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Abstract
This work presents a hybrid pipeline for the automatic identification and classification of plant species using
object detection and deep learning techniques. Specifically, the approach combines YOLOv11 for the detection of
relevant regions in images and InceptionV3 for multi-label classification of the detected species. The methodology
was evaluated within the context of the PlantCLEF 2025 challenge, which involves multi-species classification
from natural vegetation quadrat images. To address the high class imbalance, random undersampling and data
augmentation techniques were applied. Despite computational constraints that required dataset reduction, the
proposed pipeline achieved an F1-score of 0.02203, ranking 28th out of 38 participating teams. In comparison,
the top-performing team achieved a score of 0.38132. These results, although modest, highlight the potential of
integrating object detection as a pre-classification step in complex natural scenarios.
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1. Introduction

Nowadays, precise plant species classification tasks are carried out in the fields of botany, environmental
conservation, and biodiversity monitoring. Traditionally, this work was performed by specialists in the
area, which implies high time and resource costs, in addition to the possibility of human errors. It is for
this reason that, given these limitations, the use of techniques that combine computer vision with deep
learning becomes essential to automate and scale the recognition of different plant species.

Recent advances in the field of Convolutional Neural Networks (CNNs) have demonstrated that this
type of network has a remarkable ability to extract and learn features from plant images, including
variable backgrounds, scales, and positions [1]. Examples of this type of network include ResNet[2],
DenseNet[3], and more recent ones such as Vision Transformers[4], which, together with a rich and
diversified dataset in term of classes, number of images datasets such as ImageNet, can significantly
improve performance in multiclass classification tasks in the field of computer vision, including auto-
matic classification of plant species, flowers, or fruits. Although architectures like ResNet or Vision
Transformers have shown good results, InceptionV3 was chosen due to its balance between performance
and efficiency, particularly useful in training environments with limited resources.

However, multiclass classification of plant species presents significant challenges, such as visual
similarity between species, proximity between species that can lead to confusion, class imbalance in
the data, and differences between training and test images.[5]

In this work, a solution was proposed a solution based on a hybrid detection and classification pipeline,
combining the YOLOv11 model for localization of relevant regions in images with an InceptionV3
network for multi-label classification of detected species. This approach allows us to simultaneously
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Figure 1: Typical image from the training set. Figure 2: Typical image from the test set.

address the detection of multiple species within the same image, as well as mitigate problems arising
from class imbalance and variability between training and test domains. Through this approach, the
objective was to improve accuracy and robustness in plant species classification scenarios in real and
uncontrolled images.

2. Context

This work is focused on providing a solution to the problem posed in the PlantCLEF 2025 [6] competition,
which provides a dataset composed of a total of 7806 distinct plant classes that must be classified. The
dataset presents a marked class imbalance, with some species represented by only a single image, while
others have up to 823 samples.

Another important challenge lies in the difference between training and test images. Due to compu-
tational resource constraints, the original training dataset had to be reduced in size. This selection was
carried out with the goal of preserving class diversity while ensuring feasible training times and memory
usage. Although this reduction may limit overall model generalization, it was necessary to adapt the
approach to the available hardware. Training images typically show a single plant, generally taken
from a vertical or lateral perspective, with the object centered. In contrast, test images are captured
from a zenithal (top-down) perspective and usually include multiple plants in the same frame, which
introduces greater complexity to the inference process.

This type of CLEF competitions, specifically those of LifeCLEF [7], help to perform different compar-
ative evaluations in the field of computer vision applied to biodiversity.

3. Related Work

Previous studies have investigated plant species detection through the use of computer vision techniques.
Among these, we can see studies related to fruit detection [8], disease detection in leaves [9] as well as
in complete plants [10], and detection of medicinal plants [11]. Furthermore, these technologies have
demonstrated great importance in the field of agriculture, where they contribute to optimizing crop
monitoring, pest control, and management of different resources [12].

However, most of these works focus on controlled scenarios or direct classification tasks, with good
quality images and homogeneous conditions. Few address the problem from a prior detection approach



or multi-label classification in unstructured natural environments, which limits their applicability in
real situations.

In the context of competitions like PlantCLEF, which poses realistic challenges from images collected
by citizens (with noise, variable lighting, partially visible species, etc.), some recent works have explored
more robust solutions. For example, in PlantCLEF 2023, the NEUON team employed architectures
such as Inception-v4 and Inception-ResNet-v2, along with data augmentation strategies and organ-
specific training (leaves, flowers, fruits, etc.), achieving outstanding performance [13]. Additionally, in
PlantCLEF 2024, approaches based on Vision Transformers for multi-label classification in vegetation
plot images were explored, addressing the challenges of variability in capture conditions and the
presence of multiple species per image [14].

Despite these advances, many previous approaches remain limited in terms of their generalization,
especially when facing poorly represented species or when a single image contains multiple relevant
labels. In this work, we propose a hybrid pipeline based on prior detection with YOLOv11 and multi-label
classification with InceptionV3, specifically designed to address these challenges. Unlike traditional
direct classification approaches, the proposed methodology attempts to detected regions of interest
before classification, which may help improve accuracy in complex scenarios such as those posed by
PlantCLEF 2025.

4. Methodology

4.1. Models Used

• InceptionV3
In this project, this model was used for the multiclass classification part of plant species in different
images. InceptionV3 is a convolutional network architecture, developed by Google, that stands
out for its efficiency and high performance in tasks related to computer vision [15]. This model
has been previously employed in plant species classification tasks, such as flower classification,
obtaining very good results [16]. More recent architectures, such as EfficientNet, were not chosen
due to hardware limitations and training time constraints. Additionally, although domain-specific
models like BioCLIP have shown promise in plant identification tasks, their relative novelty,
lack of extensive documentation, and limited availability of open-source implementations and
pretrained weights made them less practical for this study. In contrast, InceptionV3 provided a
balanced trade-off between performance, computational efficiency, and support within the deep
learning community, making it a more feasible and robust option under the constraints of this
project.
To leverage the pre-trained weights of the model with the ImageNet dataset [17], the last layer
of the model was replaced with a global average pooling layer, followed by a dense layer with
ReLU activation, and finally a softmax output layer was added to adapt the model to multiclass
classification. The final architecture was trained using the Adam optimizer and freezing some
upper layers, which allowed the model to learn complex and determining relationships, enabling
it to show good capacity for extracting visual features in the botanical domain. Figure 3
illustrates the complete InceptionV3 architecture used, highlighting the modular structure of
the network—including the Inception modules A, B, and C—and the progressive reduction of
spatial dimensions through grid reduction layers. The diagram also emphasizes the parallel
convolutional paths within each Inception module, which contribute to the model’s efficiency
and ability to capture multi-scale features.

• YOLOv11

YOLOv11 is a model that belongs to the YOLO family, which has a series of models specialized in
object detection with high speed and good accuracy even in real-time systems [18]. YOLOv11
is nothing more than an evolution within this family that incorporates improvements to the



Figure 3: InceptionV3 neural network architecture with custom classifier head. The diagram illustrates
the complete flow from image input (299×299×3) through characteristic Inception modules (A, B, C) with
intermediate grid reductions, followed by Global Average Pooling (GAP) and a dense layer with ReLU and
Softmax activations for classification. Bottom-left detail shows the parallel structure of a typical Inception
module with its multiple convolutional branches.

architecture, such as new prediction modules or more efficient training strategies, which enable
it to obtain better results [19].
The motivation for using YOLOv11 in this context was twofold. On one hand, it allows automatic
detection of regions of interest within images, such as plants, leaves, or flowers. This way non-
relevant areas of the image were filtered out from what does not interest us in the image to favor
the performance of the classifier model (InceptionV3). On the other hand, this addressed the
problem of multiple plants in one image, since we only pass individual images to the classifier
model, which facilitates its work by not having to classify more than one image per plant, which
could generate confusion and errors. Figure 4 shows an example of what an image would look
like after detecting plant species using the YOLO model, which returns the same image with
bounding boxes and their corresponding confidence scores added.
In case the YOLO model fails, or does not find any plant, the complete image is passed to the
classifier model for classification.

With this combination between detection and classification, a more robust pipeline could be built,
where predictions are not based on the complete image, but on key fragments that are identified by the
detector. This proved useful when classifying images taken in different natural environments, where
the position and framing of photos vary significantly, such as those offered in the PlantCLEF challenge.

4.2. Balancing Techniques

Given such an imbalanced dataset, the following techniques were chosen:

• Random Under-Sampling

To reduce class imbalance and thus improve training performance, a random under-sampling
process was chosen to eliminate those classes that contained an insignificant amount of examples.



Figure 4: Example of an image before and after being processed by the YOLO model, with bounding
boxes added.

Specifically, classes that had only a single data point were eliminated, as they did not provide
sufficient information for the model to predict correctly [20], and thus solve the space problem
on the equipment that performed the training.
This technique allowed reducing the total number of classes, which in turn improved the
overall training perspective, allowing the model to focus on classes with more information.
Furthermore, this technique helps prevent data overfitting, while improving training stability [21].

• Data Augmentation

As mentioned several times before, the dataset presented a clearly imbalanced distribution. To
mitigate this problem, data augmentation techniques were applied, which have proven to be
really effective in image classification tasks, by generating new ones from transformations of the
originals [22]. These transformations included rotations, scaling, random zoom, and horizontal
flipping, among others. This way, the training set could be artificially expanded without the need
to collect new data, since in this context it was impossible.
For the practical implementation of this technique, the ImageDataGenerator method offered by
the Keras library1 was used, which allows applying these transformations at runtime during
training. This strategy avoids having to store augmented images on the hard drive, reduces
memory usage, and allows greater data variability in each epoch.

5. Experimental Setup

For the experimental setup, several Python libraries for machine learning were used. Some of those
used were "Keras", "TensorFlow" [23], "Pandas" [24], and "YOLO" [25], among others.

Regarding the data, first the random under-sampling previously described was performed, reducing
the classes from 7806 to 4950. After this, a stratified split of the original dataset was applied—allocating
70% of the samples for training, 20% for validation, and 10% for testing—while preserving the original
class imbalance. Finally, data augmentation was applied at runtime during training.

On the other hand, to train the YOLO model, a sample of 30 images from the test dataset provided by
PlantCLEF had to be taken, which was manually labeled using the "Roboflow"2 tool. After this, data
augmentation was performed, going from 30 to 61 images divided into 52 for training, 6 for validation,
and 3 for testing, and the YOLO model was retrained for plant detection in images.

The complete training and implementation notebooks, along with code and documentation, are
publicly available at https://github.com/JesusTejon/PlantCLEF-2025-TFG

1https://keras.io
2https://roboflow.com/
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Table 1
Results obtained from the experiments

Models F1-score Technique

InceptionV3 0.00088 None
InceptionV3 0.00596 Augmentation

InceptionV3 + YOLOv11 0.02203 Augmentation

6. Results

Regarding performance evaluation, the F1-score has been taken as the main metric, as it offers a balance
between precision and recall, which is especially relevant in contexts with imbalanced classes or when
it is equally costly to commit false positives and false negatives. Unlike metrics such as precision or
recall separately, which focus solely on one of these aspects, the F1-score provides a more complete
view of the model’s behavior. On the other hand, the use of the confusion matrix has been discarded
due to its high dimensionality in this multiclass problem, which would hinder its visual interpretation
and detailed analysis.

After experimenting with different configurations, the results shown in Table 1 were obtained.
The results clearly show the progressive improvement in performance as additional techniques are

applied to the base model. The use of data augmentation produces a significant improvement compared
to direct training with the original dataset, which suggests that the introduced variability contributes
positively to the model’s generalization capacity.

Likewise, the integration of a prior detection stage with YOLOv11 followed by classification with
InceptionV3 notably improves the F1-score, tripling the value obtained with the exclusive use of
data augmentation. This demonstrates that first localizing the relevant regions of the image before
classifying them helps the model focus on areas with significant information, thus reducing the impact
of background noise and improving labeling precision.

Despite the absolute F1-score values still being low, these initial experiments show a clear trend of
improvement that validates the usefulness of the proposed hybrid approach. These initial tests laid
a promising foundation that these initial tests lay a promising foundation for future iterations of the
system, in which both the architecture and the quality of the input data could be further optimized to
achieve more competitive performance in scenarios such as those posed by PlantCLEF.

After a manual review, it was observed that the main failure in the system occurs when the YOLO
model is unable to detect any plant species or detects an incorrect one, which subsequently causes
confusion for the classification model. An example of this can be seen in Figure 5, where the model fails
to detect any plant species, likely because it is somewhat camouflaged with the environment. On the
other hand, Figure 6 shows a case where the same plant is detected twice, with one of the detections
including a rock. This may lead the classification model to classify two different species where there is
only one.

As shown in the images, both types of YOLO model errors can also lead to incorrect classification by
the InceptionV3 model on the extracted regions.

Additionally, another expected error occurs with the classes that were removed during Random
Undersampling, which for obvious reasons cannot be classified by the model.

As shown in Table 2, the top-performing teams achieved F1-scores close to 0.38, while the overall
average performance remained low (media = 0.2008), reflecting the difficulty of the task. The I2C-UHU-
PERSEUS team obtained an F1-score of 0.02203, ranking 28th out of 38, which, although modest in
absolute terms, still positioned the team above 26% of the participants. These results underscore both
the technical complexity of the challenge and the value of the proposed approach as a baseline for
future improvements.



Figure 5: Example of no detection by the YOLO model. Figure 6: Example of errors in the YOLO model.

Participante F1-score Ranking

webmaking 0.38132 1
Chlorophyll Crew 0.37555 2
... ... ...
I2C-UHU-PERSEUS 0.02203 28
... ... ...
kaggleuser 0.00013 38
media 0.2008 –

Table 2
Official results published by the task organizers.

7. Conclusions

First, the critical importance of having a high-quality dataset that is representative of the real testing
environment is evident. The substantial differences between the training and test sets likely negatively
affected the model’s performance, compromising its generalization capacity. Additionally, the marked
imbalance between classes—including a considerable number of categories with only one available
sample—represented a significant limitation during the training process.

Regarding the results, while they did not achieve the expected performance, they clearly identify
several improvement factors. One of the most relevant lines to explore is the class reduction strategy:
eliminating those with few samples may harm the system’s ability to identify less frequent, but equally
important species. Alternatively, the use of few-shot learning techniques or synthetic sample generation
could be considered. Likewise, the adoption of classification models more specialized in the botanical
domain, as well as the use of more recent architectures such as Vision Transformers, could provide
significant improvements.

In terms of detection, the use of YOLO as a prior detector presents advantages, but also introduces
errors that are transferred to the classification system. It would be pertinent to evaluate other finer
detections techniques or attention-based ones, with the objective of improving the quality of the
extracted regions of interest.

Overall, this work highlights both the challenges and potential of automated plant species recognition
in complex environments. Despite the limitations encountered, the proposed pipeline establishes a solid
foundation for future research, and offers a clear direction toward more robust, adaptive, and scalable
solutions in real contexts such as those posed by PlantCLEF.
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