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Abstract

In this PAN-CLEF 2025 Subtask 2: Human-AI Collaborative Text Classification challenge, our objective is to
categorize documents co-authored by humans and Large Language Models (LLMs). Specifically, we aim to
classify texts into six distinct categories based on the nature of human and machine contributions. Utilizing
the pre-trained language model DeBERTa-v3-large, we fine-tuned it for this specific classification task. Our
experimental results demonstrate that this approach effectively distinguishes between different types of texts,
contributing significantly to the understanding of human-AlI collaboration and mitigating risks associated with
synthetic text.
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1. Introduction

With the rapid development of artificial intelligence technologies, particularly the widespread application
of large-scale language models (LLMs), collaborative creation between humans and Al has become
increasingly common. In this context, accurately identifying the proportion of contributions from
humans and Al in a given text has emerged as a significant challenge in the field of natural language
processing (NLP) [1]. This paper focuses on the PAN-CLEF 2025 Subtask 2: Human-AlI Collaborative
Text Classification, aiming to classify texts into six categories: "Fully human-written", "Human-initiated,
then machine-continued", "Human-written, then machine-polished", "Machine-written, then machine-
humanized (obfuscated)", "Machine-written, then human-edited", "Deeply-mixed text" [2]. This task
not only aids in understanding human-machine collaboration mechanisms but also provides technical
support for detecting synthetic texts and preventing misinformation dissemination. We adopt the
DeBERTa [3, 4] model as the core architecture, train and evaluate it on standard datasets, and enhance
model performance through data augmentation and fine-tuning strategies.

2. Related Work

In recent years, research on human-Al collaborative writing has gradually increased. Early work mainly
focused on determining whether a text was generated by Al, such as the GPT-2 Detector developed
by OpenAlI [5]. However, as generation technology has advanced, simply distinguishing between
"Al-generated vs. human-written" has become insufficient. Therefore, more granular classification
tasks have emerged. Some studies have attempted to introduce multimodal features (e.g., syntactic
structures, sentiment tendencies) to assist classification, but due to the high cost of data annotation,
most research still relies primarily on plain text input. Additionally, some scholars have proposed
staged classification strategies—first determining whether a text contains Al components, then further
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classifying its type. Regarding model selection, Transformer-based models (such as BERT, RoBERTa,
DeBERTa) have been widely applied to text classification tasks [6, 7, 3]. Among them, the DeBERTa
series, owing to its unique design for contextual awareness and position modeling, has demonstrated
excellent performance across various NLP tasks. DeBERTa-v3-Large [4], in particular, exhibits stronger
capabilities in long-text understanding and complex semantic modeling through improved relative
positional encoding and discriminative pre-training approaches.

3. Methodology

3.1. Data Preparation and Preprocessing

We utilize the officially provided training, validation, and test sets, which collectively contain six types
of text samples corresponding to different human-AI collaborative writing styles. Each sample includes
the original text content (text) and its associated class label (1abel). Data preprocessing mainly
involves the following steps:

+ Uniform Formatting: The raw text is directly fed into the model to preserve potentially style-
distinguishing linguistic features.

+ Text Encoding and Alignment: The text is tokenized using the tokenizer corresponding to
DeBERTa-v3-large, and all sequences are truncated or padded to a maximum length of 512 tokens
to meet the model’s input requirements.

+ Label Mapping: A bidirectional mapping between category names and integer IDs (id21label /
label2id) is established to support multi-class classification.

3.2. Model Architecture and Training Strategy
3.2.1. Model Selection

Recently, advances in Natural Language Processing (NLP) have benefited significantly from progress
in pre-trained language models, with DeBERTa standing out among them [3]. It has shown out-
standing performance across multiple benchmark tasks. First, the core architectural characteristics of
DeBERTa lay the foundation for its performance in complex text classification tasks. The model adopts
an ELECTRA-style pre-training method, effectively improving training efficiency and performance
through a generator-discriminator framework. At the same time, gradient-decoupled embedding shar-
ing significantly reduces computational resource requirements. DeBERTa not only possesses strong
semantic understanding capabilities but can also adapt well to multi-class text classification tasks.
Moreover, its large vocabulary (128K tokens) and flexible input-output structure further expand its
applicability.

DeBERTa-v3-Large is the third-generation DeBERTa model proposed by Microsoft, with 178 million
parameters [4]. Its advantages include: first, the use of a mechanism that separates content and position
representations, enhancing the model’s ability to understand context; second, the introduction of a
hybrid of absolute and relative positional encoding, strengthening modeling of long-range dependencies;
and finally, an improved Masked Language Modeling (MLM) objective function that boosts pre-training
efficiency.

3.2.2. Fine-Tuning Strategy

During actual training, we employed the standard full-parameter fine-tuning strategy. Specifically, we
loaded a pre-trained language model and added a classification head on top of it. Then, all parameters
of the entire model were updated without freezing any layers. This strategy is suitable when the target
task dataset is moderately sized and sufficient computing resources are available. In this case, the
dataset meets these conditions.



Throughout the training process, the AdamW optimizer and a relatively small learning rate were
used to ensure that the language representations already learned by the pre-trained model would not
be disrupted during fine-tuning. Meanwhile, weight decay was implemented to prevent overfitting.
The model was trained for three epochs in total. Additionally, an early stopping mechanism was
utilized to both prevent overfitting, verifying promptly at per epoch and stopping early on the dev set,
which improve model performance. Micro F1 score was used as the primary evaluation metric to guide
the optimization process. To enhance training efficiency and save GPU memory, all input texts were
uniformly truncated or padded to a maximum length of 512 tokens.

4. Experiments

4.1. Experimental Setup

We firstly conducted tests on the official dev set. Evaluation metrics included macro-averaged recall,
macro-averaged F1 score and macro-averaged precision.

Finally, we conducted tests on the official test set. Evaluation metrics included accuracy, macro-
averaged recall (Macro-Recall), and macro-averaged F1 score (Macro-F1).

Table 1

Results on the dev set
Type Recall F1 Precision
Fully human-written 87.94  60.88 46.56
Human-initiated, then machine-continued 90.27 67.74 54.21
Human-written, then machine-polished 98.76  88.09 79.50
Machine-written, then machine-humanized (obfuscated)  34.80  49.97 88.63
Machine-written, then human-edited 99.11 30.53 18.04
Deeply-mixed text 94.51  96.98 99.59
Overall 84.23 65.70 64.42

Table 2

Results on the test set
Model Name Recall (Macro) F1 (Macro) Accuracy
Baseline 48.32 47.82 57.09
DeBERTa-v3-Large 56.74 55.39 66.27

4.2. Result Analysis

In the PAN-CLEF 2025 Subtask 2, the Recall performance of the DeBERTa-v3-large model became a key
evaluation criterion. From the results on the dev set (Table 1), it is evident that the model performs
exceptionally well in classifying "human-written, then machine-polished" and "deeply-mixed text"
categories but faces challenges in identifying "machine-written, then machine-humanized" texts. On
the test set, experimental results (Table 2) showed that compared to the baseline model RoBERTa-
base, DeBERTa-v3-large achieved a Macro Recall value of 56.74% on the same task, representing
an improvement of 8.42%, indicating its superiority in complex multi-category classification tasks.
Nevertheless, despite overall performance improvements, the significance of the Recall metric and
potential optimization paths warrant deeper exploration.



5. Conclusion

This study leverages the DeBERTa-v3-Large model to achieve efficient classification of six types of
Human-AlI collaborative texts. Experimental results demonstrate that this model outperforms baseline
pre-trained models in terms of Recall and accuracy, especially excelling in handling texts with complex
semantic structures and ambiguous category boundaries.

Future research directions include:

+ Exploring multimodal feature fusion, such as integrating syntactic, semantic, and emotional
information;

+ Introducing contrastive learning or self-supervised learning strategies to enhance the model’s
sensitivity to subtle differences;

+ Constructing more representative datasets covering a broader range of real-world applications;

+ Developing lightweight versions of the model suitable for deployment on low-resource devices.
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