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Abstract
This paper presents a three‑stage meta‑algorithm that addresses open‑set individual animal re-identification.
The cascade first employs WildFusion to fuse calibrated global–local similarity scores, then feeds concate-
nated MegaDescriptor‑L and MIEW embeddings into an XGBoost classifier, and finally refines predictions with
species‑specific Dual‑Backbone models fine‑tuned using an ArcFace angular‑margin loss. On the AnimalCLEF
2025 challenge, which includes loggerhead sea turtles, fire salamanders, and Eurasian lynxes and exhibits a
pronounced long‑tail imbalance, the proposed method achieved a private score of 67.42% and a public score of
65.11%, ranking 2nd out of 172 teams. Ablation analysis shows cumulative improvements of +21 percentage points
(pp) from WildFusion over a MegaDescriptor baseline, +2.4 pp from XGBoost, and +3 pp from the Dual‑backbone
ArcFace stage. These results demonstrate that species‑aware stacking of heterogeneous cues (global descriptors,
calibrated local matches, tabular neighbor context, and metric fine‑tuning) yields a robust and scalable solution
for non‑invasive wildlife monitoring.
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1. Introduction

Individual animal re-identification (Animal Re-ID) is the task of recognizing specific individuals in
images. Accurate identity assignment is critical to ecology and wildlife conservation because it enables
monitoring of population size, migration routes, and behavioral patterns of rare species in situ [1]. In
Human Re‑ID universal biometric cues such as faces or fingerprints are available, whereas these markers
are not directly applicable to animals. Instead, recognition relies on unique natural markings—spot
and stripe patterns, carapace mosaics, and similar traits—that vary markedly with viewpoint, pose, and
illumination [2]. The problem is compounded by a shortage of labeled data: collecting and annotating
photographs of individual animals is labor‑intensive, so Animal Re-ID datasets are several orders of
magnitude smaller than those used in Person Re‑ID [3].

Traditional biological approaches—ringing, tagging, and DNA analysis—are reliable but invasive and
unsuitable for large‑scale monitoring [4]. Early computer‑vision algorithms addressed one species at a
time and relied on handcrafted features, which does not scale. With deep neural networks (first CNNs,
later Vision Transformers [5]) Human Re‑ID achieved a high level of accuracy, yet direct transfer to
animals proved ineffective: the class set is open, inter‑individual differences are subtle, and intra‑species
variability is high [6]. These factors motivated specialized methods for Animal Re-ID.

The AnimalCLEF 2025 competition [7, 8] poses a multi‑species challenge: identifying loggerhead
sea turtles Caretta caretta (Greece), fire salamanders Salamandra salamandra (Czech Republic), and
Eurasian lynxes Lynx lynx (Czech Republic) [9]. For each input image the system must decide whether
the depicted animal belongs to a known individual in the training database (the database set or ”gallery”)
or represents a new individual; if known, the correct ID must be returned. Consequently, the task
combines classical Re‑ID with an open‑set component. Performance is evaluated by BAKS (balanced
accuracy on known samples) and BAUS (balanced accuracy on unknown samples); the final score is
the geometric mean of these two metrics [7].
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Table 1
Detailed metadata coverage for each species in AnimalCLEF 2025

Species (Dataset) Gallery Query Unique IDs Date (DB / Q) Orientation (DB / Q)

Eurasian lynx 2957 946 77 — / — yes / yes
Fire salamander 1388 689 587 2017–2023 / 2024 yes / yes
Loggerhead sea turtle 8729 500 438 2010–2023 / 2024 yes / no

The meta‑algorithm proposed in this study—combining WildFusion [1], XGBoost, and a Dual‑back-
bone model with an ArcFace [10] head—ranked second among 172 teams, achieving a private score of
67.42% and a public score of 65.11% (teamWebmaking). Subsequent sections describe the employed meth-
ods in detail (Sec. 3) and present a step‑by‑step analysis of the contribution made by each component
to the final performance (Sec. 4).

2. AnimalCLEF 2025 challenge characteristics

2.1. Description and objectives

The primary goal of AnimalCLEF 2025 is to advance automated biodiversity monitoring, in particular the
tracking of individual animals captured by camera traps and other imaging devices. Precise identification
of individuals is pivotal in ecology: it enables reliable estimates of population size, migration routes, and
behavioral profiles that underpin both scientific studies and conservation measures. Existing algorithms,
however, tend to overfit to background or illumination cues and lose accuracy when applied to novel
conditions. Consequently, the competition focuses on universal Re‑ID approaches that can generalize
across habitats and reliably recognize animals in a wide range of environments. Participants could either
rely solely on the limited competition data or improve their models by pre‑training on the large external
dataset WildlifeReID‑10k [11]. Overall, AnimalCLEF 2025 serves as a benchmark for state‑of‑the‑art
computer‑vision methods and continues the LifeCLEF [8] series that expands the role of AI in wildlife
monitoring.

2.2. Data and evaluation metric

For training and pre‑training, participants were provided with the large WildlifeREID‑10k dataset
containing roughly 140,000 images of more than 10,000 individual animals across many species [11].
This external resource can be regarded as an extended training set. The competition data were collected
specifically for AnimalCLEF 2025 and split into two parts: Gallery, which holds annotated images of
known individuals and simultaneously serves as the training set and the gallery for matching, and
Query (Tab. 1).

LynxID2025. This subset comprises 2957 training images of Eurasian lynx and 946 query images
(3903 in total). The training split covers 77 unique individuals, with an average of 38 photographs
per individual; the distribution is unbalanced—some animals have only a single image, whereas one
individual appears in 353 shots. Image orientation is recorded for every picture (left, right, front, back,
or unknown). Capture dates are not provided (the date field is empty).

SalamanderID2025. This subset contains 1388 training images of fire salamanders and 689 query
images (2077 in total). The training split includes 587 unique individuals; the average is ~2.4 images
per individual, the median is 1, and the maximum is 12. Orientation labels (top, bottom, left, right) are
available for all images. Capture dates span 2017–2023 in the training set and extend to 2024 in the
query set, enabling temporal analysis of the data collection period (for example, training pictures cover
2017–2023, while query images include shots made up to the end of 2024).



SeaTurtleID2022. This is the largest subset: 8729 training photographs of loggerhead sea turtles and
500 query images (9229 in total). The training split represents 438 unique sea turtles (mean 19.9 images
per individual; median 13). Orientation labels include left, right, front, top, and composite directions
such as topleft or topright ; orientation is missing for all 500 query images. Capture dates are present for
almost every photo, ranging from 2010 to 2024, reflecting the long‑term nature of data collection.

The three subsets differ markedly. Lynx offers fewer individuals but more images per individual,
whereas Salamander provides many individuals yet mostly single‑image observations. Sea Turtle
occupies an intermediate position in terms of individual count, but its total image volume is the largest.
Such heterogeneity in size, orientation metadata, and temporal coverage underscores the need for
adaptive identification strategies tailored to each species.

AnimalCLEF 2025 employs two metrics that jointly assess recognition quality on known and new
individuals. BAKS is the per‑class balanced accuracy over query images whose individuals are present
in the gallery. BAUS is the balanced accuracy over query images belonging to new individuals absent
from the gallery. The final ranking score is the geometric mean of BAKS and BAUS. The organizer split
the query set into an open (public) portion comprising about 31% of the images and a hidden (private)
portion comprising the remaining 69%. Only the private leaderboard determined the final standings,
preventing overfitting to the public subset.

2.3. Related and preceding competitions

The task of individual animal identification had been explored before AnimalCLEF 2025. A notable
predecessor is the Happywhale—Whale & DolphinID competition (Kaggle 2022), which required dis-
tinguishing thousands of individuals from 24 marine‑mammal species using the mAP metric; the task
suffered from a strong class imbalance but lacked an open‑set component [12].

Between 2022 and 2024 several species‑specific re‑ID datasets were released together with mini‑com-
petitions, including Leopard ID and Hyena ID from WildMe & LILA Science [13, 14] and SeaTurtleID
[15]. SeaTurtleID first introduced time-aware closed- and open-set splits later adopted by AnimalCLEF.
An internal benchmark demonstrated 86.8% closed-set accuracy when using a Hybrid Task Cascade
equipped with an ArcFace encoder, highlighting the challenges of long-term individual tracking even
within a single species [15].

3. Methodology

3.1. State‑of‑the‑art approaches and models

Modern Animal Re-ID methods rely on deep networks that extract image embeddings, i.e., compact
feature vectors unique to each individual. Two principal categories of such features exist: global
descriptors that summarize the entire image and local matches that align distinctive regions.

A prominent global approach is MegaDescriptor [16]. This supervised model is trained on a
collection of many datasets (>10k individuals, ~140k images). Its backbone is a Swin‑L Transformer
with 384 × 384 input and about 229 M parameters. Essentially a Vision Transformer tuned for Animal
Re-ID, it markedly outperforms generic models such as CLIP and DINOv2 [16].

An alternative global encoder is MIEW (Multi‑species Individual Embeddings Wild, MiewID‑msv3).
This compact EfficientNet‑V2 [17] CNN (about 51 M parameters) is trained with a contrastive Sub‑center
ArcFace loss on a dedicated dataset of 64 species (225k photos, 37k individuals). Unlike MegaDescriptor,
which is trained per species, MIEW is optimized as a single multi‑species model. Experiments show that
this unified model surpasses species‑specific training by an average of 12.5% top‑1 and, more importantly,
generalizes better to unseen species: on unknown taxa MIEW outperforms MegaDescriptor by 19.2%
top‑1 accuracy [3], demonstrating its ability to capture universal cues useful for any animal.



Global descriptors have limitations: they may miss fine‑grained individual patterns. To compensate,
local methods match image regions that carry unique markings. The modern WildFusion framework
combines global and local information efficiently [1]. It fuses (i) cosine similarity of global embeddings
(e.g., MegaDescriptor or DINOv2) and (ii) local keypoint correspondences obtained with matchers such
as LoFTR [18] or LightGlue [19]. After isotonic calibration, the two similarity sources are merged into a
single score. In a zero‑shot setting WildFusion exceeds the pretrained MegaDescriptor‑L, confirming
that hybrid cues can substantially improve Re‑ID performance [1].

A common path to higher accuracy is ensemble learning. In this work several ways of combining
embeddings from MegaDescriptor and MIEW were explored. The best result was achieved by a
meta‑algorithm that blends predictions from (1) WildFusion (Sec. 3.3), (2a) XGBoost (Sec. 3.5), and (2b)
a Dual‑backbone network with an ArcFace head (Sec. 3.6). The reliable WildFusion, together with two
strong embedding streams, proved highly effective: the transformer‑based MegaDescriptor yields rich
global representations, whereas the CNN‑based MIEW provides features that remain robust on new
species (Sec. 4).

3.2. MegaDescriptor‑L‑384 model

MegaDescriptor‑L‑384 is a foundation model for Animal Re-ID introduced in [16] and released on
Hugging Face [20]. The backbone is swin_large_patch4_window12_384 with 384×384 px input and 228.8
M parameters; it outputs a 1536‑dimensional L2‑normalized embedding suitable for cosine comparison.

The network was trained in a supervised manner with an ArcFace‑style margin loss on the aggregated
WildlifeDatasets corpus comprising 29 public datasets (~140k images, >10k individuals, 23 species).
Merging such diverse sources exposes the model to wide variations in viewpoint, illumination, and
marking patterns, thereby improving embedding generality. The authors report that MegaDescrip-
tor‑L‑384 consistently outperforms CLIP (ViT‑L/336) and DINOv2 (ViT‑L/518) on all 29 benchmarks
[16].

In practice, deployment requires only standard preprocessing: resize to 384×384, convert to a tensor,
and normalize to means (0.485, 0.456, 0.406) and standard deviations (0.229, 0.224, 0.225). A single
forward pass then produces the embedding [20]. The CC‑BY‑NC‑4.0 license permits non‑commercial
use and modification, making MegaDescriptor‑L‑384 a strong out‑of‑the‑box global descriptor within
the pipeline.

3.3. WildFusion similarity fusion method

WildFusion [16] addresses a core limitation of purely global embeddings in Animal Re-ID—their
sensitivity to background and illumination. By combining global image similarity with precise local
keypoint verification, the method sharply reduces false matches between different individuals while
recovering true correspondences under strong viewpoint changes. A detailed analysis of its impact on
the final private score is presented in Sec. 4.

The algorithm comprises two stages. First, a fast cosine search in the MegaDescriptor‑L‑384 em-
bedding space (Sec. 3.2) selects the 𝐾 = 300 most similar gallery images (candidates). Each “query /
candidate” pair is then evaluated by five independent local pipelines: LoFTR, SuperPoint [21], ALIKED
[22], DISK [23], and SIFT [24]. For LoFTR, images are converted to 192×192 px grayscale, whereas
the other pipelines operate on 512×512 px color inputs. The local scores and the normalized global
similarity undergo isotonic calibration and are subsequently fused linearly into a single probabilistic
score.

An open‑source implementation is provided in the wildlife‑tools package [25] in the
wildlife‑datasets repository [16]. Released under the GPL‑3.0 license, the code requires no ad-
ditional training, making WildFusion easy to integrate into an existing pipeline.



3.4. k-Reciprocal re-ranking strategy

On top of WildFusion probabilities, k-reciprocal re-ranking [26] is applied. Three similarity matrices
𝑆 are available: “query × gallery”, “gallery × query”, and “gallery × gallery”. For each image a list of
the 𝐾1 = 20 most similar neighbors is formed according to 𝑆. A gallery image 𝑥 retains only those
neighbors 𝑦 that simultaneously place 𝑥 within their first 𝐾2 = 6 positions; the resulting mutual set is
denoted rc(𝑥). An analogous procedure yields rc(𝑞) for every query, as the symmetric “gallery × query”
matrix enables reciprocity checks in the reverse direction.

The final similarity between a query 𝑞 and a gallery image 𝑥 is calculated as

𝑆final = 0.9 𝑆orig + 0.1 𝑆Jaccard, 𝑆Jaccard =
|rc(𝑞) ∩ rc(𝑥)|
|rc(𝑞) ∪ rc(𝑥)|

.

This linear convex combination suppresses incidental matches caused by pose, masking, or background,
while requiring no additional model training.

3.5. Gradient boosting on combined MegaDescriptor and MIEW embeddings

Score‑CAM [27] heatmaps in Fig. 1 indicate that MegaDescriptor‑L‑384 focuses on compact texture
regions, whereas MIEW‑msv3 distributes attention across fine‑grained spots and extended contours.
The theoretical complementarity of these spatial patterns motivates a direct concatenation of the two
embeddings (ℝ3688), with each component pre‑normalized by its 𝐿2 norm [3, 16].

Figure 1: Score‑CAM visualizations for two complementary identification models. The first row shows
the original query images for three AnimalCLEF 2025 taxa. Rows 2–3 display heatmaps (left) and overlay views
(right) obtained using Score‑CAM forMegaDescriptor‑L‑384 (row 2) andMIEW‑msv3 (row 3). For computational
efficiency each map was computed with the top 40 activation channels of the target layer (last block for MD,
block −4 for MIEW), a setting that retains over 97% of localization accuracy.

For every image, the feature vector includes (i) the concatenated global embedding, (ii) 𝐾=10 cosine
distances to the ten nearest gallery images together with the corresponding neighbor identifiers passed as
categorical features1, and (iii) one‑hot representations of view orientation and dataset membership (lynx,
salamander, sea turtle). The key idea is that gradient boosting can non‑linearly merge global descriptors,
local density information in the embedding space, and categorical data on the closest individuals. The
maximum depth was capped at 6, which prevents the model from memorizing category values via long
split chains.

Incorporating both global descriptors enhances feature diversity: the transformer‑based MegaDe-
scriptor captures coarse texture patterns, whereas the CNN backbone of MIEW remains sensitive to

1The columns nn_id_1…10 are cast to pandas.Categorical and processed by XGBoost’s enable_categorical option, which
learns optimal subset splits instead of numerical thresholds.



Table 2
Incremental impact of successive modules on private and public scores (metric = geometric mean BAKS × BAUS
[%]; Δ denotes the change relative to the previous step).

Step Modification introduced Private Δ Public Δ

0 Baseline provided by the competition organizers:
MegaDescriptor‑L threshold 0.6 for all

30.90 — 30.00 —

1 Baseline: MegaDescriptor‑L cosine nearest neighbor with
per‑species thresholds

40.59 +9.69 37.92 7.92

2 WildFusion global + local similarity fusion with thresholds 61.72 +21.13 58.98 +21.06
3 k‑reciprocal re‑ranking (Lynx only) applied to WildFusion 62.09 +0.37 59.09 +0.11
4 XGBoost meta‑classifier on MegaDescriptor + MIEW embed-

dings; WildFusion confidence adjustment
64.44 +2.35 61.89 +2.80

5 Dataset-specific meta‑algorithm that combines WildFusion,
XGBoost and Dual-backbone ArcFace

67.42 +2.98 65.11 +3.22

point‑wise differences [3, 16]. XGBoost trained on this concatenation, augmented with local density
features and metadata, produces a consistent improvement in the private score and public score relative
to a single embedding baseline and to WildFusion alone (Sec. 4).

3.6. Dual‑backbone model with an ArcFace head

The two previous ensemble components (WildFusion, Sec. 3.3, and XGBoost, Sec. 3.5) rely on fixed
embeddings obtained without species‑specific fine‑tuning. Although this delivers high baseline accuracy,
the capacity to adapt to species‑specific visual patterns remains limited. The Dual‑backbone model
addresses the opposite need: it refines features per species and thus complements the rigid matching
scheme of WildFusion and the tabular classifier XGBoost. Methodologically the model unites deep
metric optimization via ArcFace [10] with the direct feature focus provided by two heterogeneous
backbones.

The first stream employs MegaDescriptor‑L‑384, reliable at capturing global textures; the second
employs MIEW‑msv3, sensitive to fine pointwise details. Both classification heads are removed, and
their outputs after individual BatchNorm layers are concatenated into a 3688‑dimensional vector.

A compact ArcFace head is placed on top of the joint space. ArcFace maximises inter-class angular
margins in the embedding space, imposing a strict separability criterion. This margin‑based approach
is particularly effective under the small‑sample conditions characteristic of AnimalCLEF 2025 [10].

WildFusion depends on a calibrated “global + local” heuristic, and XGBoost on tabular aggregation
of fixed embeddings and metadata. Three independent Dual-backbone models, one trained for each
species, supply descriptors tailored to their respective AnimalCLEF 2025 subsets and thereby improve
the robustness of the ensemble.

4. Results and Discussion

Tab. 2 summarizes the step‑by‑step impact of every module on the final metric. The baseline cosine
search with MegaDescriptor‑L‑384 already provides a reasonable baseline, yet each subsequent
component steadily improves the score.

Fig. 2 plots every submission in the coordinates “fraction of new individual predictions / leaderboard
score” for each species. The gap between public and private scores is small and relatively stable,
indicating that the algorithm does not overfit the public portion of the test set. The five sequential
development steps are discussed below.

Step 1. Threshold selection for the global descriptor MegaDescriptor‑L‑384 (HF hub:
BVRA/MegaDescriptor‑L‑384; batch 32, input 384×384) was evaluated with both shared and thresh-



olds (Sec. 3.2). Each gallery image (𝑛 = 13,074) and each query image (𝑛 = 2135) was encoded as a
1536‑dimensional vector. Cosine similarity was computed between every query vector and every gallery
vector; the most similar gallery image provided the candidate identity for the query. If the similarity
fell below the threshold, the label new_individual was assigned.

Figure 2: Private (●) and public (+) leaderboard scores versus the share of new_individual predictions for
each AnimalCLEF 2025 species. Each symbol represents one submission; the abscissa shows the proportion of
images labelled as new_individual, the ordinate shows its score on the respective leaderboard split. The dotted
vertical line marks the best private submission (𝑌 = 0.6742) together with the associated new individual shares:
Lynx 70.33%, Salamander 59.36%, Sea turtle 56.40%. The horizontal axis reports the share of images that the
model classifies as new individual, expressed in percentage of the entire query.

A grid search over a single global threshold in the range 59.0–74.5% yielded the best result at 74.0%
(public 35.76%, private 37.32%). Separate thresholds were then explored for each taxon: Lynx 50–90%,
Salamander 60–90%, Sea turtle 74–90%. The optimal triplet (Lynx 65.5%, Salamander 77.0%, Sea turtle
74.5%) produced a public score of 37.92% and a private score of 40.59%, establishing the baseline for
subsequent steps.

Preliminary analysis of Fig. 2 revealed that submissions cluster vertically: runs with similar frac-
tions of new_individual predictions tend to yield comparable public scores, and the highest–scoring
points concentrate around species‑specific shares of 70% (lynx), 60% (salamander) and 60% (sea turtle).
Therefore, at all later steps (including the WildFusion, XGBoost confidence gate, and the final cascade)
thresholds were selected so as to preserve these empirically favorable ratios. This policy explains the
multiple vertical stripes visible in Fig. 2: each stripe marks a family of submissions that intentionally
maintain the same new_individual quota while refining other components of the pipeline.

Possible future work includes replacing manual threshold search with probability–calibration tech-
niques such as Platt scaling or temperature scaling, which learn a monotone mapping on the validation
split and may further stabilize the species‑specific new_individual ratios without exhaustive grid search.

Step 2. WildFusion: fusion of global and local features The open implementation ofWildFusion
[16, 25] is employed at this step (Sec. 3.3).

First, MegaDescriptor‑L‑384 retrieves the 𝐾 = 300 gallery candidates with the highest cosine
similarity; all 15,209 images (13,074 gallery + 2135 query) are encoded as 1536‑dimensional vectors. Each
”query / candidate” pair is then evaluated by five independent local matchers: SuperPoint–LightGlue,
ALIKE–LightGlue, DISK–LightGlue, SIFT–LightGlue (all at 512 × 512 px RGB) and LoFTR (192 × 192 px
grayscale). Figure 3 shows that the detectors yield a comparatively small overlap of correspondences;
this diversity underlies the gain obtained after isotonic calibration and score fusion. Calibrating the five
matchers on the validation split required 3h on a single A100 GPU; the full query × gallery evaluation
took a further 27h.

After combining global and local signals, thresholds for the new_individual label were tuned separately
per species. The optimal values were Lynx 39.5%, Salamander 12.0%, and Sea turtle 16.0%.

This configuration achieved a 58.98% public score and a 61.72% private score, yielding a +21 pp
improvement over the baseline in Tab. 2. Notably, the tuned WildFusion stage alone would already have
secured an 8th place finish on the final leaderboard, even before adding the later cascade components.



Figure 3: Visual comparison of local‑matcher pipelines and their pair‑wise keypoint overlap.
Left two columns: the original query image (ID 14793, file 2b0a454de7cf2873_84.JPG) and the nearest
gallery candidate (ID 10958, file tXNSzEXIfE_4979.JPG, label SeaTurtleID2022_t257, both images
depict the same individual). The next five panels show matches returned by the four LightGlue‑based
pipelines (SuperPoint, ALIKE, DISK, SIFT) and LoFTR (outdoor model). Right : heat‑map of the Pairwise
overlap of matched keypoints. Each cell reports how many distinct correspondences are shared by two
pipelines after (i) rounding all coordinates to a grid of 1 px (BIN = 1) and (ii) merging matches whose
endpoints fall within a tolerance of 5 px in both images (THR = 5). Diagonal values give the total number
of matches produced by each method; off‑diagonal values quantify complementarity, with warmer
colors indicating a larger intersection.

The results confirm that merging global embeddings with complementary local keypoints is crucial for
the substantial performance gain observed on AnimalCLEF 2025.

Step 3. k-reciprocal re-ranking over WildFusion outputs A full ”gallery × gallery” similarity
matrix was computed for the Lynx subset and re‑ranking was applied according to the scheme of Z.
Zhong [26]. The method parameters were fixed to the first neighborhood radius 𝐾1 = 20, the reciprocity
radius 𝐾2 = 6, and the Jaccard weight 𝜆 = 0.1 in the linear combination with the original WildFusion
score (Sec. 3.4).

Lynx was selected because its images share an artificially uniform black background, which increases
the risk of pose‑driven false matches; reciprocal filtering helps to attenuate this artifact. Building the
gallery × gallery matrix required an additional 38 GPU‑hours, so the procedure was not executed for
Salamander or Sea turtle.

The gain, although modest, was positive: the public score rose from 58.98% to 59.09% (+0.11 pp), and
the private score from 61.72% to 62.09% (+0.37 pp). This confirms the value of mutual neighbor filtering,
yet the improvement did not justify the computational cost; all subsequent steps therefore relied on the
original WildFusion scores (for Salamander or Sea turtle).

Step 4. Gradient‑boosted ensemble of MegaDescriptor and MIEW embeddings For every
image a dense feature vector of 3718 dimensions was assembled: the 3688‑D concatenation of MegaDe-
scriptor‑L‑384 and MIEW‑msv3 embeddings, 10 cosine distances to the nearest gallery images, 10
categorial identifiers of those neighbors, and 10 one‑hot categories (7 orientation flags + 3 dataset flags).
A unified probability scale simplifies the tuning of the cascade.

An XGBoost model was trained with depth 6, 𝜂 = 0.15, 𝜆 = 2.0, tree_method=gpu_hist and the
multi:softprob objective; the best iteration was reached at round 296. Validation followed a “single
image per individual” split (Sec. 3.5).

During inference the posterior probabilities of XGBoost acted as a confidence gate on top of WildFu-
sion. Species‑specific thresholds were tuned empirically: for Salamander, the WildFusion label was
replaced when XGBoost confidence exceeded 20%; for Sea turtle, when it exceeded 95%. This cascaded
refinement raised the public score to 61.89% and the private score to 64.44%, adding +2.80 pp and +2.35
pp, respectively, over the pure (re‑ranked) WildFusion.



Step 5. Dual‑backbone model with an ArcFace head and its integration into the meta‑algo-
rithm For each taxon an individual Dual‑backbone network was trained that combines MegaDescrip-
tor‑L‑384 with MIEW‑msv3. After separate BatchNorm layers the two vectors were concatenated into
a 3688‑dimensional feature, which was fed to a compact ArcFace head (Sec. 3.6). The head parameters
were fixed per dataset: (𝑠, 𝑚) = (64, 0.5) for Lynx and Sea turtle, (30, 0.35) for Salamander.

Augmentation pipelines were tailored to the visual specifics of each dataset. Lynx : background‑mask
removal followed by RandomResizedCrop with scale ≥ 0.9. Salamander : rotation according to the
orientation field and moderate cropping that preserves key anatomical regions. Sea turtle: moderate
cropping plus horizontal flip. All datasets additionally received ColorJitter and CoarseDropout (one
mask ≤ 10% of the image area).

Data were split in a stratified fashion: 90% of images for training, 10% for validation. Class imbalance
over individuals was mitigated with a WeightedRandomSampler.

Optimization employed SGD in three stages: (1) a two‑epoch initial training phase only the ArcFace
head and the uppermost 25% of layers at learning rate 𝜂 = 10−2; (2) full backbone unfreezing with a
base step 𝜂0 = 5×10−3 under a cosine‑annealing schedule; (3) a final fine‑tuning stage of the last two
epochs at 𝜂 = 10−4.

After fine‑tuning, 𝐿2‑normalized gallery and query embeddings were indexed in a FAISS
IndexFlatIP [28, 29]; for each query the 50 nearest neighbors were retrieved, and confidence was
defined as (cos+1)/2.

Descriptors from the three Dual‑backbone models complemented WildFusion and XGBoost inside
the final meta‑algorithm, increasing ensemble robustness on challenging and rare cases and yielding an
additional score gain (Tab. 2).

Final meta‑algorithm and overall leaderboard performance The definitive submission followed
a cascading scheme that invoked one to three models per species.
Eurasian lynx. (1) WildFusion predictions after k-reciprocal re‑ranking (𝜆 = 0.1); images with

confidence below 39.7% assigned the label new_individual. (2) When XGBoost assigns a probability
≥ 99%, its class replaces the WildFusion label. (3) Dual‑backbone embeddings serve as the final filter:
similarity < 64% converts the label to new_individual, whereas similarity > 89.3% overwrites the class
with the Dual‑backbone prediction.

Fire salamander. (1) WildFusion with a confidence threshold of 13.0%. (2) Dual‑backbone refines the
outcome: similarity < 62% results in assigning the label new_individual, while similarity > 80% accepts
the Dual‑backbone label.
Loggerhead sea turtle. Dual‑backbone operates as the exclusive source: similarity < 70.3% is inter-

preted as new_individual; otherwise the identifier proposed by the model is retained.
This species‑specific combination of WildFusion, XGBoost, and Dual‑backbone merges their

errors that exhibit low mutual correlation. The ensemble achieved a private score of 67.420% and a
public score of 65.114%, securing second place among 172 teams in AnimalCLEF 2025 (Tab. 2).

5. Practical significance and prospects for future work

High‑precision Animal Re-ID methods open new opportunities in both scientific research and applied
domains. These techniques facilitate automated census work and substantially facilitate field studies:
instead of capturing and tagging animals, researchers can deploy camera traps, drones, or underwater
cameras and then analyze the collected imagery algorithmically. Such approaches are already employed
to monitor endangered species e.g., identifying snow leopards or whales allows estimating population
size, migration routes, and individual longevity. Accurate and scalable Animal Re‑ID thus constitutes a
key enabling factor of non‑invasive biodiversity monitoring.

Future improvements are envisioned along four complementary directions.
(i) Transductive graph‑based models. AnimalCLEF 2025 data exhibit a pronounced long‑tail

distribution in the number of images per individual. Under these circumstances, graph re‑ID strategies



such as GCN-based reranking may redistribute confidence from majority classes to minority classes
and raise recall in the tail of the distribution [26, 30]. Initial GCN experiments reduced the public score;
nevertheless, further exploration of neighborhood radii and regularization schemes remains promising.
(ii) Tiling and localized matching. Dividing images into distortion‑free squares and performing

pairwise tile matching leads to a quadratic growth in computational complexity and GPU memory
consumption, yet can mitigate background influence and raise confidence for fine‑scale spotted patterns.
(iii) Pseudo‑labeling and self‑training. Unlabeled images from GBIF (Global Biodiversity Infor-

mation Facility) or surveillance video streams can augment the training set. A confident set may be
formed with current models, followed by additional backbone fine‑tuning while strictly controlling
pseudo‑label accuracy.

(iv) Automatic threshold tuning. Bayesian optimization or differentiable threshold tuning on the
validation score would eliminate manual adjustment of the 39.7%, 13%, and 70.3% thresholds and adapt
the meta‑algorithm to new species without manual threshold tuning [31].
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