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Abstract
This paper presents the ReText.Ai team’s solution to the Human-AI Collaborative Text Classification subtask of
the PAN-2025 Generative AI Authorship Verification Task. Our approach involves fine-tuning transformer models,
such as RoBERTa-base and Gemma-2 2B, with a custom multi-head classifier that includes a main multiclass head
and auxiliary binary heads to better distinguish closely related labels. Through utilizing a transformer-based
model augmented with multiple classification heads and a confidence-based override mechanism, our method
outperforms the baseline, achieving macro Recall scores of 80.36% and 83.00% for RoBERTa-base and Gemma-2 2B,
respectively, compared to 68.67% and 75.70% for the baseline models. In the competition, our team’s fine-tuned
Gemma-2-2B model achieved seventh place in the automated evaluation on the test set with a score of 56.11%.
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1. Introduction

As more large language models (LLMs) produce complex and coherent content, the detection of generated
texts becomes an important task. One aspect of this task is to determine whether an LLM was a co-author.
In order to explore this challenge, the authors of the PAN-2025 [1] Generative AI Authorship Verification
Task [2], a subtask of the Human-AI Collaborative Text Classification task, have provided a dataset
that aims to classify texts into the following categories: Fully human-written; Human-initiated, then
machine-continued; Human-written, then machine-polished; Machine-written, then machine-humanized;
Machine-written, then human-edited; and Deeply mixed text.

In this paper, we describe our ReText.Ai Team approach to human-AI collaborative text classification.
This approach involves using a pre-trained transformer model [3] with multiple classification heads to
distinguish shared task labels. We fine-tuned several transformer-based models and selected the one
that achieved the highest F1-score on the development set. In addition to the classification head with
the proposed labels, we apply additional linear layers with classification heads to the model. These
models are designed to distinguish closely related labels more effectively, thereby enhancing the overall
quality. Our approach significantly improves on the baseline, raising macro Recall scores from 68.67%
and 75.70% to 80.36% and 83.00% for RoBERTa-base [4] and Gemma-2 2B [5], respectively.

The paper is structured as follows. In Section 2, we provide information about a dataset. Section 3
provides a detailed description of our proposed architecture. We discuss the preprocessing of the dataset.
We describe our initial experiments, which demonstrate that the baseline fails to distinguish between
similar labels. To address this issue, we propose applying additional classification heads. In Section 4,
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we present the results obtained and compare them with those of the other participants in the shared
task. We demonstrate how our approach improves upon the baseline.

2. Data

The dataset from the shared task contains samples with the following labels:

• Fully human-written: The document is entirely authored by a human without any AI assistance.
• Human-initiated, then machine-continued: A human starts writing, and an AI model com-

pletes the text.
• Human-written, then machine-polished: The text is initially written by a human but later

refined or edited by an AI model.
• Machine-written, then humanized: An AI generates the text, which is later modified to

obscure its machine origin.
• Machine-written, then human-edited: The content is generated by an AI but subsequently

edited or refined by a human.
• Deeply-mixed text: The document contains interwoven sections written by both humans and

AI, without a clear separation.

Table 1
Data distribution across different label categories for Train and Dev sets. The "–" indicates an unknown number
of samples.

Label Category Train Dev Test

Machine-written, then machine-humanized 91,232 10,137 –
Human-written, then machine-polished 95,398 12,289 –
Fully human-written 75,270 12,330 –
Human-initiated, then machine-continued 10,740 37,170 –
Deeply-mixed text 14,910 225 –
Machine-written, then human-edited 1,368 510 –

Total 288,918 72,661 140,756

The dataset was derived from various sources. It also contains additional information, such as the
model that produced the text and the language used (English, Spanish, or German). The authors provide
three subsets of the dataset: training, development, and testing. Labels are known for the training and
development sets, but not for the test set. Table 1 presents the statistics for each subset.

3. Method

In this section, we describe our approach to developing a custom classification model for the Human-AI
Collaborative Text Classification task. Our methodology leverages text preprocessing and fine-tuning a
transformer-based architecture with a custom multi-head classifier.

3.1. Data Preprocessing

Firstly, we preprocess the dataset. Although modern neural network models do not require text
preprocessing [6], we found that the texts in the dataset varied. This could lead to overfitting in some
dataset sources. To prevent this and create more consistent samples, we implemented a preprocessing
pipeline and applied it to each text sample. This consists of the following steps:



Figure 1: Architecture of custom multi-head classifier. Yellow color stands for the main head, auxiliary binary
heads are colored in blue. Here, head continued corresponds to human-initiated, then machine-continued, fully-
human corresponds to Fully human-written, mixed corresponds to deeply-mixed text, humanized corresponds to
Machine-written, then machine-humanized, polished corresponds to Human-written, then machine-polished.

1. Newline Removal: All newline characters in the text are replaced with spaces to create a
continuous string. This step prevents the model from interpreting newlines as token boundaries,
which could disrupt the contextual understanding of sentences spanning multiple lines.

2. Whitespace Normalization: Multiple consecutive whitespace characters (e.g., spaces, tabs) are
replaced with a single space.

3. Text Stripping: Leading and trailing whitespace is removed.

3.2. Fine-Tuning Multi-Head Classification Model

The next step in our approach involves fine-tuning a classifier. We conducted a series of experiments
and found that models struggle to distinguish between certain classes. Based on the confusion matrix in
Figure 2 for the RoBERTa baseline, we can see that the true labels Machine-written, then humanized are
often predicted as Fully human-written, Human-initiated, then machine-continued and Human-written,
then machine-polished. This suggests that it is difficult for the classifier to distinguish between these
classes.

To tackle this issue, we propose that in addition to training the classifier on the task of predicting
the main classes, we train the classifier to distinguish similar classes using additional heads that solve
binary classification tasks. The essence of the approach is to predict, for similar classes, whether the
text belongs to this class, or whether it belongs to any other class. The intuition of this approach is
that the signals obtained from the binary classification heads will allow better delineation of examples
with similar classes and, as a consequence, this may lead to an improvement in the final quality of the
classifier.

As shown in Figure 1, the classifier is designed to predict multiple related labels using several heads
that are trained in parallel:

• Main head: A multiclass classification head predicting one of the six categories: fully human-
written, human-initiated, then machine-continued; human-written, then machine-polished;
machine-written, then humanized; machine-written, then human-edited; and deeply mixed.



• Auxiliary binary heads: Five binary classification heads to detect specific subcategories (human-
written, mixed, polished, continued, and humanized text), enhancing the model’s ability to capture
nuanced patterns. The introduction of binary heads helped decompose the complex task of
distinguishing subtle patterns from the data into series of simpler ones.

Each classification head comprises a linear layer applied to the transformer’s pooled output. Using
single linear layers keeps the model’s complexity in check, maintaining similar training times as without
extra classification heads. A dropout rate of 0.1 is applied in classification heads to mitigate overfitting.
The main head’s loss is computed using weighted cross-entropy to address class imbalance, defined as:

Lossmain = −
𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑤𝑐 · 𝑦𝑖,𝑐 · log(𝑦𝑖,𝑐), (1)

where 𝑁 is the number of samples, 𝐶 = 6 is the number of classes, 𝑤𝑐 is the weight for class 𝑐
(inversely proportional to class frequency), 𝑦𝑖,𝑐 is the true label indicator, and 𝑦𝑖,𝑐 is the predicted
probability for class 𝑐.

To obtain the loss value 𝐿𝑜𝑠𝑠𝑎𝑢𝑥 for each auxiliary classification head, we sum all the losses for the
auxiliary heads:

Lossaux = Lossfully human + Lossmixed + Losspolished + Losscontinued + Losshumanized (2)

The final loss combines losses from all heads, weighted to prioritize the main multi-class head’s
prediction:

Loss = 0.6 · Lossmain + 0.4 · Lossaux (3)

During the evaluation phase in training and inference, the model generates logits for each classification
head. To improve prediction accuracy, we implement a confidence-based override mechanism. For each
sample, we compute softmax probabilities for all heads and apply class-specific confidence thresholds
presented in Table 2.

Table 2
Confidence thresholds for auxillary classification heads.

Fully Human Mixed Polished Continued Humanized

Threshold 0.85 0.7 0.85 0.9 0.8

The thresholds were assigned respectively to the assessed quality (F1) of each head. If a head’s
maximum probability exceeds its threshold and is the highest among all heads, the corresponding class
is selected, overriding the main head’s prediction by setting other logits to a large negative value (-1e9).
This ensures that high-confidence predictions from specialized heads guide the final classification. The
final prediction is then determined by the argmax of the modified logits.

Initially, we conducted experiments with the RoBERTa-base model1. The aim of these experiments
was to demonstrate that our approach can enhance the baseline and, consequently, be transferred
to stronger model architectures. After this, we fine-tuned the Gemma-2 2B model2. This model was
chosen because of its size and its proven performance in classification tasks related to the detection of
AI-generated content, as demonstrated in several studies [7, 8, 9].

All models were fine-tuned over 10 epochs. To prevent overfitting, we selected the best checkpoint
according to the weighted F1-score across all classification heads on the development set. Such choice
of key metric was made because it prioritizes performance on more frequent classes (e.g., fully human-
written), which are likely more common in real-world scenarios, while still evaluating performance on

1https://huggingface.co/FacebookAI/roberta-base
2https://huggingface.co/google/gemma-2-2b

https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/google/gemma-2-2b


Figure 2: Confusion matrices for RoBERTa-base baseline (left) and for our fine-tuned multi-head RoBERTa-base
model (right).

rare classes. This ensures that the metric reflects practical utility. Hyperparameters are shown in the
appendix A.

4. Results

Table 3
Obtained metric results for the development set. The main metric used in the shared task is Macro Recall.

Recall (Macro) ↑ F1 (Macro) F1 (Micro) Accuracy

Multi-Head Gemma-2 2B 83% 68% 59% 59%
Multi-Head RoBERTa-base 80% 66% 58% 58%
Baseline Gemma-2 2B 76% 55% 52% 52%
Baseline RoBERTa-base 74% 62% 55% 55%

Table 4
Table showing the performance metrics of different teams on the test set. Only the top seven scores out of 21
participants are shown here.

# Team Name Recall (Macro) F1 (Macro) Accuracy

1 mdok 64.46% 65.06% 74.09%
2 lbh-1130 61.72% 61.73% 69.28%
3 anastasiya.vozniuk 60.16% 60.85% 69.04%
4 Gangandandan 57.46% 56.31% 66.81%
5 Atu 56.87% 56.45% 66.33%
6 TaoLi 56.74% 55.39% 66.27%
7 Our (Multi-Head Gemma-2 2B) 56.11% 55.25% 64.79%

Baseline 48.32% 47.82% 57.09%

The evaluation results on the development set are presented in Table 3. For the development set,
we used Macro Recall, F1 Macro, F1 Micro, and Accuracy as these are used in the shared task. As



Figure 3: T-SNE visualization of the embeddings obtained from the Multi-Head RoBERTa classifier for the
training (left) and development (right) sets.

can be seen in the table, adding additional heads increased all metrics for both RoBERTa-base and
Gemma-2 2B. Specifically, the main metric for the shared task, Macro Recall, increased from 74% to 80%
for RoBERTa-base, and from 76% to 83% for Gemma-2 2B.

Table 4 demonstrates our approach performance compared to the other participants in the shared
task. As can be seen from the table, our team achieved 7th place, significantly improving on the baseline
of 46.32% Macro Recall to reach 56.11%.

To compare the predictions obtained by a baseline model and a fine-tuned model, we created confusion
matrices for the baseline and fine-tuned RoBERTa-base models. The confusion matrices were obtained
by predicting the samples in the development set. Figure 2 presents these matrices. As can be seen from
the figure, significant improvements were made to machine-written, then humanized, machine-written,
then human-edited and deeply-mixed text labels. However, our approach failed to distinguish between
human-initiated, then machine-continued and human-written, then machine-polished.

For further exploration of the quality of class differentiation, we obtained the final hidden states from
the fine-tuned multi-head RoBERTa-base model for each data sample in the training and development
sets. We then used the t-SNE algorithm [10] to visualize the embeddings, which are presented in
Figure 3.

The figure shows that the classifier accurately distinguishes between embeddings related to different
classes in the training set. However, for the development set, there are many noisy points located close
to embeddings related to different classes. This means that the classifier has overfitted to the training
set and is unable to generalize to unseen samples.

5. Conclusion and Future Work

In conclusion, our approach demonstrates the enhancement of text classification through the human-AI
collaboration classification task. Using multiple heads on a pre-trained model and then fine-tuning the
architecture significantly improves classification performance. Our key contribution lies in decomposing
the complex classification problem into auxiliary binary tasks, thereby improving generalization and
achieving significantly better results than the provided baselines in the test and development sets. On
the test set leaderboard, we achieved a Macro Recall of 56.11% and came 7th out of 21 participants.

A possible direction for future research could be to add contrastive training to our approach. The
detection of generated or collaborative texts could be defined as an authorship detection task, as has been
demonstrated in other studies [11, 12]. Some texts were generated by specific models, and considering
these models as authors, it may be possible to train a classifier contrastively to distinguish between
models that produced a text. Such signals could be important for the classification model as they
highlight texts produced by particular models.
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A. Fine-Tuning Hyperparameters

Table 5
Hyperparameters; The fine-tuning of the RoBERTa-base model was performed on a computing setup
leveraging an NVIDIA GeForce RTX 3090 Ti GPU. The GPU was driven by NVIDIA driver with CUDA ver-
sion 12.6. Gemma-2 2B was fine-tuned on 1xH100 GPU with CUDA version 12.8. The checkpoint_epoch
corresponds to the last best epoch at which the highest weighted F1 score was achieved.

RoBERTa-base Gemma-2 2B

batch_size 64 16
learning_rate 6e-5 6e-5
weight_decay 0.01 0.01
num_epochs 10 10
max_length 512 512
warmup_steps 500 500
patience 5 5
checkpoint_epoch 6 4
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