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Abstract
This report gives an overview of the system developed by Team 3DS2A for Task 1 of the LongEval Lab at CLEF
2025. The team members are students enrolled in the Computer Engineering master’s program at the University
of Padua. The team developed an information retrieval system tailored to run on a French-language document
corpus. The system was evaluated over a nine-month timespan to assess its robustness in terms of precision
and recall over time. Throughout development, multiple techniques were explored, including alternative text
analyzers, proximity search, chunk-based indexing, and semantic reranking using sentence embeddings. This
report presents the system architecture, the experimental strategies adopted, and the performance achieved
during the training phase.
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1. Introduction

In today’s digital age, online searching has become an integral part of daily life, with billions of users
worldwide relying on search engines to quickly and accurately find the information they need. A search
engine (SE) is a software system designed to fulfill this demand by processing user queries that express
specific information needs. However, as the number of web pages continues to grow rapidly, search
engines face increasing challenges, one of the most significant being a decline in performance over time.
To address this issue, the LongEval Lab, organized by the Conference and Labs of the Evaluation Forum
(CLEF), encourages the development of temporal information retrieval (IR) systems capable of adapting
to the evolving nature of online content [1]. This work reports on the proposed solution implemented
by the 3DS2A group at the University of Padua as part of the Search Engines Course.

Alongside the traditional search pipeline, the system also utilizes more sophisticated techniques like
chunk-based search, pseudo-relevance feedback, and reranking based on a sentence embeddings model
to enhance the retrieval capability of the queries used.

The paper is organized as follows: Section 2 briefly introduces some related works for past LongEval
tasks at CLEF 24; Section 3 describes our approach; Section 4 explains our experimental setup; Section
5 discusses our main findings; Section 6 presents the statistical analysis performed to assess the
significance of performance differences between systems; finally, Section 7 draws some conclusions
and outlooks for future work.
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2. Related Work

The LongEval 2025 task follows the same general structure as previous CLEF LongEval editions, with
the key difference that this year’s training set spans a significantly longer temporal window.

In past editions, a wide range of information retrieval techniques have been explored, with sentence
embedding-based approaches playing a prominent role, especially in the re-ranking phase [2] [3]. For
example, Basaglia et al. [4] adopted a reranking strategy based on sentence embeddings, demonstrating
its effectiveness in improving retrieval performance on temporally dynamic datasets.

While the discussion about whether stemming or lemmatizing achieves better performance is still
open [5] [6], another common technique involves the expansion of query terms [7], and the use of
Named Entity Recognition [8].

Our objective is to explore some of these techniques, combining them into new approaches while
participating at the LongEval Web retrieval task.

3. Methodology

This section describes the methodologies adopted by our IR system for this task. To build our IR system,
we used Apache Lucene 10.1.0 [9], an open source search engine library developed in Java, known
for its high performance and rich feature set. Lucene provides a robust framework for indexing and
retrieval, which we extended with a reranking module based on sentence embeddings.

Our goal was to enhance the effectiveness of an approach explored in the previous year by Basaglia
et al. [4]. We used a similar approach based on reranking a small chunk of documents, but using a
larger and more expressive sentence embedding model to capture deeper semantic similarities between
queries and documents.

The main components of our system are:

• WebDocumentParser to read and parse a .json file into a WebDocument object.
• WebAnalyzer to analyze the contents of a document and return tokens ready to be indexed.
• DirectoryIndexer to manage the opening, parsing and indexing of the contents in a specific

directory.
• Searcher to load the provided queries and perform the matching between those and the indexed

documents.

3.1. Parsing

The first step in IR systems is about collecting the documents and provide them to the system in a
"cleaned" and organized way. For this purpose, two classes have been developed in our system: the
WebDocument and WebDocumentParser classes, which are responsible for reading the document
and abstracting them in an organized Java object. We developed our parser class to read through the
.json file format using Jackson XML Parser, and convert them into the specific Java class WebDocument.

The structure of the .json files is rather simple, and it is made as an array of anonymous elements
with only two fields: id and contents, therefore the associated Java class will have the same structure.
The most important thing about the parsing process is that it also provides a pre-processing step to
clean the contents of the document. This step does not aim to perform detailed text analysis, as that
responsibility is delegated to the analyzer component, therefore we just focus on the removal of HTML
tags, of unwanted punctuation, of URLs and normalization of consecutive whitespaces.

All of this happens while accessing the list of documents in the .json file, so the process is performed
only when actually accessing the required document when iterating the collection, rather than processing
the whole collection at a single time. The WebDocumentParser provides access to the documents
contained in a single file through the canonical iteration methods and returns the WebDocument
object ready to be analyzed by the consumer WebAnalyzer.



3.2. Analyzing

Once we have access to the contents of our document, we must extract a sequence of textual elements -
called tokens - to be provided to the indexer. These tokens represent the basic units upon which the
search process operates. The main purpose of the analyzer component is to provide those tokens and
apply some filtering and optimizations to improve the performance of our system.

To perform these operations, we developed our implementation of analyzer, called WebAnalyzer,
which provides access to tokens through the createComponents method. The pipeline to generate
a token is divided into several steps. First of all, we want to generate tokens from the text using
one of the provided Lucene classes, like the WhitespaceTokenizer, the LetterTokenizer or the
StandardTokenizer. Using one of these allows us to split the text into words or other components,
which we can consequently analyze. After applying a LowerCaseFilter component to the token, to
normalize the capitalization of the text, we want to remove the tokens which may not be relevant for
our purpose: we use a LengthFilter to remove too short or too long tokens (setting thresholds in
length to be in range 3-100), and finally a StopFilter component to eliminate the stopwords. In order
to make the text more uniform, we also apply an ElisionFilter and ASCIIFoldingFilter components
to remove elisions and regularize uncommon characters that may be present in the text, just before
filtering the stopwords.

The last and probably most important step in our analysis pipeline is about the stemming process.
We want our system to be able to match terms that might not be exactly written in the same way in the
documents and queries, like (e.g. plural/singular nouns). Therefore, we apply a stemmer component
at the end of the pipeline. Since the stemming process is a very delicate part of the analysis, we tried
different configurations of the stemmer component, like the Krovetz, SnowBall and Porter stemmers,
but also the Lucene’s FrenchLight/FrenchMinimal StemFilter, since our collection is made of French
queries and documents. At the end of the process, the WebAnalyzer generates a sequence of tokens
ready to be consumed by our indexer.

To ensure flexibility and allow for easy experimentation with different analysis strategies, the
WebAnalyzer component is configurable using an external XML file. This file specifies the parameters
used in the analysis pipeline, such as the tokenizer type, minimum and maximum token length, the
stemmer to be applied, and the activation of specific filters such as ASCIIFoldingFilter or ElisionFilter.
The configuration is defined using an AnalyzerParams class, which is populated from the XML using
Jackson annotations.

3.2.1. POS Tagging and Lemmatization

In order to improve the matching performance of our system, we tried to implement different versions
of the analysis component. One of the first ideas was to take advantage of the OpenNLP [10] project to
reduce the number of indexed terms and improve search results by expanding some types of words.
In order to implement this kind of configuration, we tried to implement an OpenNLPAnalyzer class
using OpenNLP models for sentence detection, tokenization, POS-tagging, and lemmatization. We also
developed a POSTagFilter Tokenstream component to discard unwanted types of tokens. However,
when trying to perform the analysis of the documents, we couldn’t achieve a sufficiently fast execution
time from the system, and therefore we dropped this implementation.

A second attempt at lemmatization was made using a more simple model based on Leff [11][12],
a large-scale morphological and syntactic lexicon for French. In this case, we statically generated a
copy of the collection documents containing the lemmatized terms, and then we used this collection as
input to our system, but removing the stemming process from the analysis pipeline. In this case, the
running time was very efficient, but we soon discovered that the lemmatization process didn’t improve
the matching performances of our system. Therefore, we dropped also this lemmatization process.



3.3. Indexing

Upon receiving the tokens generated from the analyzer’s pipeline, the system must store the terms in
the index. Lucene stores an inverted index, associating each term with a list of postings, that is the list
of document ids containing that index term. In our configuration to improve the search capabilities of
our system, we configured the index to also store the term frequencies and relative positions so that we
could take advantage of the tf-idf metrics of each term and of phrase search. We also implemented a
more complex indexing procedure, where each document is split into chunks, in order to improve the
precision during the search phase, as better described in 3.3.1.

To manage the indexing process, we developed the DirectoryIndexer class, which allows us to parse
and index an entire directory containing .json files, especially useful since in our case we are dealing with
a sequence of "snapshot" directories, one for each month. Moreover, an efficient MultiThreadIndexer
class has been developed, so that multiple .json files are indexed at the same time.

3.3.1. Chunk Indexing

In order to enhance the retrieval performance of our system, we also tried an alternative approach
at index-time. Chunk indexing is a strategy designed to enhance retrieval granularity by dividing
documents into semantically coherent text segments - called chunks - before indexing. The effectiveness
of chunk-based approaches has been highlighted in both neural and classical IR frameworks, in particular,
Yin and Schütze[13] operated on multiple levels of text granularity to improve matching performance
across chunks. Their findings support the idea that representing and comparing textual content at
different granular levels leads to improved relevance estimation.

Inspired by this principle, our system implements chunk indexing with overlapping windows of 10
sentences, as follows:

1. Sentence-based Segmentation: Documents are segmented into chunks using the fr-sent.bin
French sentence model provided by OpenNLP[10]. Sentences are then grouped in chunks of 10
sentences each.

2. Sliding Window with Overlap: To preserve semantic continuity across chunks, a sliding
window approach is used. Each new chunk begins after reusing the last 𝑚 sentences (3 in this
case) of the previous chunk as overlap.

3. Unique Identification: Each chunk is indexed as an independent Lucene document with a
unique identifier formatted as <docID>_<chunkIndex>, ensuring traceability to its source
document.

During retrieval, the system operates at the chunk level, but the results are aggregated at the document
level using a simple yet effective post-processing step:

• For each original document, only the highest-scoring chunk is retained.
• The final score assigned to the document corresponds to the score of this best chunk, thus

reflecting its most relevant passage.

This strategy enables both fine-grained relevance matching and efficient document-level ranking,
particularly beneficial in multilingual or domain-diverse collections. Further considerations on the
impact of chunking on retrieval performance are discussed in Section 5.8.

3.4. Searching

Moving on with the "online" section of our system, the Searcher class is the component tasked with
interpreting user queries and scanning indexed documents to identify the most relevant matches. In
order to perform the searching process, we also developed a TopicParser class, which is responsible to
parse the queries file and pass them with their id to the searcher, in a similar way to what we have seen
when parsing the .json documents. Several components have been tried to further improve the search
phase, where the actual matching is performed through the BM25 model.



3.4.1. BM25

The next step involves retrieving relevant documents based on the queries submitted. This process
entails identifying the documents that match most closely to each query, using scoring functions to
evaluate their relevance. Each document is assigned a score and the results are ranked accordingly, from
highest to lowest, under the assumption that the highest scoring documents are more relevant to the
query. Among these scoring methods, the BM25 ranking function, part of the "Best Match" (BM) family
of retrieval models, stands out. Despite its simplicity, BM25 remains highly effective and continues to
perform competitively against more modern retrieval techniques.

3.4.2. Queries

The queries provided by the LongEval team consist of a set of files, one for each monthly snapshot
provided. It is possible to work with two different formats, .trec files or .txt files. We chose to work
with .txt files for simplicity, but a parser was developed for each version in order to generate the
corresponding QualityQuery object required by Lucene.

Query terms are then analyzed and used to generate more powerful queries, using different techniques
to improve the search result. In the following subsections we describe our implemented procedures.

3.4.3. Fuzzy Search

We experimented with a fuzzy search extension after observing a high incidence of typographical
errors in user queries, like "amurerie", which should be "armurerie". By replacing exact term matching
with a Levenshtein-based fuzzy query, we aimed to recover relevant documents despite misspellings.
However, contrary to our expectations, the fuzzy approach consistently underperformed compared to
strict matching: the relaxation of edit distance constraints introduced substantial noise and lowered
precision, ultimately degrading overall retrieval effectiveness. This surprising outcome led us to favor
the original exact-matching pipeline for the final system configuration.

3.4.4. Pseudo-Relevance Feedback

Pseudo-Relevance Feedback (PRF) is an unsupervised technique used to improve retrieval effectiveness
by automatically reformulating the query. Unlike traditional relevance feedback, it does not rely
on human interaction. Instead, PRF expands the user’s query by leveraging terms from top-ranked
documents retrieved during an initial search. The method assumes that the most relevant terms can be
extracted from the top-𝑘 results and used to enhance recall.

Our implementation follows these main steps:

1. Initial Retrieval: Execute the original query using BM25 to retrieve the top 𝑘 documents.
2. Term Extraction: For each of the top documents, tokenize the text using the same analyzer as

during indexing. Filter out stopwords and tokens with inappropriate length. Then, compute term
frequency (TF) and document frequency (DF) per term.

3. Scoring and Ranking: Compute a BM25-inspired weight for each candidate expansion term:

score(𝑡) = TF(𝑡) · log
(︂
1 +

𝑁 − DF(𝑡) + 0.5

DF(𝑡) + 0.5

)︂
where 𝑁 is the total number of documents and DF(𝑡) is the document frequency of term 𝑡.

4. Query Expansion: Select the top-𝑛 scoring terms and construct a new query combining:
• The original query, boosted by a weight 𝛼
• The expansion terms, boosted by a lower weight 𝛽

5. Final Retrieval: Submit the expanded query to obtain the final re-ranked list.



Formally, the final query 𝑄′ is built as:

𝑄′ = 𝛼 ·𝑄+ 𝛽 ·
∑︁
𝑡∈𝑇exp

𝑡

where 𝑇exp is the set of top expansion terms.

3.4.5. Proximity Search

Proximity search enriches traditional term-based retrieval by introducing a measure of how closely query
terms co-occur within a document, which often signals a stronger semantic relationship. Documents in
which the full set of query terms appears within this slop window receive a score boost, reflecting their
contextual cohesion. For example, the query "red house brick" could be used to retrieve documents
that contain phrases like "red house built with bricks", while in the meantime avoiding documents
where the words are scattered or spread across. However, as previously mentioned, the documents
must still contain all query terms to match the full proximity constraint. So to further capture cases
where only subsets of the query are present, we automatically generate every pair and triplet of query
terms and apply the same proximity criterion to each combination. We limit the subsets to pairs and
triplets to avoid exceeding Lucene’s BooleanQuery clause limit of 1024, which would otherwise be
reached quickly with longer queries. These proximity constraints are added as optional clauses in the
final query, ensuring that documents with locally clustered terms are boosted in rank. Later, we will
discuss the tuning of the slop parameter and how its value can influence system performance.

3.4.6. Synonyms

In order to try to improve the performance, we implemented a query expansion technique with
synonyms, exploiting the semantic lexicon WOLF (WordNet Libre du Français) [14]. This technique
allows words semantically similar to the original term to be included in the query, increasing the
probability of retrieving relevant documents even if expressed with different terms.

During the Lucene query construction, each token is analyzed and, if the expansion with synonyms is
enabled, the WolfManager module is queried. This module manages a dictionary of synonyms extracted
from the XML WOLF resource. For each token, if synonyms are present, a SynonymQuery is created
that includes both the original term and its synonyms. This query is then added to the global Lucene
query using the BooleanQuery builder, with the SHOULD operator, to expand the coverage without
penalizing the results based on the original term.

3.4.7. Reranking

To improve the quality of the results, the first k retrieved documents are subjected to a semantic
re-ranking phase. The value of k will be discussed in Section 5.9. For each document, the tex-
tual content and the query are sent to a local server, which hosts a SentenceTransformer model:
all-roberta-large-v1 [15], available on Hugging Face [16]. The model is built upon the RoBERTa-
large architecture, a robustly optimized variant of BERT, and is fine-tuned on over one billion sentence
pairs to produce semantically meaningful embeddings. Given an input, the model maps it into a dense
1024-dimensional vector space such that semantically similar sentences are located close together. This
makes it well-suited for tasks like reranking, semantic search, and clustering.

The server computes these steps:
• It employs the model, which performs a vector representation (embedding) of both the query and

the document and evaluates their similarity through the scalar product.
• The score obtained, between 0 and 1, reflects the semantic relevance between the two texts so it’s

weighted and added to the original Lucene score, in order to obtain a new ranking value.
• The documents are then reordered based on this aggregated score.

This approach allows us to combine the efficiency of traditional retrieval with the generalization and
semantic understanding capabilities offered by Deep Learning models.



3.5. Running the system

Once our components have been developed, we implemented a main SystemRunner class to coordinate
the entire pipeline execution. The indexing and searching parts can be executed at different times, to
simulate the offline and online deployment phases. The parameters of the system are passed to the
components through constructors and XML configuration files, in order to improve the flexibility of the
system.

The final complete overview of the system is shown in Figure 1.

Figure 1: General overview of a possible configuration of our implemented system. We can see how the analyzer
is a key element used both in the offline and online phases, to analyze documents and queries. The searcher
uses a python flask server to retrieve the score for each document using a LLM model and rearranges the results
accordingly. The chunk indexing process is not highlighted here.

4. Experimental Setup

As already discussed, the system has been developed in Java through the Apache Lucene Library,
but a few side components have been developed in Python. The source code can be found at https:
//bitbucket.org/upd-dei-stud-prj/seupd2425-3ds2a/src/master/, and as an evaluation measure, we used
the metrics provided by the trec_eval 9.0.7 tool, available at the https://trec.nist.gov/trec_eval/
repository.

The system has been run on the collection provided by the LongEval team at https://clef-longeval.
github.io/data/. We used our personal computers to test our system, where the most expensive runs
have been completed using the hardware described in Table 1.

Table 1
Most powerful hardware available

CPU RAM GPU
System 1 i7-10750H 16GB GTX 1660-Ti
System 2 Ryzen 9 3900x 32GB RTX 3070

https://bitbucket.org/upd-dei-stud-prj/seupd2425-3ds2a/src/master/
https://bitbucket.org/upd-dei-stud-prj/seupd2425-3ds2a/src/master/
https://trec.nist.gov/trec_eval/
https://clef-longeval.github.io/data/
https://clef-longeval.github.io/data/


4.1. Training data and Evaluation

The training collection is made up of several components. LongEval team has given us a timeline
sequence of documents, extracted from the Qwant search engine through a sequence of months, from
June 2022 to February 2023, with every month in a specific subfolder. For every monthly snapshot,
the corresponding list of queries to submit has been provided at https://github.com/clef-longeval/
clef-longeval.github.io/tree/master/collection. Moreover, to understand how the system performed each
month, a corresponding qrels file has been provided for each month.

The evaluation metrics have been computed using the -m all_trec parameter of the trec_eval executable,
which will give us several metrics to examine. For training data, we mostly focused on the nDCG and
MAP metrics, in order to improve the overall result of the system.

5. Results and Discussion

The first thing we need to do to improve our system is to set a reference score for our metrics. In order
to do that, we configured our system to use only the main components of Lucene. Upon establishing a
baseline evaluation score, we could then try to develop new strategies to improve the final result of the
system.

5.1. Baseline performance using Lucene library

To set a baseline for our next runs, we used a simple configuration of the Indexer, Analyzer, and Searcher
components, as described in Table 2.

Table 2
Baseline system’s configuration. The indexing process doesn’t use the chunk-based approach.

Used components from Lucene
Tokenizer StandardTokenizer

Text normalization LowercaseFilter, ElisionFilter, ASCIIFoldingFilter
Filtering LengthFilter(3–100) and StopFilter (French and English)
Stemming FrenchLightStemmer

Matching model BM25

When running this base system on the provided training dataset, we achieved very different results
depending on the considered month. We repeated the measurements several times and came to the
conclusion that some months have very difficult topics or strange judgments, but probably also because
some documents have different languages and may not be processed in an efficient way. Nevertheless,
we achieve a complete overview of the baseline system’s performance in the Table 3.

Table 3
Baseline system’s performance. Notice how the score rises from June to January.

Month MAP nDCG
2022-06 0.1174 0.2076
2022-07 0.1208 0.2089
2022-08 0.1325 0.2168
2022-09 0.1228 0.2062
2022-10 0.2078 0.3104
2022-11 0.2122 0.3136
2022-12 0.2192 0.3244
2023-01 0.2232 0.3277
2023-02 0.2019 0.2969

https://github.com/clef-longeval/clef-longeval.github.io/tree/master/collection
https://github.com/clef-longeval/clef-longeval.github.io/tree/master/collection


5.2. Stemming against Lemmatizing

Even if we couldn’t manage to achieve an efficient system using OpenNLP for lemmatizing the docu-
ments, we tried a simpler way to generate a lemmatized version of the collection. Using a dictionary-
based lemmatizer [11], we generated a lemmatized copy of the collection, including the queries, and fed
them to our system, taking care of disabling any active stemmer. The results are depicted in Figure 2
and Figure 3. The comparison with the baseline system highlights how the performance is pretty much
aligned with the stemmed version of the collection, but it is important to say that the lemmatizer used
is probably too simple. Nowadays our systems could take more advantage of LLM models, and from a
better lemmatization it would be possible to further expand each term to improve the final result of the
system.

Figure 2: MAP score of the baseline system over the original collection against the lemmatized version of the
collection. Reported numbers are the scores obtained using lemmatized collection.

Figure 3: nDCG score of baseline system over the original collection against the lemmatized version of the
collection. Reported numbers are the scores obtained using lemmatized collection.

5.3. Choice of stemmer

To assess the effectiveness of different text analysis strategies, we performed a series of experiments
combining various tokenizers (Standard, Letter, and Whitespace) with multiple stemmers (FrenchLight,



FrenchMinimal, Snowball, and None). All configurations were tested on the 2022-06 dataset.
The evaluation focused on two main retrieval metrics: Mean Average Precision (MAP) and nDCG.

Across the board, the FrenchLight stemmer consistently delivered the best results, particularly when
paired with the StandardTokenizer, achieving the highest MAP (0.1174) and competitive nDCG scores.
Configurations using the LetterTokenizer also performed well, providing strong baseline alternatives.

Interestingly, the use of stopword filtering did not lead to performance improvements. This trend
was consistent across both French and English stoplists, suggesting that aggressive stopword removal
may be useless in this context.

Despite the fact that stopword filtering did not improve retrieval performance in our current experi-
mental, this feature will remain part of the default analysis pipeline. There are several reasons behind
this decision. First, stopword removal improves robustness by eliminating high-frequency, low-content
terms that might introduce noises. Second, stopwords can significantly affect index size and efficiency,
especially when dealing with large corpora. Lastly, including stopword filtering maintains compatibility
with standard IR practices and facilitates future integration of more advanced techniques, such as query
expansion or relevance feedback, which often employ a cleaner input signal. Some interesting results
can be seen in Table 4.

Table 4
Performances for various tokenizer and stemmer configurations on the 2022-06 dataset.

Configuration MAP nDCG
Standard+FrLight 0.1174 0.2076

Standard+FrMin 0.1159 0.2057
Standard+Snow 0.1157 0.2060
Standard+Porter 0.1153 0.2054
Standard+Krow 0.1140 0.2045
Letter+FrLight 0.1167 0.2078

Whitespace+FrLight 0.1093 0.1942
No stopwords 0.1175 0.2076

Baseline 0.1174 0.2076

5.4. BM25 Parameters Tuning

To evaluate the impact of the parameters of the ranking function on retrieval performance, we exper-
imented with different configurations of the BM25 similarity function, which is the default scoring
method used in many modern IR systems.

We evaluated multiple parameter settings of BM25, particularly focusing on variations of the pa-
rameters 𝑘1 (term frequency saturation) and 𝑏 (document length normalization). The baseline run
used the default Lucene settings, while alternative runs explored more aggressive and conservative
configurations.

Among the settings tested, the default setting (with parameters 𝑘1 = 1.2 and 𝑏 = 0.75) achieved the best
overall performance. This setup outperformed alternative configurations, including more aggressive
ones such as BM25(2.0, 1.0), which, although slightly better in recall (R@1000 = 0.4113), showed less
consistent results in early precision and overall MAP. In contrast, the more conservative configuration
BM25(0.9, 0.4) significantly underperformed in both early and deep precision. An additional run with
BM25(0.5, 0.0), which removed length normalization entirely, was tested but, as expected, showed the
worst scores across all metrics.

These results suggest that the default BM25 function offers the best trade-off between precision and
robustness for our dataset, and thus was selected as the standard configuration in our system.



Table 5
Comparison of BM25 parameter settings on the 2022-06 dataset.

𝑘1, 𝑏 MAP nDCG nDCG@10 R@1000 Notes
(1.2, 0.75) 0.1203 0.1884 0.1456 0.4058 Default (best overall)
(0.9, 0.4) 0.1176 0.1844 0.1421 0.3963 Conservative setting
(2.0, 1.0) 0.1170 0.1863 0.1404 0.4113 Higher recall, more noise
(0.5, 0.0) 0.1101 0.1750 0.1339 0.3799 No normalization (worst)

5.5. Synonyms

In this section, we are going to talk about the results achieved through synonyms query expansion. The
experiment setup was the one used in the baseline. The synonyms included in the queries are analyzed
with the same analyzer used for indexing the documents and, furthermore, are assigned a weight of 0.5
to reduce their significance compared to the words originally present in the queries.

Table 6
Performance of the system using synonyms against performance of the baseline system. Notice how the scores
are very similar, but the effort of going through query expansion with synonyms is not worth the effort.

Month
Synonyms Baseline

MAP nDCG MAP nDCG
2022-06 0.1150 0.2043 0.1174 0.2076
2022-07 0.1188 0.2055 0.1208 0.2089
2022-08 0.1302 0.2135 0.1325 0.2168
2022-09 0.1206 0.2034 0.1228 0.2062
2022-10 0.2026 0.3050 0.2078 0.3104
2022-11 0.2080 0.3088 0.2122 0.3136
2022-12 0.2160 0.3201 0.2192 0.3244
2023-01 0.2200 0.3234 0.2232 0.3277
2023-02 0.2000 0.2935 0.2019 0.2969

As shown in Table 6, query expansion with synonyms did not lead to any performance improvements.
In all months analyzed, the MAP and nDCG scores are slightly lower than those of the baseline. This
suggests that including synonyms, even with a reduced weight, tends to introduce noise rather than
add value to the queries. Based on these results, we decided not to adopt this strategy in future
configurations.

5.6. Proximity Search

Here we present the results obtained through the implementation of proximity search. As anticipated
before, the tuning of the slop parameter was a key point for obtaining the best results. Several test
runs were conducted to determine the optimal slop setting, and the results showed that a value of 50
consistently yielded the best performance. Therefore, this value was selected for the final configuration.
A possible explanation for this result is that smaller slop values may be too restrictive, missing relevant
documents where query terms appear slightly farther apart. On the other hand, larger values might
introduce too much noise, retrieving documents with weaker term associations. A slop of 50 appears to
strike the right balance between flexibility and precision, allowing for meaningful proximity without
overly relaxing the positional constraints. As discussed in subsubsection 3.4.5, we explored two
approaches: the first uses a PhraseQuery to match documents where all query terms appear in the same
order as in the original query; the second extends this by incorporating additional proximity constraints
based on all possible pairs and triplets of query terms, regardless of their order, using SpanNearQuery
with inOrder=false. As previously discussed, in the unordered case, we restricted the proximity
constraints to all possible pairs and triplets of query terms, rather than the full query, in order to avoid
exceeding the BooleanQuery clause limit.



Table 7 compares the system performance when using only the full-query proximity constraints
(PhraseQuery) against the extended approach that also includes unordered pairs and triplets (PhraseQuery
+ SpanNearQuery). Firstly, it can be observed that the implementation of proximity search leads to a
consistent and substantial improvement in both MAP and nDCG scores compared to the baseline. In
particular, the maximum change is observed in January with an increase of 7.2% for the MAP and 4.15%
for the nDCG. Regarding the comparative performance of the two strategies, a trade-off emerges: relative
to the PhraseQuery-only approach, the extended method involving unordered pairs and triplets leads
to a slight decrease in MAP, while consistently improving nDCG (except for January). This suggests
that incorporating unordered term combinations may retrieve more relevant documents overall, even if
precision at the top ranks is marginally affected.

Table 7
Comparison between the baseline system and the two implementations of PhraseQuery, one with also the
SpanNearQuery technique.

Month
PhraseQuery PhraseQuery + SpanNearQuery Baseline

MAP nDCG MAP nDCG MAP nDCG

2022-06 0.1267 0.2160 0.1276 0.2189 0.1174 0.2076
2022-07 0.1294 0.2167 0.1293 0.2185 0.1208 0.2089
2022-08 0.1398 0.2237 0.1384 0.2244 0.1325 0.2168
2022-09 0.1304 0.2128 0.1311 0.2152 0.1228 0.2062
2022-10 0.2219 0.3222 0.2201 0.3227 0.2078 0.3104
2022-11 0.2240 0.3236 0.2226 0.3241 0.2122 0.3136
2022-12 0.2311 0.3342 0.2300 0.3349 0.2192 0.3244
2023-01 0.2393 0.3413 0.2367 0.3407 0.2232 0.3277
2023-02 0.2164 0.3094 0.2141 0.3099 0.2019 0.2969

5.7. Pseudo Relevance Feedback

We tested two different configurations of Pseudo Relevance Feedback (PRF), with the aim of evaluating
the impact of different parameter settings. The first configuration, referred to as PRF1, is more
conservative and uses the following settings: "topDocsForPRF": 10, "topTermsToAdd": 3,
"originalBoost": 1.0, and "expansionBoost": 0.3. The second configuration, PRF2, is more
aggressive and relies on "topDocsForPRF": 20, "topTermsToAdd": 5, "originalBoost":
0.8, and "expansionBoost": 0.5.

It is worth noting that PRF is typically more effective in scenarios where initial precision is high
(e.g., high P@5 or P@10), as it assumes that top-ranked documents are relevant and can guide useful
expansion. Therefore, evaluating PRF in isolation on a general baseline setup may not fully reflect its
potential. Nevertheless, this comparison provides useful insights for tuning the PRF strategy.

As expected, both PRF configurations resulted in a decrease in nDCG when applied on top of the
baseline system. However, the comparison between PRF1 and PRF2 helps highlight the relative benefits
of a more conservative versus a more aggressive expansion approach.

Later in this report, we will discuss how PRF interacts with other retrieval enhancements and whether
its impact changes when combined with more effective base configurations.

5.8. Chunk Indexing

To investigate whether finer-grained indexing could enhance retrieval effectiveness, we experimented
with a chunk indexing approach. The documents were split into overlapping chunks of 10 sentences
each, with a shared window of 3 sentences.

As shown in Figure 5 and Figure 6, chunk indexing consistently slightly underperforms compared
to the baseline. Both MAP and nDCG values are lower throughout the time period, suggesting that



Figure 4: nDCG evolution over time for baseline, PRF1 and PRF2 configurations.

Figure 5: Chunk Indexing nDCG evolution over time Figure 6: Chunk Indexing MAP evolution over time

splitting documents into sentence-based overlapping chunks, in this configuration, degrades retrieval
performance.

In this scenario, chunking probably introduces noise and dilutes term co-occurrence signals, making
it harder for the system to correctly prioritize relevant documents.

5.9. Reranker

As discussed in subsubsection 3.4.7, we need to determine a threshold for the number of documents to
be reranked. Based on the work by Basaglia et al. [4], we observed that reranking the top 150 documents
provided a good balance between efficiency and effectiveness, so we selected this value. Below is a table
showing the performance achieved by our system each month, using reranking and proximity search
(approach with PhraseQuery + SpanNearQuery), which are techniques that improve our system.

As shown, reranking leads to improvements in both MAP and nDCG scores over proximity search
(PhraseQuery + SpanNearQuery approach) results across all months. The greatest gains are observed in
November, with MAP increasing by 5.1% and nDCG by 2.7%.

5.10. Combined Strategies

In this section, we evaluate the performance of various combined approaches, all built on top of the
Proximity Search method. Given the consistently strong results achieved by PS alone, it serves as the



Table 8
System performance with reranking and proximity search (PhraseQuery-SpanNearQuery approach.)

Month
Reranking + Proximity Baseline
MAP nDCG MAP nDCG

2022-06 0.1338 0.2255 0.1174 0.2076
2022-07 0.1351 0.2243 0.1208 0.2089
2022-08 0.1428 0.2291 0.1325 0.2168
2022-09 0.1367 0.2208 0.1228 0.2062
2022-10 0.2288 0.3304 0.2078 0.3104
2022-11 0.2339 0.3328 0.2122 0.3136
2022-12 0.2356 0.3403 0.2192 0.3244
2023-01 0.2436 0.3472 0.2232 0.3277
2023-02 0.2225 0.3174 0.2019 0.2969

foundation for all hybrid strategies evaluated here.
We consider combinations such as PS with Chunk Indexing (PS_CI), PS with Pseudo Relevance

Feedback (PS_PRF1), and the full combination PS_CI_PRF1. The goal was to assess whether the
integration of multiple retrieval enhancements could provide cumulative improvements.

Figure 7: nDCG: baseline vs. hybrid strategies Figure 8: MAP: baseline vs. hybrid strategies

Figure 9: nDCG: PS vs. hybrid strategies Figure 10: MAP: PS vs. hybrid strategies

As the figures above show, none of the combined strategies significantly outperforms the standalone
PS method. In some cases, such as PS_CI_PRF1, the addition of other techniques even slightly degrades
performance. This is particularly evident in the MAP plots, where more complex configurations tend to
underperform compared to PS alone.

One possible explanation is that Pseudo Relevance Feedback (PRF1) may not yet be effective in
this context, possibly due to insufficient initial precision. PS alone may not reach high enough early
precision to make expansion terms reliably informative. Alternatively, the PRF configuration may



require different fine-tuning when applied on top of PS.
Despite this, the results demonstrate the robustness of the PS method. Even when combined with less

effective strategies, PS manages to retain a high level of performance across time. This suggests that PS,
as implemented, remains the most reliable and effective enhancement among those tested in this study.

5.11. Training results

In this section, we compare the best-performing configurations across various implemented techniques.
These configurations are the runs we have selected for submission to the LongEval Conference:

• The best system that doesn’t use reranking.
• The best overall system.
• A system using only chunk indexing.
• A system using pseudo-relevance feedback and proximity search.
• A system using proximity search, chunk indexing and pseudo-relevance feedback.

Each of the systems will use the configuration of the baseline, that we recall being the one reported
in Table 2. The proximity search approach is the one considering also pairs and triples (PhraseQuery-
SpanNearQuery)

Table 9 presents, for each system configuration, the best result achieved across all months, which
corresponds to the score of January.

Table 9
Performance of the submitted configurations on the training dataset

Label System MAP nDCG

System 1 Baseline - Pseudo relevance feedback 1 - Proximity search 0.2214 0.3287
System 2 Baseline - Chunk indexing 0.2154 0.3176
System 3 Baseline - Proximity search (best performing system with no reranking) 0.2367 0.3407
System 4 Baseline - Pseudo relevance feedback 1 - Chunk indexing - Proximity search 0.2126 0.3168
System 5 Baseline - Proximity search-Reranking (best performing system) 0.2436 0.3472

From the results shown in Table 9, we can draw several key insights. First, proximity search alone
(System 3) already provides a significant improvement over the baseline, even without reranking.
However, the best overall performance is achieved by combining proximity search with reranking
(System 5), which outperforms all other configurations in both MAP and nDCG, highlighting the
importance of reranking in enhancing retrieval quality. Interestingly, the combination of proximity
search, chunk indexing, and pseudo-relevance feedback (System 4) does not surpass the performance of
simpler approaches, suggesting that the integration of multiple techniques does not necessarily lead
to additive gains. Chunk indexing alone (System 2) shows a loss in performance, especially in terms
of nDCG. These findings support the submission of System 3 as the best non-reranking system and
System 5 as the most effective overall configuration.

The interpolated Precision-Recall curves shown in Figure 11 confirm the results observed in the
tabular metrics. System 5 consistently demonstrates the highest precision across nearly all levels of
recall, reinforcing its position as the overall best-performing configuration, closely followed by System
3. In contrast, System 4 clearly underperforms relative to the other systems, suggesting that combining
multiple techniques—as done in this configuration—may introduce additional complexity without
yielding significant performance gains. Notably, Systems 3 and 5 exhibit remarkably similar trends,
with System 3 performing slightly worse; this may be attributed to their shared reliance on proximity
search technique. Another noteworthy observation is that, within the recall interval approximately
between 0.55 and 0.75, Systems 1, 2, and 4 outperform the proximity search-based systems.



Figure 11: Interpolated Precision Recall curves on the training dataset

5.12. Training results on updated training dataset

We conducted experiments also on the updated version of the training queries. Since all previously
evaluated systems yielded the same qualitative conclusions despite improvements in their metric values,
we have omitted their full result tables to avoid verbosity and redundancy. Instead, we report only the
proximity search technique that yielded qualitatively different results compared to the first version
training set.

Table 10
Comparison between the baseline system and the two implementations of proximity search on the new version
of the training set.

Month
PhraseQuery PhraseQuery + SpanNearQuery Baseline

MAP nDCG MAP nDCG MAP nDCG

2022-06 0.2186 0.3260 0.2173 0.3259 0.2009 0.3097
2022-07 0.2113 0.3149 0.2097 0.3143 0.1971 0.3018
2022-08 0.2124 0.3132 0.2108 0.3127 0.1977 0.3003
2022-09 0.1955 0.2888 0.1961 0.2901 0.1828 0.2774
2022-10 0.2928 0.4025 0.2896 0.4005 0.2723 0.3847
2022-11 0.2929 0.4023 0.2893 0.3997 0.2718 0.3839
2022-12 0.2994 0.4119 0.2962 0.4097 0.2796 0.3947
2023-01 0.3073 0.4173 0.3040 0.4150 0.2844 0.3977
2023-02 0.3079 0.4115 0.3042 0.4093 0.2848 0.3913

Table 10 reveals a notable shift from our initial findings (Table 7): the variant with only PhraseQuery
now outperforms the combined PhraseQuery + SpanNearQuery approach. Consequently, we will
hereafter employ proximity search exclusively with PhraseQuery. Furthermore, by comparing results
obtained using the updated training set (Table 10) with the first training set’s results (Table 7) we can
also notice a general boost of performances in all months. The performance trend of our system is
consistent with the original training set obtaining also with this updated version the best performances
in January.



5.13. Test results

CLEF also released a test set consisting of documents spanning from March 2023 to August 2023, again
organized on a monthly basis, each accompanied by its corresponding set of qrels. To evaluate the
effectiveness of the submitted systems, we computed the nDCG and MAP metrics on the test collections.
In order to avoid overly verbose and redundant reporting, we selected a representative subset of months,
each capturing a different stage in the temporal evolution of the test set. This strategy allows for
a clearer analysis of how each IR system performs and adapts over time—an essential aspect of the
LongEval task, which aims to identify systems capable of maintaining stable performance in the face of
temporal drift.

The analysis was carried out for each of the five submitted systems across three temporal segments:
the short-term test collection (March 2023), the mid-term collection (June 2023), and the long-term
collection (August 2023). Table 11 presents the performance of the systems among March, June, and
August.

Table 11
Comparison among short-term, mid-term and long-term collections.

Label System
nDCG MAP

March June August March June August

System 0 Baseline approach 0.4348 0.4678 0.3590 0.3176 0.3521 0.2664
System 1 Baseline - Pseudo relevance feedback 1 - Proximity search 0.4120 0.4410 0.3424 0.2842 0.3166 0.2445
System 2 Baseline - Chunk indexing 0.4245 0.4544 0.3494 0.3084 0.3399 0.2584
System 3 Baseline - Proximity search (best performing system with no reranking) 0.4609 0.4860 0.3773 0.3482 0.3738 0.2878
System 4 Baseline - PRF1 - Chunk indexing - Proximity search 0.4208 0.4477 0.3455 0.2997 0.3290 0.2515
System 5 Baseline - Proximity search - Reranking (best performing system) 0.4700 0.4950 0.3819 0.3570 0.3832 0.2923

The table also reports the performance of the presented baseline approach on the test dataset. As we
can see not every developed system improves the scores across months: Systems 1, 2, and 4 have a drop
of 2%-5% in the nDCG score, and up to 10% in the MAP score. On the other side, the best-performing
systems (Systems 3 and 4) show some relevant improvements: the System 3 increases the performance
of the nDCG metric from 3% to 6%, and from 6% to 9% for the MAP, while the System 5 increases the
performances in nDCG scores from 5% to 8% and in MAP score from 8% to 9%, and thus proving the
great effectiveness in the use of reranking systems and query manipulation techniques, with respect to a
more traditional system. Moreover the analysis of nDCG and MAP scores reveals a clear pattern: all five
systems improve from March to a peak in June 2023, but then undergo a steady performance decline by
August 2023. Between March and August, nDCG drops by approximately 17% – 19% and MAP by 14% –
18% across systems, indicating susceptibility to temporal drift. Notably, System 5—despite maintaining
the largest lead—exhibits the greatest sensitivity to drift (-18.7% nDCG), whereas the worst system,
System 1, shows the smallest decline (-16.9% nDCG). Another interesting fact is that the spread between
the best and worst systems shrinks from 5.8 points in March to 3.95 points in August, indicating a sort
of convergence of system efficacy under temporal drift.

From March to June, all systems register a clear uplift, but the magnitude varies. Systems 1 and 2 lead
the pack with nDCG increases of approximately 7.0% each (MAP gains of 11.4% and 10.2%, respectively),
whereas the more complex Systems 3 and 5 improve by only 5.5% and 5.3% in nDCG (MAP gains of
7.3% and 7.4%). This suggests that simpler indexing strategies may adapt more quickly to fresh data.

Overall, these findings suggest that although reranking and proximity search enhancements yield the
strongest results, they remain vulnerable to evolving document distributions, underscoring the need for
IR models that are more robust to temporal change.

In addition, statistical hypothesis tests were performed to assess whether the performance differences
among the systems are statistically significant. This analysis is crucial to determine whether certain
configurations genuinely contribute to performance improvements or if the observed gains are merely
the result of test variance. In the following section, we provide a detailed explanation of the SHT
methodology and present the results for both the evaluation metrics previously discussed.



6. Statistical Hypothesis Testing

Statistical Hypothesis Testing (SHT) provides a mathematical framework to draw statistical inferences
from data. It involves comparing a null hypothesis 𝐻0 against an alternative hypothesis 𝐻1. The result
is considered statistically significant if the observed data are unlikely to have occurred under the null
hypothesis, based on a predefined threshold 𝛼, known as the significance level. If this condition is met,
the null hypothesis is rejected; otherwise, we fail to reject it.

In this study, we apply Two-Way ANalysis Of VAriance (ANOVA2) as a statistical test: it examines the
influence of two different variables, which in our case are the systems and the topics used. ANOVA2 is
used to evaluate the difference between the means of more than two groups, which fits our necessity to
compare five different IR systems. In ANOVA2, the hypotheses are as follows:

• 𝐻0 - the means of all groups are equal;
• 𝐻1 - at least 2 groups have different means.

Whenever the ANOVA test reveals statistically significant differences (i.e., 𝐻0 is rejected), we further
conduct a Tukey’s Honestly Significant Difference (HSD) test as a post-hoc analysis. This allows pairwise
comparisons between group means to identify which differences are statistically meaningful. For all
tests we adopt a significance level 𝛼 = 0.05.
In this section we report the analysis conducted on the test collection.

6.1. Short-term

To visually complement the numerical findings and support the subsequent statistical testing, in
Figure 12 we report the box plots of the Average Precision (AP) and nDCG scores for each system on the
short-term collection. These graphical representations provide insights into the distribution, variability,
and central tendencies of system performance.

As observed in the AP box plot, all systems exhibit very similar distributions, with nearly identical
interquartile ranges and whiskers, suggesting comparable variability. In all systems, the mean (green
dotted line) is higher than the median (orange line), indicating slight right-skewness—where a few
high-performing queries raise the average. All systems reach the maximum AP value of 1.0 and a
minimum close to 0.0, revealing the presence of both very successful and very weak queries. The
absence of outliers further suggests consistent performance across queries.

Similarly, the nDCG box plot confirms these trends: the five systems nearly overlapping distributions
with consistent whisker lengths and interquartile ranges. The means exceed the medians for all systems,
indicating a right-skewed distribution here as well.

These findings highlight that, despite minor differences, the systems behave similarly on the short-
term collection—reinforcing the need for formal hypothesis testing to establish whether observed
differences are statistically significant.

Table 12 and Table 13 report the results of the ANOVA2 test conducted on the short-term collection
for MAP and nDCG, respectively.

The sum of squares (SS) column quantifies the total variation attributed to each source—either
between systems (Columns), between topics (Rows), or residual error. The degrees of freedom (df)
indicates how many independent components contribute to each source’s variability.

The mean square (MS) is obtained by dividing SS by the corresponding degrees of freedom and
reflects the variance contribution of each source. The F column reports the F-statistic, which tests
whether the observed variability across systems or topics is significantly greater than what would be
expected by chance. Finally, the Prob>F column shows the p-value associated with each F-statistic.

In both tests, the p-value for the Columns source is well below the 0.05 significance threshold,
providing overwhelming evidence that the five systems do not perform equally. The Rows component,
which reflects topic variability, is also highly significant, indicating that the choice of topic greatly
impacts system performance. This suggests that performance varies not only across systems but also



(a) AP values

(b) nDCG values

Figure 12: Box plots of the five systems evaluated on the short-term collection using AP and nDCG.

Table 12
ANOVA2 AP on short-term collection

Source SS df MS F Prob>F
Columns 20.2759 4 5.0689 232.7448 9.60e-196

Rows 2639.2223 5082 0.5193 23.8451 0
Error 442.7277 20328 0.0217
Total 3102.2261 25414

Table 13
ANOVA2 nDCG on short-term collection

Source SS df MS F Prob>F
Columns 13.7145 4 3.4286 243.7508 7.41e-205

Rows 2189.6206 5082 0.4308 30.6308 0
Error 285.9366 20328 0.0140
Total 2489.2718 25414

across queries, underscoring the importance of robust performance across diverse topics. Thus, we
reject the null hypothesis 𝐻0.

After discovering that the 5 systems are different, it is useful to compare systems pairwise in order
to understand where the difference comes from. For this purpose, as said before, we will employ
Tukey’s Honestly Significant Difference test, which is used in order to complement the statistical results
by illustrating the pairwise comparisons between systems, highlighting which differences in mean
performance are statistically significant. Figure 13 shows a comparison among the mean of the different
groups. System 1 has been selected as the reference group, as indicated by the vertical dotted line



corresponding to its mean value. The plots show the mean performance of each system along with
their confidence intervals, both for AP and nDCG. We can see that four out of the five systems exhibit
statistically significant differences in their mean values when compared to System 1, both for AP and
nDCG. Specifically, the confidence intervals for Systems 2, 3, 4 and 5 do not overlap with that of System
1, confirming that the differences are not due to chance at the selected significance level 𝛼 = 0.05. The
output of the test is reported in Table 14 and Table 15 for AP and nDCG, respectively. The p-values
lower than 0.05 are shown in bold, meaning that we reject the null hypothesis 𝐻0.

(a) AP values

(b) nDCG values
Figure 13: Plot of the differences in means across multiple groups, illustrating the variation within and between
groups in the short-term collection.

6.2. Mid-term

This section considers the mid-term collection. Figure 14 reports the box plots of AP and nDCG for
each system on the mid-term collection.

The considerations for the mid-term collection are largely in line with those made for the short-term.
As in the previous case, all systems exhibit similar distribution shapes, with comparable interquartile
ranges and whisker lengths, and full coverage of the score range from 0.0 to 1.0. In both AP and nDCG
plots, the mean values consistently exceed the medians, indicating a right-skewed distribution due to a
subset of high-performing queries.

A notable difference, however, is that System 3 and System 5 exhibit slightly higher central values,
particularly in the nDCG plot. This hints at a marginally stronger performance for these two systems



Table 14
Tukey HSD test AP (short-term collection)

System A System B P-value
System 1 System 2 7.51e-16
System 1 System 3 0
System 1 System 4 1.26e-06
System 1 System 5 0
System 2 System 3 0
System 2 System 4 0.0214
System 2 System 5 0
System 3 System 4 0
System 3 System 5 0.0251
System 4 System 5 0

Table 15
Tukey HSD test nDCG (short-term collection)

System A System B P-value
System 1 System 2 1.01e-06
System 1 System 3 0
System 1 System 4 0.0019
System 1 System 5 0
System 2 System 3 0
System 2 System 4 0.4938
System 2 System 5 0
System 3 System 4 0
System 3 System 5 0.0010
System 4 System 5 0

on the mid-term collection, even though the overall variability remains similar across all systems.
As done for the short-term collection, we report the tables with the results of the ANOVA2 tests

conducted on AP and nDCG. In this case as well, both p-values associated with the systems and the
queries fall below the significance threshold 𝛼. Consequently, we reject the null hypothesis and proceed
with the Tukey’s HSD test, reporting the plots obtained.

Table 16
ANOVA2 AP on mid-term collection.

Source SS df MS F Prob>F
Columns 23.8461 4 5.9615 289.3370 2.24e-244

Rows 4027.2542 7199 0.5594 27.1509 0
Error 593.3145 28796 0.0206
Total 4644.4147 35999

Table 17
ANOVA2 nDCG on mid-term collection.

Source SS df MS F Prob>F
Columns 16.7296 4 4.1824 314.0481 6.08e-265

Rows 3274.2270 7199 0.4548 34.1514 0
Error 383.4960 28796 0.0133
Total 3674.4526 35999

In the mid-term scenario (Figure 15), we observe a pattern of differences among the systems that
closely mirrors what emerged in the short-term evaluation. Here, System 1 has been chosen as the



(a) AP values

(b) nDCG values

Figure 14: Box plots of the five systems evaluated on the mid-term collection using AP and nDCG.

reference group as well. As before, each system’s mean performance is plotted with its confidence
interval, allowing us to judge at a glance which differences are genuine and which might arise by
chance. Just as in the short-term case, four out of the five systems differ significantly from the reference
at 𝛼 = 0.05: none of the confidence intervals for Systems 2, 3, 4 or 5 overlap with that of System 1, so
we can reject the null hypothesis of equal means for all those pairwise comparisons.

As before, we report the output of the test in Table 18 and Table 19 for AP and nDCG, respectively.

Table 18
Tukey HSD test AP (mid-term collection)

System A System B P-value

System 1 System 2 7.77e-23
System 1 System 3 0
System 1 System 4 2.37e-06
System 1 System 5 0
System 2 System 3 0
System 2 System 4 4.97e-05
System 2 System 5 0
System 3 System 4 0
System 3 System 5 0.00083
System 4 System 5 0



(a) AP values

(b) nDCG values
Figure 15: Plot of the differences in means across multiple groups, illustrating the variation within and between
groups in the mid-term collection.

Table 19
Tukey HSD test nDCG (mid-term collection)

System A System B P-value

System 1 System 2 3.53e-11
System 1 System 3 0
System 1 System 4 0.0046
System 1 System 5 0
System 2 System 3 0
System 2 System 4 0.0049
System 2 System 5 0
System 3 System 4 0
System 3 System 5 3.29e-05
System 4 System 5 0

6.3. Long-term

Lastly, we discuss the long-term collection. In Figure 16 a marked difference is observed in the medians,
with System 1 and System 4 clearly underperforming relative to the others. Their boxes are more
compressed towards the bottom of the scale, indicating consistently low performance across topics.



Moreover, in Figure 16a System 1 exhibits a greater number of outliers, suggesting instability or
sporadic good performance on a few topics, but generally poor results overall. System 2 also shows
worse performance compared to the other systems, though not as poor as System 1 and System 4.

(a) AP values

(b) nDCG values

Figure 16: Box plots of the five systems evaluated on the long-term collection using AP and nDCG.

With respect to ANOVA2 results in Table 20 and Table 21, we can draw analogous conclusions as for
the short-term and mid-term collections: both factors exhibit extremely low p-values, indicating that
differences among retrieval systems and the inherent variability across queries are highly significant.
Consequently, we apply Tukey’s Honestly Significant Difference post-hoc test.

Table 20
ANOVA2 AP on long-term collection.

Source SS df MS F Prob>F

Columns 21.7984 4 5.4496 361.0118 1.23e-306
Rows 5720.4241 11519 0.4966 32.8980 0
Error 695.5343 46076 0.0151
Total 6437.7568 57599

For the long-term collection, the results of Tukey’s HSD test (Figure 17) reveal patterns consistent
with those observed in the short-term and mid-term evaluations. System 1 is again used as the reference
group. In the AP comparison (Figure 17a), the confidence intervals for Systems 2, 3, 4, and 5 do not
overlap with that of System 1, indicating statistically significant differences in mean performance. This
confirms that, as in the previous evaluations, System 1 performs significantly differently from all other
systems at the 𝛼 = 0.05 significance level. In contrast, for the nDCG metric (Figure 17b), only Systems
2, 3, and 5 exhibit confidence intervals that do not intersect with that of System 1, suggesting significant



Table 21
ANOVA2 nDCG on long-term collection.

Source SS df MS F Prob>F

Columns 16.2797 4 4.0699 403.9727 0
Rows 5730.4111 11519 0.4975 49.3783 0
Error 464.2052 46076 0.0101
Total 6210.8960 57599

differences in these cases. System 4, on the other hand, does not show a statistically significant difference
from System 1 in terms of nDCG, as also confirmed by the corresponding p-value reported in Table 23,
which exceeds the significance threshold of 𝛼 = 0.05.

(a) AP values

(b) nDCG values
Figure 17: Plot of the differences in means across multiple groups, illustrating the variation within and between
groups in the long-term collection.



Table 22
Tukey HSD test AP (long-term collection)

System A System B P-value

System 1 System 2 5.42e-17
System 1 System 3 0
System 1 System 4 0.00016
System 1 System 5 0
System 2 System 3 0
System 2 System 4 0.00024
System 2 System 5 0
System 3 System 4 0
System 3 System 5 0.0456
System 4 System 5 0

Table 23
Tukey HSD test nDCG (long-term collection)

System A System B P-value

System 1 System 2 1.38e-06
System 1 System 3 0
System 1 System 4 0.1331
System 1 System 5 0
System 2 System 3 0
System 2 System 4 0.0281
System 2 System 5 0
System 3 System 4 0
System 3 System 5 0.0042
System 4 System 5 0

7. Conclusions and Future Work

This section summarizes the different techniques that we explored in order to improve our Information
Retrieval system. Starting from a basic configuration made by using Lucene’s API, we tested its
performance to set a reference score, and we discovered how different data can greatly change the
performance of our system. We explored several possible configurations for our analyzer, including
a lemmatization step of the entire collection, and we discovered that using a light stemming process
produces a higher score than using more complex stemmers. We then moved on with testing different
approaches to improve the matching and the ranking of the documents: we first introduced a different
way to index the documents, by splitting them into smaller pieces and scoring each piece individually,
but we soon discovered that this approach leads our system to underperform with respect to the fixed
baseline.

We later moved on into expanding the query terms using synonyms, which did not lead to an
improvement of the system, to the releasing of terms’ positions in the proximity search approach,
which instead proved to increase the effectiveness of the system, especially when fine-tuning the slop
parameter. We also explored the possibility of using the top-most retrieved documents to improve the
query itself through the pseudo-relevance feedback technique, especially useful when precision is high
at the top-most ranking positions. Finally, we used sentence embeddings to rerank the results returned
by our system through the Roberta-Large model, which again leads us to a better improvement of our
system’s performance.

When all these techniques are deployed individually, it may appear difficult to understand if the
system is improving, however combining them all appears not to be the most effective way to increase



the performance of the system, which is also very sensitive to data that are fed as input. In order to
continue improving the efficiency of an IR system, more research is needed. With regard to synonyms
and query expansion, the most intuitive way to improve the query is to use a language model to
learn the synonyms directly by the collection, instead of relying on external datasets. As regards
the lemmatization process, it may be useful to construct a dictionary of arguments and use the same
dictionary to tag each provided query with a more general word and use those to improve the pool of
matched documents. Another possible improvement of the system could be made by joining together
similar queries, so that the user may find more documents related to the possibly imprecise query he
submitted. Once again, the huge development of LLMs that we are seeing nowadays can be a great tool
to improve the effectiveness of those IR systems, especially when the data collections are mostly made
up of textual documents.



8. Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT, in order to: Grammar and spelling check,
Paraphrase and reword. After using this tool/service, the authors reviewed and edited the content as needed
and take full responsibility for the publication’s content.
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