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Abstract
Animal re-identification allows for non-invasive, scalable monitoring of wildlife by matching visual cues specific
to each individual. In this paper, we present a mapping-oriented, open system that progressively filters and
validates candidate images. We took the basic step-by-step solution presented in the competition and improved
each step in it. First, we calculate global attachments to select a small subset of potentially suitable images for each
query. Then we use a set of local feature matching tools, each of which contains a separate detector—descriptor
pair and a matching algorithm, to obtain additional similarity estimates that capture the smallest visual details,
such as unique markings and morphological patterns. Then we combine these estimates for each user using a
studied, weighted synthesis mechanism that identifies the most reliable features for different types and shooting
conditions. Finally, a calibrated confidence threshold allows you to separate previously seen individuals from new
ones, ensuring reliable recognition when new animals are detected. We are evaluating based on the AnimalCLEF
2025 collections (loggerhead sea turtles, salamanders, and Eurasian lynx), and our system provides highly balanced
accuracy for both known and unknown classes. The modular design makes it easy to adapt additional mapping
devices or embedded models, demonstrating resistance to background interference, blockages, and variable
shooting conditions. With this solution, we took the first place in the AnimalCLEF2025 competition.
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1. Introduction

Animal re-identification is a critical task in wildlife research and conservation, enabling the tracking of
individuals over time to study population dynamics, habitat use, migration patterns, and behavior. By
recognizing unique traits—such as markings, color patterns, or morphological features—researchers can
monitor species in a non-invasive, scalable manner. Automating this process not only accelerates data
collection but also enhances the consistency and scale at which individuals can be reliably tracked. These
capabilities are vital for identifying biodiversity threats and supporting evidence-based conservation
strategies.

Despite recent progress in computer vision and machine learning, reliably identifying individual
animals remains challenging. Models often overfit to environmental cues such as background, lighting,
or camera angle—rather than focusing on species-specific, individual characteristics. This results in
poor generalization to new environments or image conditions, limiting the practical effectiveness of
many re-identification systems in real-world conservation settings.

The AnimalCLEF 2025 challenge, part of the LifeCLEF 2025 evaluation campaign, addresses this
problem through the task of individual animal identification for three wildlife species: loggerhead sea
turtles (Caretta caretta [1]) sourced from Zakynthos, Greece; salamanders (Salamandra salamandra)
from the Czech Republic; and Eurasian lynxes (Lynx lynx) also from the Czech Republic. For each
test image, the objective is to determine whether the animal has been seen before (i.e., is present
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in the reference database) or is a new, previously unseen individual. If known, the correct identity
must be assigned. To aid generalization, participants are allowed to augment their models using the
WildlifeReID-10k dataset—a large-scale benchmark comprising over 140,000 images across 10,000+
individuals from a diverse set of species [2, 3].

In this technical report, we present our solution to the AnimalCLEF 2025 challenge. Our pipeline
consists of four core stages: global candidate selection, local visual matching, score aggregation (bagging),
and novelty filtering. This modular structure combines coarse-to-fine similarity evaluation with a
confidence-based thresholding mechanism to distinguish between known and novel individuals. Our
approach balances precision and generalization while remaining robust across the three target species.

2. Related Work

Several prior works address fine-grained wildlife classification and open-set identification. CNN
ensembles and metadata fusion prove effective for discriminating visually similar species. Local feature
matchers (e.g., SuperPoint[4], DISK, ALIKED[5] + LightGlue[6]) combined with global descriptors yield
robust re-identification under varying viewpoints and background clutter. Calibration methods like
isotonic regression help distinguish known from unseen individuals. Our pipeline integrates these ideas
to handle both coarse filtering and fine-grained matching in an open-set setting.

3. Evaluation

3.1. Evaluation Metrics

To properly evaluate the performance of our re-identification pipeline on both known and novel
individuals, we employ three metrics: Balanced Accuracy on Known Samples (BAKS), Balanced Accuracy
on Unknown Samples (BAUS), and their Geometric Mean (GeoMean).

3.1.1. Balanced Accuracy on Known Samples (BAKS)

The Balanced Accuracy on Known Samples (BAKS) quantifies the model’s performance on individuals
that are present in the training dataset. Unlike standard accuracy, BAKS is computed in a class-balanced
manner to mitigate the effects of class imbalance.

Let 𝐶 be the set of known classes. Then:

BAKS =
1

|𝐶|
∑︁
𝑐∈𝐶

TP𝑐

TP𝑐 + FN𝑐
,

where:

nosep TP𝑐 is the number of true positive predictions for class 𝑐,
nosep FN𝑐 is the number of false negatives for class 𝑐.

3.1.2. Balanced Accuracy on Unknown Samples (BAUS)

The Balanced Accuracy on Unknown Samples (BAUS) measures the model’s ability to correctly recognize
individuals from unseen classes, i.e., classes not present in the training dataset.

Let 𝑈 be the set of unknown classes. Then:

BAUS =
1

|𝑈 |
∑︁
𝑢∈𝑈

TP𝑢

TP𝑢 + FN𝑢
,

where:

nosep TP𝑢 is the number of true positive predictions for unknown class 𝑢,
nosep FN𝑢 is the number of false negatives for class 𝑢.



3.1.3. Overall Metric: Geometric Mean (GeoMean)

To combine performance on both known and unknown samples, we compute the geometric mean of
BAKS and BAUS:

GeoMean =
√

BAKS × BAUS.

4. Approach

4.1. Data Preprocessing and Segmentation Strategy

Effective individual identification in wildlife datasets is often hindered by visual noise, background
clutter, and inconsistencies in object localization. These issues are particularly prominent in the
AnimalCLEF2025 dataset, where species such as salamanders are often partially occluded by human
hands, and segmentation annotations are absent for several species (notably salamanders and sea turtles).
To address this, we implement a targeted data preprocessing strategy centered on segmentation-aware
data augmentation. For sea turtles, for instance, the ocean background in most images naturally isolates
the subject, effectively acting as an implicit segmentation mask. Lynxes are already segmented.

4.1.1. Segmentation Model Fine-Tuning

We construct a supplementary annotated dataset[7] of 817 salamander images to compensate for the lack
of precise segmentation masks. This dataset includes pixel-level annotations of the target individuals
and is used to fine-tune a YOLOv11m-seg model[8] —an instance-aware object segmentation network
with a modern convolutional backbone.

The fine-tuned YOLOv11m-seg model significantly improves the localization quality of salamander
regions by learning to suppress irrelevant background areas, particularly human hands and other visual
artifacts. Qualitative inspection confirms more compact and accurate segmentation masks, which are
then used to crop or mask the input images during downstream embedding extraction.

Table 1
Segmentation Metrics

Metric Value

mAP50 0.95
mAP50–90 0.90
Recall 0.91
Precision 0.95

4.1.2. Impact on Re-identification Performance

The implemented segmentation strategy significantly reduces the negative impact of background noise in
species where it is dominant. Most notably, the use of segmentation for salamanders yields a measurable
improvement in downstream matching metrics, confirming the hypothesis that accurate localization
of the individual is a crucial prerequisite for reliable embedding computation and similarity-based
identification.

4.2. Baseline Description

Our baseline system integrates global deep descriptors and local keypoint-based matching to ad-
dress open-set individual identification. The implementation relies on the wildlife-datasets and
wildlife-tools libraries, designed to facilitate data loading, feature extraction, and similarity compu-
tation for wildlife-related tasks. Throughout this work, the term baseline refers to the publicly available
solution Baseline with WildFusion.

https://www.kaggle.com/code/picekl/baseline-with-wildfusion


4.2.1. Pipeline Overview

The pipeline consists of the following components: Our pipeline extracts global descriptors using the
MegaDescriptor-L-384[9] model from the timm library[10], performs local keypoint detection and
matching with ALIKED features and MatchLightGlue, fuses the resulting global and local similarity
scores via the WildFusion module, and finally calibrates the combined scores using isotonic regression.

4.2.2. Global Descriptor Extraction

Global features are extracted from a high-capacity vision transformer model MegaDescriptor-L-384,
pre-trained and fine-tuned to generate robust embeddings. These embeddings capture coarse-grained
appearance information and are compared using cosine similarity.

Given two embeddings e𝑥, e𝑦 ∈ R𝑑, cosine similarity is defined as:

simcos(e𝑥, e𝑦) =
e𝑥 · e𝑦

‖e𝑥‖ ‖e𝑦‖
.

4.2.3. Local Feature Extraction and Matching

The baseline uses ALIKED as the local keypoint detector and descriptor. It is designed for accurate and
efficient keypoint extraction with descriptor computation. The extractor outputs dense descriptors d𝑖

and confidence scores.
These local descriptors are matched using MatchLightGlue, an attention-based matcher inspired

by LightGlue. Let 𝛼𝑖𝑗 denote the attention affinity between descriptor 𝑖 in image 𝑥 and 𝑗 in image 𝑦:

𝛼𝑖𝑗 =
exp(W𝑞d

𝑥
𝑖 ·W𝑘d

𝑦
𝑗 )∑︀

𝑗′ exp(W𝑞d𝑥
𝑖 ·W𝑘d

𝑦
𝑗′)

.

After filtering matches via mutual nearest neighbors, the local similarity score 𝑠ℓ(𝑥, 𝑦) is:

𝑠ℓ(𝑥, 𝑦) =
1

|ℳ(𝑥, 𝑦)|
∑︁

(𝑖,𝑗)∈ℳ(𝑥,𝑦)

𝛼𝑖𝑗 .

4.2.4. WildFusion Fusion Strategy

The WildFusion[11] module computes the final similarity as the average of global and local scores.

4.2.5. Score Calibration

Fused similarity scores are passed through isotonic regression, fitting a monotonic mapping 𝑔 to
minimize squared error between calibrated scores and ground truth labels.

4.3. Disadvantages

The basic level has a number of limitations. Initially, the approach presents only one matching method,
the embedding model may not suit all species equally, the similarity matrices are averaged, and the lack
of initial segmentation of salamanders creates background noise.

5. Methodology

The proposed solution encompasses a four-stage process:



Table 2
Pipeline Stages

Stage Approach Description

1 Initial Candidate Selection Identify top-𝐵 global embedding matches.
2 Local Feature Matching Compare candidates using multiple extractor–matcher pairs.
3 Weighted Aggregation (Bagging) Combine per-pair scores via learned weights 𝑤𝑒,𝑚.
4 Novelty Detection Apply threshold 𝜏 to calibrated scores to flag new individuals.

5.1. Selection of Most Relevant Instances

For each test sample 𝑥, we compute its embedding e𝑥 ∈ R𝑑 using the pre-trained embedding model.
Denote the set of all training embeddings as {etrain𝑖 }𝑁𝑖=1. We compute cosine distances:

𝑑cos
(︀
e𝑥, e

train
𝑖

)︀
= 1 − e𝑥 · etrain𝑖

‖e𝑥‖ ‖etrain𝑖 ‖
.

We then select the top-𝐵 training samples with the smallest distances:

𝒞(𝑥) = argmin top
𝐵

{︀
𝑑cos(e𝑥, e

train
𝑖 )

}︀𝑁

𝑖=1
.

These 𝐵 candidates form the candidate set for local matching.
We have replaced MegaDescriptor-L-384 with a higher-quality miewid-msv3 [12].

5.2. Local Feature Matching

Each test image 𝑥 is compared against each candidate 𝑐 ∈ 𝒞(𝑥) using several “extractor + matcher”
pairs. Let

ℰ = {KeyNetAffNetHardNet, DISK (Kornia[13]), SuperPoint, ALIKED, DISK (wildlife_tools)}

be the set of feature extractors, and

ℳ = {AdaLAM, GADMatcher, MatchLightGlue}

be the set of matchers. For each extractor 𝑒 ∈ ℰ and matcher 𝑚 ∈ ℳ, we compute a local similarity
matrix:

𝑆𝑒,𝑚(𝑥, 𝑐) = LocalSim𝑒,𝑚(𝑥, 𝑐),

where LocalSim𝑒,𝑚 denotes the local matching procedure with extractor 𝑒 and matcher 𝑚. Each entry
of the local similarity matrix corresponds to a confidence-weighted sum of matched keypoints.

The selection of the Kornia library was motivated by its provision of models capable of handling affine
transformations, which expanded the comparison capabilities beyond the single matcher (MatchLight-
Glue) and limited set of extractors (SIFT, SuperPoint, ALIKED, DISK) available in wildlife_tools.

5.3. Bagging (Aggregation)

We replaced the inefficient averaging of the proximity matrix with a weighted vote.
Let 𝑆𝑒,𝑚(𝑥, 𝑐) be the similarity score for a given pair (𝑥, 𝑐) obtained from the local similarity matrix

corresponding to each (𝑒,𝑚).
We introduce a set of coefficients, 𝑤𝑒,𝑚, where each coefficient is associated with a unique combination

of 𝑒 and 𝑚. These coefficients allow us to assign different weights to the similarity scores from each
local matrix. The final similarity score 𝑠(𝑥, 𝑐) is then computed as a weighted mean of these per-pair
scores:



𝑠(𝑥, 𝑐) =
1

|ℰ| · |ℳ|
∑︁

(𝑒,𝑚)∈ℰ×ℳ

𝑤𝑒,𝑚𝑆𝑒,𝑚(𝑥, 𝑐).

The optimal values for these coefficients, 𝑤𝑒,𝑚, are determined through an optimization process.
This optimization is performed on a training dataset using scipy.optimize.minimize[14] with the
Powell method. The objective of this optimization is to minimize the geomin metric as defined by
Baks and Baus, ensuring that the final similarity score 𝑠(𝑥, 𝑐) is well-calibrated for the given task.

5.4. Novelty Detection

Based on the aggregated similarity 𝑠agg(𝑥, 𝑐), the most probable entity (predicted individual) and its
corresponding confidence score are identified for each test image. To ascertain new individuals (i.e.,
those not present in the training dataset), a confidence threshold(𝜏 ) is established.

𝑝max(𝑥) = max
𝑐∈𝒞(𝑥)

𝑝(𝑥, 𝑐),

and assign:

𝑦(𝑥) =

⎧⎨⎩arg max
𝑐∈𝒞(𝑥)

𝑝(𝑥, 𝑐), if 𝑝max(𝑥) ≥ 𝜏,

new_individual, otherwise.

The threshold 𝜏 is chosen to maximize GeoMean on the validation set:

𝜏* = arg max
𝜏 ∈ [0,1]

√︀
BAKS(𝜏) × BAUS(𝜏).

6. Results

Table 3
The results of each improvement (𝐵 = 50)

Score Approach

0.369 Baseline embedding only
0.412 replacing the embedder with miewid-msv3
0.624 + Local matching
0.639 + Segmentation
0.648 + Embedder in local matchers
0.668 + Optimized fusion weights

Table 4
Final thresholds and GeoMeans per Species

Species 𝜏* GeoMean

Eurasian Lynx 0.119 0.795
Salamander 0.054 0.735
Loggerhead Sea Turtle 0.080 0.882

In the final solution, we replaced the basic embedder with a higher-quality miewid-msv3, increased
the number of local matches using the kornia library, segmented the salamanders, added embedder to
the local matches and made a weighted vote instead of averaging Table 3.

We selected 𝐵 and add high-point-limit local matchers. Final GeoMean=0.713, yielding first place by
0.04 margin over second [15].



7. Discussion

We explore alternative embeddings (CLIP[16], DinoV2[17]) and dense matchers (LoFTR[18]). While
these show promise, our species-specific pipeline remains most consistent. Future work includes
species-routing hybrid matchers for further gains.
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