means to generate a
codebook for discrete representation [13].

We set the spectrogram parameters in Table 2a in such a way that we obtain eight spectrogram
frames per second; in other words, each resulting token will represent 0.125 seconds of context from
the original spectrogram. This value is chosen as a power of two for efficiency and is selected to yield a



Figure 3: The Spectrogram Token Skip-Gram (STSG) Pipeline. Mel-spectrograms are generated from the source
audio, which are then clustered using K-Means to create discrete tokens. A Word2Vec skip-gram model then
learns a continuous vector embedding for each token in an unsupervised manner. In an optional pre-training
stage, a student model uses these embeddings to produce output logits. A larger teacher model, Perch, also
produces target logits from the same audio. The student’s embeddings minimize the KL Divergence between its
logits and the teacher’s logits.

total sequence length of 40, corresponding to a 5-second prediction frame. We can increase the tokens
per second to increase our target sequence length but at the expense of losing temporal relevance at the
spectrogram level. We use a total of 768 Mel-frequency bands for testing. This number is less than 10%
of the window size, which helps reduce the number of zero-valued frequency bands.

Once we choose parameters for the Mel-spectrograms, we compute them over the entire train-
ing soundscape dataset. We perform principal component analysis (PCA) on the normalized Mel-
spectrogram vectors to reduce their dimensionality for K-means and retrieval. Normalizing the spectro-
gram vector helps reduce the effects of decibel intensities and instead focus on the distribution of the
audio spectra. PCA will project the spectrogram frames into a low-rank space, which helps clustering
by reducing high-frequency noise and the overall computational and memory requirements. We run
K-means via Faiss over the frames to quantize them into integer tokens [14].

To obtain a new token, we generate the spectrogram frame for a given time interval, normalize it,
and project it into a low-rank space. We then find the closest K-means vector that corresponds to it
using the L2 distance. The distance can be efficiently estimated through approximate nearest neighbor
algorithms, such as those implemented in Faiss, including hierarchical navigable small worlds (HNSW).

3.2.2. Skip-Gram Negative-Sampling Embeddings via Word2Vec

Once we have discrete tokens from the audio, we learn a model that embeds the token into a continuous
space, which we can use for downstream classification tasks. Our soundscape data lacks proper labels
that we can utilize, but we can still learn about the relationship between tokens because audio is



naturally sequential. We achieve this in an unsupervised manner using a skip-gram negative-sampling
embedding model, where we learn the location of a token in a high-dimensional space that captures
temporal and semantic relevance within a sequential window.

We use the Word2Vec implementation in gensim to obtain a static lookup table for a learned skip-gram
embedding model [10] [15]. We explore the initial parameter space in Table 2b. The objective is to learn
a vector representation for a target token, 𝑤⃗, that is predictive of its actual context tokens, 𝑐⃗, while
being dissimilar to 𝑘 negative samples, 𝑐⃗𝑁 , drawn from the corpus. We minimize the loss function for
each positive pair [16]:

𝑙sgns = − log(𝜎(𝑤⃗ · 𝑐⃗))−
𝑘∑︁

𝑖=1

log(𝜎(−𝑤⃗ · 𝑐⃗𝑁,𝑖))

The negative samples are drawn from a unigram distribution based on token frequency 𝑓(𝑐) smoothed
by hyperparameter 𝛼 (the ns_exponent) normalized over the corpus vocabulary:

𝑃 (𝑐) =
𝑓(𝑐)𝛼∑︀
𝑐′ 𝑓(𝑐

′)𝛼

The value of 𝛼 is a critical, task-dependent hyperparameter. 𝛼 = 0.75 is standard for NLP tasks. A
higher exponent exaggerates the sampling of frequent noise tokens, forcing the model to become highly
discriminative between rare signal tokens and common background sounds. In contrast, a negative 𝛼
would make the model focus on distinguishing rare signals from each other [16].

We train a classification head on the resulting embeddings. An embedding-centric workflow ensures
that discrete token-based methods are comparable against vision methods over spectrograms.

3.2.3. STSG Student-Teacher Pretraining

In addition to learning a continuous representation of the spectrogram tokens, we experimented with
student-teacher modeling to see if we could impart the bioacoustical domain knowledge from Perch
into a smaller student model based on the STSG embedding space. We configure the student with a
1D-CNN to aggregate STSG embeddings, project these into a latent space, and then attempt to match
the probability distribution of Perch using KL-divergence as the loss. We apply temperature scaling to
the outputs such that teacher probabilities are softened by a squared factor of temperature 𝑇 = 3.

We use the student model from Table 3 and train it against 80% of the training soundscape, using the
remaining 20% as validation. Then, we can pre-compute embeddings for the training species dataset,
just as we do for other models in the bioacoustics model zoo. In our modeling, we rely on complete
sequences, i.e., masking is not implemented.

3.3. Model Validation via Surrogate Classification Task

To validate our transfer learning and token embedding models, we require a task that reflects the
characteristics of the competition task. We rely on the train species dataset in order to validate our
models. The surrogate task serves as a proxy for multi-label inference on soundscapes, for which we
lack labeled data to work. The training data skews in favor of commonly appearing species that are
easier for individual people to crowd-source recordings. We pre-compute vector representations of
the audio aligned to the step size of the original classifier. We drop species that have fewer than two
samples, then stratify the dataset into test and validation in an 80/20 split. We train a classification head
on the embeddings with a hidden layer, non-linearity, and then cross-entropy on a linear projection to
the output space. We document the architecture of the classification head in Table 4.

We select a smaller semi-representative set of species to facilitate hyperparameter tuning sweeps over
the STSG embeddings. In Table 5, we use Gemini 2.5 Pro (gemini-2.5-pro-preview-05-06 with Gemini
App system prompting) to select species using provided taxonomy information, with explicit prompting
about the region and competition to ensure mammals, insects, and amphibians have representation.



Table 3
The architecture of our lightweight Student Model. The model takes a batch of token sequences of shape (𝐵,𝑆)
as input, where 𝐵 is the batch size and 𝑆 is the sequence length (40 tokens for a 5-second clip).

Layer Type Description Output Shape

Input Token Sequence (𝐵,𝑆)
Embedding Vocabulary: 16,384, Dimension: 768 (𝐵,𝑆, 768)

Aggregation Block
Conv1d In: 768, Out: 512, Kernel: 3, Pad: 1 (𝐵, 512, 𝑆)
ReLU Non-linear activation (𝐵, 512, 𝑆)
BatchNorm1d Stabilizes activations (𝐵, 512, 𝑆)
AdaptiveMaxPool1d Pools features across the sequence (𝐵, 512, 1)

Projection Head
(Flatten) Removes the last dimension (𝐵, 512)
Linear In: 512, Out: 512 (𝐵, 512)
ReLU Non-linear activation (𝐵, 512)
BatchNorm1d Stabilizes final activations (𝐵, 512)

Classification Head
Linear In: 512, Out: 10932 (𝐵, 10932)

Loss Function
KLDivLoss Compares output to teacher model logits

Table 4
The architecture of the linear classifier head. This model takes a batch of pre-computed feature vectors of shape
(𝐵,𝐷𝑖𝑛) as input, where 𝐵 is the batch size and 𝐷𝑖𝑛 is the input feature dimension. It outputs logits for 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠

classes.

Layer Type Description Output Shape

Input Feature Vector (𝐵,𝐷𝑖𝑛)

Classification Head
Linear In: 𝐷𝑖𝑛, Out: 512 (𝐵, 512)
ReLU Non-linear activation (𝐵, 512)
Linear In: 512, Out: 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (𝐵,𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠)

Loss Function
CrossEntropyLoss Standard loss for multi-class classification

We validate the number of intervals processed by Perch and note the distribution across our small
validation set.

The competition metric is a macro-averaged ROC-AUC that skips classes with no true positive labels.
We use the macro-averaged ROC-AUC as a rough proxy for our experiments. This measure often fails
to provide precise measurements, as it frequently remains near 1.0 in transfer learning experiments.
We will also report the F1-macro score, which enables more precise observations between models with
different hyperparameters.

4. Results

4.1. STSG Hyperparameter Tuning

The STSG training process has a large number of parameters that can affect the output results. For the
sake of time, we select a set of hyperparameters that suffice for validating that the pipeline works in
both training and inference and that it yields improvements over baseline methods. Refer to Table 2a
for the set of default parameters.



Table 5
Species composition and embedding counts for the surrogate validation task. The 20 species are diversified to
represent different taxonomic classes.

Primary Label Common Name Class Count
socfly1 Social Flycatcher Aves 3,347
strcuc1 Striped Cuckoo Aves 2,862
tropar Tropical Parula Aves 2,578
strfly1 Streaked Flycatcher Aves 2,443
butsal1 Buff-throated Saltator Aves 2,282
52884 True Crickets Insecta 1,191
blhpar1 Blue-headed Parrot Aves 1,006
cattyr Cattle Tyrant Aves 808
eardov1 Eared Dove Aves 500
neocor Neotropic Cormorant Aves 491
blkvul Black Vulture Aves 402
555086 Rusty Tree Frog Amphibia 259
67252 Veined Tree Frog Amphibia 231
savhaw1 Savanna Hawk Aves 230
1462737 Docidocercus fasciatus Insecta 140
65344 Boettger’s Colombian Tree Frog Amphibia 92
1192948 Oxyprora surinamensis Insecta 83
41778 Neotropical River Otter Mammalia 40
47067 Brown-throated Three-toed Sloth Mammalia 14
42113 Collared Peccary Mammalia 4

Table 6
Key architectural and hyperparameter differences between the STSG model versions. The v1 model used MFCCs
as its base feature, while the v2 series used tokens derived from a PCA-reduced Mel-spectrogram.

Model Version Base Feature Embedding Context NS Exponent Subsampling

STSG (v1) MFCC 384 80 0.75 1e-4

STSG (v2.0) PCA Mel-spectrogram 1024 80 1.5 1e-5
STSG (v2.1) PCA Mel-spectrogram 1024 80 0.0 1e-5
STSG (v2.2) PCA Mel-spectrogram 1024 80 -0.75 1e-4

Our first attempt at modeling used Mel-Frequency Cepstral Coefficients (MFCCs), which are effec-
tively the discrete cosine transform (DCT) of the Mel-spectrogram. We denote this STSG v1, with
hyperparameter plots in Appendix A. However, we artificially limit the representational power of the
tokens in v1 by being overly conservative with the parameters of 128 Mel bands and 20 MFCCs. In
Table 6, we describe the parameters for the v2 line of models that use the Mel-spectrogram representa-
tion of 768 Mel-bands. The remaining hyperparameter results that follow utilize the Mel-spectrogram
representation.

Given a spectrogram representation, we must determine how many centroids we compute over
the entire soundscape dataset. The centroids act as a data-driven vocabulary for the audio corpus. In
Figure 4, we sweep over the parameters of the vocabulary. We settle on a token set size of 16k, which
both fits inside a 2-byte integer and provides a reasonable amount of support, given that there are 3.73
million tokens in the 80% training split of the soundscape. While increasing the number of tokens to
32k improves the validation F1-macro scores, it also increases the overall required training time for the
embedding proportionally.

Applying PCA to the tokenizer is also a net positive to the model. We choose 128 dimensions,
as shown in Table 7, which retains 87% of the original variance of the 768 Mel-spectrogram bands.
Reducing the number of dimensions increases modeling performance, likely due to the omission of
high-frequency noise and latent modeling of sparse substructures in the original data. Additionally,



Figure 4: F1 score and training time vs. tokenizer vocabulary size. A vocabulary of 16k clusters provides the best
performance before diminishing returns.

Table 7
Cumulative variance explained by the number of principal components retained for the Mel-spectrogram features
with 768 Mel bands.

Number of PCA Components Cumulative Variance Explained

32 77.20%
64 81.85%
128 87.02%
256 93.12%
512 98.34%

many of the algorithms that we use (K-means and approximate K-NN) have algorithmic complexity
that is linearly proportional to the number of dimensions. Reducing the number of dimensions allows
us to fit more rows into memory and execute fewer instructions overall when tokenizing the signal.

Once we have determined our token size, we conduct hyperparameter sweeps over the Gensim
Word2Vec model, as shown in Table 8. We vary over vector size, window size, negative sampling
exponent, and sample rate. The vector size determines the adequate capacity of the model and sweeps
over 128, 256, 384, 512, and 1028 dimensions. The dimension size is the most important parameter, as it
directly affects the model’s ability to learn complex relationships between tokens. Increasing the vector
size by a factor of three increases the F1-macro score by 0.018 but also increases the training time by a
factor of 1.7. We find that lowering the window size from the default of 80 decreases the score by 0.013,
whereas increasing the window size does not significantly improve the score. However, the training
time is significantly affected by the window size, with a smaller window size reducing the training time
by 112 seconds.

We find that sweeping over the negative sampling exponent 𝛼 does not yield a clear pattern; however,
in this particular sweep, setting 𝛼 to 0.0 yields the best performance. This parameter controls the
distribution of negative samples, and a setting of 0.0 indicates a uniform distribution over the vocabulary.
A positive exponent means negative samples are more likely to be drawn from the more frequent tokens,
while a negative exponent means negative samples are more likely to be drawn from the less frequent
tokens. Finally, we sweep over the subsampling rate, which controls the frequency of token sampling
during training. We find that decreasing the sample rate to 1e-4 does not change the score but increases
the training time by a factor of two. Increasing the sample rate to 1e-6 results in a significant drop in
performance, as only the most frequent tokens are sampled, and the model is unable to learn from the



Table 8
STSG (v2) hyperparameter sweep results on the surrogate validation task. All results are compared
against a baseline configuration using a PCA-based tokenizer. Deltas (Δ) are calculated relative to this
baseline. The best-performing result in each scan group is highlighted in bold.

Scan Group Parameter Value F1 Macro Δ F1 Time (s) Δ Time (s)

Baseline

tokenizer PCA 0.483 +0.000 474 +0
vector_size 384
window 80
ns_exponent 1.5
sample 1e-5

Varying tokenizer tokenizer Standard 0.452 -0.031 1062 +588

Varying vector_size

vector_size 128 0.395 -0.088 396 -78
vector_size 256 0.467 -0.016 459 -15
vector_size 512 0.488 +0.005 548 +74
vector_size 1024 0.501 +0.018 836 +362

Varying window
window 40 0.470 -0.013 362 -112
window 120 0.481 -0.002 576 +102

Varying ns_exponent
ns_exponent -0.5 0.471 -0.012 495 +21
ns_exponent 0.0 0.476 -0.007 492 +18

Varying sample
sample 1e-4 0.483 +0.000 841 +367
sample 1e-6 0.439 -0.044 281 -193

less frequent ones. These results help motivate the final choice of hyperparameters, which are balanced
to provide a good trade-off between performance and training time.

(a) F1 score vs. ns_exponent. (b) Word2Vec validation curves

Figure 5: Hyperparameter tuning and final model performance. (a) F1 score as a function of the negative
sampling exponent (ns exponent) for two different subsampling rates. The optimal exponent shifts from 0.0 to
-0.75 when using less aggressive subsampling (1e-4). (b) Validation learning curves for the final STSG v2 models,
showing that performance improves with more training but begins to overfit after approximately 70 epochs.

Given the hyperparameter sweeps, we then fix over the parameters and run over the negative
sampling exponent 𝛼. In our parameter scans, it was unclear how the negative sampling exponent
and sample sizes interact with each other. However, we find that when we set the sample to 1e-5,
then, the best 𝛼 is 0.0. When we increase the number of samples by setting the sampling threshold to
1e-4, the best 𝛼 decreases to -0.75. When we aggressively subsample tokens in the former setting, we
remove many of the most frequent tokens, which likely correspond to silence or background noise,
making the resulting token distribution flatter. The uniform strategy is effective since the noise is



already downsampled. When we are less aggressive with the samples, the distribution more closely
resembles the original distribution. Setting this to a negative value then forces the model to learn how
to distinguish between tokens corresponding to different species rather than focusing on the frequent
tokens.

We also look at the performance over time in Figure 5b and find that 100 epochs are a reasonable
length of time to run the Word2Vec algorithm. In the first two iterations (v2.0 and v2.1), where we set
subsampling to 1e-5, we observe either overfitting or significant stochasticity in the validation curve
over time. We increase the number of tokens available for training in v2.2, and this stabilizes training
to a large degree.

4.2. STSG Student Model Results

Table 9
Overall model performance summary on the surrogate validation task, comparing the teacher model, a spectro-
gram baseline, and various versions of our token-based STSG and student models.

Model Macro F1 Micro F1 Accuracy

MelSpec Baseline 0.12 0.31 0.31
Perch (Teacher) 0.80 0.91 0.91

STSG (v1) 0.45 0.53 0.53
STSG (v2.0) 0.54 0.60 0.60
STSG (v2.1) 0.55 0.60 0.60
STSG (v2.2) 0.56 0.61 0.61

STSG Student (v1) 0.24 0.32 0.33
STSG Student (v2.0) 0.49 0.48 0.48
STSG Student (v2.1) 0.49 0.47 0.47
STSG Student (v2.2) 0.47 0.47 0.47

We report the results of the STSG student model in Table 9 for the validation task, comparing it to the
Perch teacher model and our best token-based model. These initial results show that the teacher model
is competent, achieving a macro F1 score of 0.80 and a micro F1 score of 0.91. The Mel-spectrogram,
used directly by averaging the features over the time step, achieves a score of 0.12. The STSG model
performs better than the spectrogram baseline but worse than the teacher, with a score of 0.56. The
token model can learn a representation space of the soundscape that can be transferred to the training
dataset to a lower degree than the Perch model but is significantly better than choosing at random.

Finally, we observe that the student model, trained on the STSG representation space and then
fine-tuned on the surrogate task, achieves a macro F1 score of 0.47. The student model’s performance
represents a significant regression compared to using the STSG embeddings directly, suggesting that the
STSG embeddings are unable to capture the complex relationships needed to represent the Perch logits
effectively and that the geometry of the learned embedding space does not transfer well to classifying
the training species dataset.

4.3. Transfer Learning and Leaderboard Results

We report the transfer learning surrogate task in Table 10. Here, we note that the ROC-AUC score does
not help us disambiguate between the relative performance of models. We note that the F1-macro score
correlates well with the ranked performance of the models while providing larger differences in scores
for individual observations. The metric is also built into the classification report in the scikit-learn
library. We find that our best STSG models yield results around 0.56, whereas the best computer vision
backbone models achieve results around 0.87.

We report the final model performance and timing on the leaderboard in Table 11. We note that the
primary metric that we are looking at here is the modified ROC-AUC scores, which are much lower



Table 10
A final comparison of model performance on the surrogate classification task. We report F1 scores and the
macro-averaged Area Under the Receiver Operating Characteristic Curve (ROC-AUC), which aligns with the
competition’s primary evaluation metric.

Model Name Epoch Validation Scores Training Scores

F1 Macro F1 Micro ROC-AUC F1 Macro F1 Micro ROC-AUC

BirdNET 10 0.876 0.873 0.999 0.913 0.907 1.000
BirdSetConvNeXT 8 0.876 0.884 0.998 0.944 0.952 1.000
Perch 11 0.857 0.869 0.997 0.947 0.950 1.000
BirdSetEfficientNetB1 7 0.776 0.819 0.996 0.831 0.849 0.998
RanaSierraeCNN 14 0.221 0.243 0.894 0.238 0.250 0.901

STSG (v1) 19 0.381 0.394 — 0.568 0.508 —
STSG (v2.0) 14 0.563 0.511 0.975 0.580 0.544 0.979
STSG (v2.1) 14 0.560 0.515 0.975 0.581 0.546 0.978
STSG (v2.2) 14 0.573 0.526 0.976 0.592 0.559 0.978

Table 11
Final model performance (Public and Private Macro ROC-AUC Scores on Kaggle) and inference speed comparison.
Projections are for a hypothetical test set of 700 soundscapes against the 90-minute (5400s) competition deadline.

Model Public Private Avg. (s) / File Projected Time

BirdNET (1s step) 0.719 0.718 6.2s 4340s (∼72 min)
BirdNET (2.5s step) 0.715 0.721 2.48s 1736s (∼29 min)
Perch (TensorFlow) - - 17.0s 11900s (∼3.3 hrs)
Perch (TFLite) 0.729 0.711 1.4s 980s (∼16 min)
BirdSetEfficientNetB1 0.810 0.778 2.21s 1547s (∼26 min)
BirdSetConvNeXT 0.768 0.756 5.11s 3577s (∼60 min)
RanaSierraeCNN 0.617 0.643 4.86s 3402s (∼57 min)

STSG (v1) 0.478 0.474 0.4s 280s (∼5 min)
STSG (v2.0) 0.548 0.538 0.5s 350s (∼6 min)
STSG (v2.1) 0.559 0.520 0.5s 350s (∼6 min)
STSG (v2.2) 0.534 0.513 0.5s 350s (∼6 min)

than the ROC-AUC metrics in our surrogate task. We note that the bioacoustic model zoo performs well
for this simple transfer learning task without requiring complex modeling to address the domain shift
in the datasets. In comparison, the token embedding models achieve a modest score of around 0.56.

However, the STSG model is lightweight and fast. It is three times as fast (0.5 seconds per file vs.
1.4 seconds per file) when compared to Perch on TFLite. The Word2Vec modeling is weak but can be
replaced by more robust and complex token embeddings without altering the runtime characteristics
as long as the token embeddings are static. Additionally, we found that many of the Torch-based
bioacoustical models did not require any compilation or optimization to run within the competition
bounds. A significant amount of tuning can be done despite the computational constraints, as evident
from the final leaderboard for the 2025 competition.

5. Discussion

5.1. Transfer Learning

While the transfer learning experiments we have run are methodologically simple, we were able to
test a much wider variety of models than in previous years. The bioacoustic model zoo is an excellent
library for development, as it provides a reasonable API into many popular bioacoustic backbones.
We visualize the embedding space extracted from the library in Figure 6, which provides a qualitative



view of the geometric structure of the backbones. The tight clustering behavior of BirdNET, Perch, and
BirdSet models is desirable, as it facilitates more straightforward mapping to our final objective space.
The color of the data corresponds to the one-dimensional projection of the embedding in BirdNET,
which effectively ranks data points on a number line. We expect to see a smooth transition in color
based on distance in two dimensions. The discoloration in RanaSierraCNN reflects the leaderboard
performance and the decrease in performance due to ambiguity between similar points. HawkEars
is a model that we were unable to test on the leaderboard due to its ensembling structure; however,
the domain-specific nature of Hawks leads to a more substantial domain shift, also observed in the
Rana Sierra Frog classifier. We also note that we did not test YAMNet due to the unusual clip length,
although it may be helpful as a model for filtering.

BirdNET and Perch continue to be staple models that provide state-of-the-art performance with
broad reach in real deployments. The BirdSet dataset has made it much easier to develop new backbone
models that rival the performance of BirdNET and Perch while staying in the Torch ecosystem and
with prediction windows corresponding to the BirdCLEF challenge [17]. The Tensorflow software stack
complicates experiments where the primary modeling tool is Torch. In particular, we encountered
complications while running models in the bioacoustic model zoo that relied on both TensorFlow
and Torch, which required identifying the appropriate version pins for inference. Surprisingly, the
BirdSetEfficientNetB1 model outperformed the TensorFlow models, achieving the best score on the
public leaderboard at 0.81. The BirdSet dataset and resulting models will likely form the basis of strong
solutions in future iterations of the competition due to the ease of benchmarking and tooling.

(a) BirdNET. (b) BirdSetConvNeXT. (c) BirdSetEfficientNetB1.

(d) HawkEars. (e) Perch. (f) RanaSierraeCNN.

Figure 6: PaCMAP visualizations of bioacoustic model zoo embedding spaces using the training dataset where
every point represents an audio track. The color represents the one-dimensional embedding of the audio track in
BirdNET space, computed by averaging all embeddings generated for the track.

5.2. Spectrogram Tokens and Sequence Modeling

In our experiment, we tested the ability to model bioacoustic data as discrete sequences and to determine
if it could serve as a basis for student-teacher modeling. We discovered a fast and lightweight token
representation for our data that enables unsupervised modeling despite its limited discriminative



power. Spectrogram tokens are an interesting result because they rely on algorithmic building blocks of
clustering and nearest-neighbor search to represent the sequence sparsely. The information bottleneck
in our process lies in the signal representation given by the spectrogram. When we increased the total
number of Mel-bands and avoided dimensionality reduction early in the pipeline, our validation scores
increased by approximately 0.1 in F1-macro. A better representation leads to improved tokenization,
enabling the sequence model to better represent the audio for classification purposes.

The idea of quantizing audio for downstream applications is not unique to this work. There are
data-driven neural codecs for compressing and decompressing audio, such as EnCodec [8]. However,
our team’s initial explorations into neural codecs in the 2024 competition placed EnCodec specifically
in the non-viable category due to the computational overhead of attention [6]. Other frameworks, such
as wav2vec 2.0, closely mirror our pipeline but rely on a latent audio representation via CNNs that are
quantized and then contextualized by Transformers. Wav2vec would likely not work without modifi-
cation for the BirdCLEF competition due to imposed inference deadlines. The CNN for representing
speech is likely viable due to the overwhelming presence of CNNs already. However, the Transformer
network would need an efficient approximation at inference time.

6. Future Work

Future work will place greater emphasis on modeling complex sequences. In particular, we would like
to see better token representations and the use of Transformers to contextualize sequences of tokens.
It would be interesting to see how much of the wav2vec framework applies to BirdCLEF and to see
whether contextualized tokens via Transformers can run on constrained systems.

While the STSG representation is fast, it leaves significant room for improvement. We can use up
most of the inference budget to calculate high-quality tokens, assuming we apply a static lookup table
with a lightweight classification head. The first direction is to replace the spectrogram token with a
YAMNet-based token, which, although resulting in a shorter 2-token-per-second sequence, provides
a more powerful representation that will form more meaningful clusters under K-means. Another
approach might be to use a clustering algorithm, such as HDBSCAN, to identify centroids that are
better suited to the topology. However, we lose the performance characteristics from having a highly
optimized ANN algorithm in 𝐿𝑝-space. The final direction is to learn tokens using wav2vec and to
optimize the framework for CPU inference heavily. Wav2vec is promising, although it requires a
significant amount of engineering work to execute.

One of the factors that make transformer-based models challenging to use in the BirdCLEF+ compe-
tition is that inference is expensive with naive implementations due to the sheer number of parameters
involved. However, transformers are a natural way to represent sequential data because attention
efficiently contextualizes tokens within sequences [18]. We may be able to statically capture token
representations learned by parameterization of transformer networks that are far larger than can be run
on an inference machine by using compilation methods such as those found in Model2Vec [19]. This
technique establishes a static mapping of tokens by embedding single-token sequences, compressing
them using PCA, and applying an information-based reweighting scheme that assumes a Zipf distri-
bution of tokens. These tokens can then be averaged across sentences and have demonstrated good
performance on encoder-only, downstream tasks.

7. Conclusions

Through this work, we address computational limitations in bioacoustical classification by leveraging
transfer learning of domain-specific classifiers and a lightweight token-based approach. We demonstrate
state-of-the-art models and their performance on the domain-shifted data through models like BirdNET
and Perch in the bioacoustic model zoo. Our best model was BirdSetEfficientNetB1, with a private
ROC-AUC score of 0.778 and a public score of 0.810. We also investigate the foundations of distilling



complex sequence models into a static lookup of contextualized tokens. Our Spectrogram Token Skip-
Gram (STSG) pipeline achieves a runtime of 6 minutes on the test dataset, yielding a final ROC-AUC
private score of 0.520 and a public score of 0.559. The STSG pipeline provides the basis for more
complex sequence models, as it enables the discovery of a representational space that can be parsed
and transformed efficiently on a CPU. Although the overall performance is low, there are interesting
directions that this research can take, given that spectrogram tokens possess representational power.

Supporting code for this paper is located at https://github.com/dsgt-arc/birdclef-2025.
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Table 12
Word2Vec hyperparameter sweep results, including F1 Macro scores and training times on the surrogate
validation task. Deltas are calculated relative to the baseline configuration. The best-performing row in
each scan group is highlighted in bold.

Scan Group Parameter Value F1 Macro Δ F1 Time (s) Δ Time (s)

Baseline vector_size 256 0.424 +0.000 1108 +0
window 80
ns_exponent 0.75
sample 1e-4

Varying vector_size

vector_size 128 0.381 -0.043 934 -174
vector_size 384 0.449 +0.025 1199 +91
vector_size 512 0.445 +0.021 1674 +566
vector_size 1028 0.495 +0.071 2828 +1720

Varying window
window 40 0.426 +0.002 570 -538
window 120 0.427 +0.003 1480 +372

Varying ns_exponent
ns_exponent 0.0 0.440 +0.016 1050 -58
ns_exponent -0.5 0.401 -0.023 1043 -65

Varying sample
sample 1e-5 0.423 -0.001 589 -519
sample 1e-6 0.379 -0.045 121 -987

Combination window 120 0.405 -0.019 1471 +363
ns_exponent -0.5

(a) F1 score vs. ns_exponent. (b) Baseline vs. Tuned Model.

Figure 8: Hyperparameter tuning and final model performance. (a) Tuning the negative sampling exponent
shows a clear peak at 1.5. (b) The final tuned model consistently outperforms the baseline.
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