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Abstract

Detecting human-written text from content produced by large language models (LLMs) remains a moving
target, especially when detectors face unseen generators. We formalize the CLEF PAN 2025 Generative-Al
Authorship Verification task as a text classification problem, employing a contrastive-enhanced ModernBERT-
large approach, a Qwen3-based approach, and a fusion method combining both approachs. Specifically, to
implement contrastive learning in the contrastive-enhanced method, we applied the large language model
ChatGPT-4.1 for data augmentation, rewriting 1,000 human-written sentences.

On the official validation set, our contrastive-enhanced method achieves a 0.997 mean score, with all five PAN
metrics above 0.99. On the hidden test set our submitted single-model ModernBERT-large(CE + SCL) achieves
a 0.871 mean score (ROC-AUC = 0.822, F; = 0.855), ranking 3rd out of 24 teams. The results suggest that the
contrastive-enhanced method yields competitive results, even without relying on large-scale ensemble systems.
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1. Introduction

Large language models (LLMs) have drastically lowered the cost of generating fluent text, but this
progress intensifies the need to verify whether content is authored by humans or machines[1, 2].
Experience from the PAN 2024 lab shows that detectors fine-tuned on one generator family often
underperform when faced with unseen models or domains[3].

Current detection methods face three core challenges:

+ Models trained solely with cross-entropy loss tend to focus on surface-level features and struggle
to capture subtle semantic differences between human-written and Al-generated texts.

« Previous ensemble methods, while improving accuracy, depend on multiple large models, resulting
in low inference efficiency and significant deployment barriers due to hardware constraints.

« Inspired by the success of noise-based perturbation strategies in computer vision tasks—where
slight input transformations help models generalize better—we explore analogous perturbation
strategies for textual data to improve robustness and semantic representation learning[4, 5].

To address these issues, we propose a lightweight ensemble composed of a bidirectional encoder
model (ModernBERT-large) and an autoregressive decoder model (Qwen3-4B). The encoder branch is
fine-tuned using a joint cross-entropy and supervised contrastive loss to improve discrimination in
borderline cases, while the decoder branch is trained with standard cross-entropy. During inference, the
outputs are combined via mean-probability soft voting, incurring only minimal additional computational
overhead.
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Our experiments show that the proposed method achieves state-of-the-art robustness on the PAN25
validation set, with all five official metrics—ROC-AUC, Brier, C@1, Fy, and Fy 5, —exceeding 0.99.

The remainder of this paper is organised as follows: Section 2 reviews related work; Section 3 details
our model design and training; Section 4 presents results and discussion.

2. Related Work

The fast rise of LLMs has made reliably telling human- from machine-authored text a pressing NLP
problem. Earlier efforts fall into (i) supervised classification, (ii) zero-shot detection, and (iii) multi-model
decision aggregation.Classical lexical-feature classifiers can still rank highly—e.g. a plain SVM built on
TF-IDF matched or beat neural baselines—yet their robustness drops once generators evolve. Conversely,
zero-shot signals such as cross-perplexity generalise well but lag in absolute accuracy.

2.1. Supervised Classification Models

Traditional machine-learning methods remain remarkably competitive. Lorenz et al. employ a linear
SVM trained on TF-IDF features and achieve performance close to the top[6]. Meanwhile, several teams
fine-tune Transformer-based classifiers. Cao et al. enhance their model by augmenting the training
set with additional human-written samples[7]. The Tri-Sentence Analysis method splits each long
document into three shorter segments and averages their individual predictions to stabilise the final
decision[8]. Lin et al. incorporate R-Drop regularisation to reduce the variance caused by dropout
during inference[9]. Overall, supervised models achieved some of the highest mean scores in the PAN-24
competition. However, despite strong results on validation sets during training, these models often
show reduced robustness when applied to out-of-domain test data, leading to noticeable performance
drops in generalisation scenarios.

2.2. Zero-Shot Detection Models

Unsupervised techniques avoid costly annotation by exploiting statistical irregularities in machine text.
Compression-based detectors such as PPMd-CDM treat lower entropy as an Al signature and require
only a generic compressor[10]. The Binoculars framework measures the ratio between an observer
model’s perplexity and that of a performer model to expose hidden over-repetition in generated text[11].
However, their average performance in PAN-24 competition was notably lower than that of supervised
systems, underscoring an inherent trade-off between broad generality and fine-grained accuracy.

2.3. Multi-model Decision Aggregation Models

To enhance robustness, some teams opted to combine multiple detection strategies. BinocularsLLM
integrates two QLoRA-fine-tuned language models with Binoculars-style perplexity scoring, applying
soft voting across all components to reach a final decision[12]. This ensemble achieved the top rank in
the competition. LAVA takes a different approach by training separate adapters for different families of
generative models and employs a conservative “unanimous agreement” rule—only predicting human
authorship when all modules concur—effectively reducing false positives[13]. These ensemble-based
systems demonstrated high mean scores in the evaluation, but their improved performance comes at
the cost of increased inference time and memory usage, highlighting the trade-off between speed and
accuracy.

3. System Overview

To build a robust generative-Al authorship verifier, three strategies are developed:

1. ModernBERT-large is fully fine-tuned as a classifier using both cross-entropy and supervised
contrastive loss.



2. Qwen3-4B is fully fine-tuned with cross-entropy loss.
3. ModernBERT-large and Qwen3-4B are fused via weighted soft voting,.

Our design aims to achieve the following main goals:
« Compare the performance of two different model architectures on the generative Al detection
task after supervised fine-tuning.

« To enhance the overall robustness and generalization of the system by incorporating two struc-
turally different models.
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Figure 1: The overall architecture of the system.

Let H = { h;}Y, be the set of human-written texts (h; € *). Let A = {a; }J]Vil be the set of Al-
generated texts. For 1000 texts h; € 1 we obtain an augmented paraphrase g; using the GPT-4.1 model.
The set of all augmented texts is G = { gi}i]\il. We assign the paraphrase set G the machine-generated
label (1), while the corresponding original texts in H retain the human-written label (0). Unless stated
otherwise we denote the complete corpus by D = H U A U G and a generic sample by = € D.

3.1. Contrastive-Enhanced ModernBERT-large

3.1.1. Data Augmentation

To expose the detector to challenging near-human counterfeits, we first sampled 1000 sentences from
the human class and then asked ChatGPT-4.1 (04-01-2025) to rewrite each sentence in its own words



while preserving the original meaning. We call these rewrites paraphrases and assign them the label 1
(machine-generated); their source sentences retain label 0 (human). Because the two versions of every
sentence convey the same idea yet belong to opposite classes, they form hard positive-negative pairs
that sharpen the contrastive objective.

Balanced mini-batches. Purely shuffling the data can yield mini-batches containing only positives
or only negatives, which dilutes the contrastive signal. Therefore, we deterministically interleave
samples in the order human — paraphrase — human — machine, aiming to keep the class ratio
within each batch as close to 1:1 as possible.

System Prompt:
This is a piece of text generated by a human. I want to express the same meaning as this sentence,
but without changing its writing style. Please help me rephrase it. Just output the rephrased
sentence directly.

I approach a corner in the hallway as the door to a classroom in front of me opens and a girl steps
out. She is wearing a form fitting black shirt with ...

Answer:
I round a corner in the hallway just as the door of a classroom ahead swings open and a girl steps
out. She’s dressed in a fitted black shirt, snug yet ...

For the augmented dataset, we first separated human-written texts and Al-generated texts. We then
alternately inserted them one by one into the training dataset.Additionally, the remaining Al-generated
texts were randomly inserted, and the 1000 augmented samples were ensured to be included in the
same training batches as the original human-written texts. The final statistics of the training data are
presented in Table 1.

Table 1

Text counts per model in our dataset.
Model Count Model Count
human 9101 gpt-3.5-turbo 1374
falcon3-10b-instruct 879 gpt-4-turbo 272
qwen1.5-72b-chat-8bit 271 gpt-4-turbo-paraphrase 276
gemini-1.5-pro 1072 gpt-4o-mini 1358
gemini-2.0-flash 1079 gpt-40 1336
gemini-pro 276 o3-mini 1075
gemini-pro-paraphrase 265 gpt-4.5-preview 278
deepseek-r1-distill-qwen-32b 901 llama-2-7b-chat 262
text-bison-002 265 llama-2-70b-chat 269
mistral-7b-instruct-v0.2 266 llama-3.1-8b-instruct 1063
ministral-8b-instruct-2410 1100 llama-3.3-70b-instruct 405
mixtral-8x7b-instruct-v0.1 264 ChatGPT-4.1 1000
Total (human) 9101 Total (Al) 15606

3.1.2. Supervised Fine-Tuning with Joint Loss

To better capture nuanced semantic differences, we adopt a supervised fine-tuning strategy combined
with contrastive learning, training the LLM directly on labeled data. Specifically, we attach a fully



connected classification head to the hidden representation of the [CLS] token, allowing the model
to output a binary label given an input text—where 0 denotes a human-written text and 1 denotes a
machine-generated one.

To enhance the model’s ability to discriminate between subtle semantic patterns, we incorporate
supervised contrastive learning following the formulation proposed by Beliz Gunel et al[14]. The overall
training objective is a weighted combination of cross-entropy loss and supervised contrastive loss. The
final loss function is defined as follows:
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Specifically, P(i) denotes the set of positive samples that share the same class label as the anchor
sample i, z represents the hidden representation (feature vector) extracted by the model, and 7 € R™ is
a temperature hyperparameter that controls the concentration level of the similarity distribution. This
formulation encourages the model to bring semantically similar samples closer in the representation
space while pushing apart dissimilar ones, thereby improving class-level discrimination.

Equation (1) represents the overall loss, Equation (2) corresponds to the standard cross-entropy loss,
and Equation (3) denotes the contrastive learning loss.

3.2. Supervised Fine-Tuning with LLMs

For the decoder-based model, we adopt Qwen3-4B as our backbone. The fine-tuning strategy is similar
to that used in the encoder-based model. Specifically, we add a fully connected classification head to the
output vector of the last token after decoding, and perform binary classification—predicting whether a
given input text is human-written or machine-generated.

Unlike the encoder-based model, this decoder-only model is trained using only the standard cross-
entropy loss, as the limited GPU memory prevented us from incorporating the contrastive-learning
loss.

3.3. Contrastive-enhanced Dual-Model Decision(CeDD)

To combine the strengths of both the encoder-based and decoder-based models, we aggregate their
prediction outputs using a soft voting strategy. Specifically, the final prediction probability is computed
as the mean of the individual classification probabilities:

1

Pfinal = 5

A classification decision is then made based on a fixed threshold:

(pencoder + pdecoder) (4)

o 1 if pgpar > 0.5  (machine-generated)
Prediction =
0 if pgpa < 0.5  (human-written)

This simple yet effective fusion mechanism leverages the complementary inductive biases of the two
model architectures. It improves prediction robustness without introducing significant computational
overhead and helps mitigate model-specific errors on borderline or ambiguous samples.
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Figure 2: Visualization of embedding distributions under different training objectives. The embeddings represent
texts with different labels. The model trained with CE+SCL encourages tighter intra-class clustering and larger

inter-class separation. This illustrates that contrastive learning helps pull apart samples with different labels in
the embedding space.

Algorithm 1 Contrastive-Enhanced Dual-Model Decision
Input: Text sample 7'

Output: Authorship label (0 or 1)

1: Initialize ENCODER_MODEL <— ModernBERT-large
2: Initialize DECODER_MODEL < Qwen3-4B
3: score] < Predict(ENCODER_MODEL, 1)

4: scoreg < Predict(DECODER_MODEL, T')

5. final_score « Scoreitscorcy
: — 2

6: if final_score > 0.5 then
7: label + “1”

8: else

9: label + “0”
10: end if
11: return label

4. Results and Discussion

In this section, we present the implementation details, evaluation metrics, and provide a comprehensive
analysis of the results. We utilize the TIRA platform to evaluate our three methods using test datasets[15].



4.1. Implementation Details

In this research, the training CeDD was implemented in PyTorch and executed on a single Nvidia
A800 GPU. The model was trained using full bf16 precision to ensure numerical stability and training
efficiency. The fine-tuning process lasted for 3 epochs, using the AdamW optimizer with a learning rate
of 2e-5. The batch size was set to 32 without employing gradient accumulation. For the ModernBERT-
large model, the training objective combined standard cross-entropy loss with supervised contrastive
loss, with a lambda weight of 0.9 and a temperature of 0.3. The warm-up ratio was set to 0.1, and
training logs were recorded every 50 steps. An independent validation set was used during training for
evaluation. All experiments were conducted under a fixed random seed and employed cosine learning
rate scheduling to ensure reproducibility.

4.2. Evaluation Metrics

To evaluate the performance of our proposed model, we used the evaluation metrics provided by PAN25,
which include the following metrics:

« ROC-AUC: The area under the ROC (Receiver Operating Characteristic) curve.

+ Brier: The complement of the Brier score (mean squared loss).

+ C@1: A modified accuracy score that assigns non-answers (score = 0.5) the average accuracy of
the remaining cases.

« Fi: The harmonic mean of precision and recall.

+ Fy5y: A modified Fy 5 measure (precision-weighted F measure) that treats non-answers (score =
0.5) as false negatives.

4.3. Validation-set Results

As mentioned earlier, we compare three approaches for detecting Al-generated text: classification using
an encoder-based model, classification using a decoder-based model, and a contrastive-enhanced dual-
model decision strategy that combines both. The performance of various LLMs under these approaches
is summarized in Table 2, based on evaluations on the validation dataset.

Table 2

Evaluation results of our final models on the pan25-generative-ai-detection-val-20250428-training dataset.
Model ROC-AUC Brier C@1 Fq Fos. Mean
ModernBERT-large(CE) 0.998 0.996 0996 0.997 0.998 0.997
ModernBERT-large(CE+SCL) 1 0.998 0.997 0998 0.999 0.998
Qwen3-4B(CE) 0.999 0.991 0.990 0.992 0.994 0.993
CeDD 1 0996 0995 0.996 0.997 0.997
Baseline-SVM 0.996 0.951 0.984 0.980 0.981 0.978
Baseline-PPMD 0.786 0.799 0.757 0.812 0.778 0.786
Baseline-Binoculars 0.918 0.867 0.844 0.872 0.882 0.877

Upon analyzing the results shown in Table 2, it is evident that ModernBERT-large delivers the most
stable and consistent performance across all evaluation metrics. Notably, it achieves an F; score of 0.998
and an Fy 5, score of 0.999, highlighting its efficiency and accuracy in text classification tasks.

Qwen3-4B also performs competitively, especially in the Brier and mean scores, reflecting its strength
in handling order-sensitive or generative-context inputs. This supports the effectiveness of the decoder-
only architecture.

Our final system CeDD integrates both models and demonstrates near-optimal results across all
six metrics. This confirms the effectiveness of our CeDD in enhancing the robustness, stability, and
accuracy of generative authorship verification.



4.4. Test-set Results

Table 3 reports the score released by the PAN 2025 organisers for our submitted run.

Table 3

Performance of ModernBERT on the test set.
Model ROC-AUC Brier C@1 Fq Fo.su Mean FPR  FNR
ModernBERT—|arge (CE+SCL) 0.962 0.891 0.889 0.923 0963 0.928 0.005 0.120
Baseline TF-IDF SVM 0.838 0.871 0.836 0.827 0.862 0.856 0.201 0.153
Baseline Binoculars Llama3.1 0.760 0.835 0.793 0.802 0.831 0.818 0.314 0.206
Baseline PPMd CBC 0.636 0.795 0.735 0.763 0.771 0.758 0.784 0.129

The single-model run ranked seventh overall, which we attribute to ModernBERT’s simpler decision
boundary potentially generalising better to unseen domains.

5. Conclusion

This work presents a supervised contrastive learning approach built upon the ModernBERT-large model
for the CLEF PAN 2025 Generative-AI Authorship Verification task. By jointly optimizing cross-entropy
loss and supervised contrastive loss, our method improves the model’s ability to distinguish between
human-written and Al-generated texts.

« On the official validation set, ModernBERT-large (CE+SCL) achieved a near-perfect mean score
0f 0.998 across all PAN metrics.

+ On the hidden test set, this single-model approach obtained a mean score of 0.871, ranking 3rd
out of 24 teams, confirming the effectiveness of our design.

In addition to the above results, we summarize the following key insights: (i) Supervised contrastive
learning substantially enhances class separability and semantic discrimination; (ii) A single well-
regularized encoder model can outperform complex ensembles while remaining efficient and scalable;
(iii) Paraphrased data generated by GPT-4.1 serves as highly effective contrastive pairs during training,
especially in narrowing the gap between human-like machine outputs and real human writing.

Overall, our findings show that a contrastively fine-tuned ModernBERT encoder can achieve strong
performance on generative authorship verification, even without relying on large-scale ensemble
systems or decoder-based large language models.

Acknowledgments

This work is supported by the National Social Science Foundation of China (No. 22BTQ101).

Declaration on Generative Al

During the preparation of this work, the author(s) used GPT-03 in order to: Grammar and spelling
check. After using these tool(s)/service(s), the author(s) reviewed and edited the content as needed and
take(s) full responsibility for the publication’s content.

References

[1] J.Bevendorff, D. Dementieva, M. Frobe, B. Gipp, A. Greiner-Petter, J. Karlgren, M. Mayerl, P. Nakov,
A. Panchenko, M. Potthast, A. Shelmanov, E. Stamatatos, B. Stein, Y. Wang, M. Wiegmann,



(2]

(3]

(8]

[10]

[11]

[12]

E. Zangerle, Overview of PAN 2025: Voight-Kampff Generative AI Detection, Multilingual Text
Detoxification, Multi-Author Writing Style Analysis, and Generative Plagiarism Detection, in:
J. C. de Albornoz, J. Gonzalo, L. Plaza, A. G. S. de Herrera, J. Mothe, F. Piroi, P. Rosso, D. Spina,
G. Faggioli, N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction.
Proceedings of the Sixteenth International Conference of the CLEF Association (CLEF 2025),
Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York, 2025.

J. Bevendorff, Y. Wang, J. Karlgren, M. Wiegmann, M. Frébe, A. Tsivgun, J. Su, Z. Xie, M. Abassy,
J. Mansurov, R. Xing, M. N. Ta, K. A. Elozeiri, T. Gu, R. V. Tomar, J. Geng, E. Artemova, A. Shelmanoyv,
N. Habash, E. Stamatatos, I. Gurevych, P. Nakov, M. Potthast, B. Stein, Overview of the “Voight-
Kampft” Generative Al Authorship Verification Task at PAN and ELOQUENT 2025, in: G. Faggioli,
N. Ferro, P. Rosso, D. Spina (Eds.), Working Notes of CLEF 2025 — Conference and Labs of the
Evaluation Forum, CEUR Workshop Proceedings, CEUR-WS.org, 2025.

J. Bevendorff, X. B. Casals, B. Chulvi, D. Dementieva, A. Elnagar, D. Freitag, M. Frobe, D. Ko-
ren¢i¢, M. Mayerl, A. Mukherjee, A. Panchenko, M. Potthast, F. Rangel, P. Rosso, A. Smirnova,
E. Stamatatos, B. Stein, M. Taulé, D. Ustalov, M. Wiegmann, E. Zangerle, Overview of PAN 2024:
Multi-Author Writing Style Analysis, Multilingual Text Detoxification, Oppositional Thinking
Analysis, and Generative Al Authorship Verification, in: Experimental IR Meets Multilinguality,
Multimodality, and Interaction. Proceedings of the Fourteenth International Conference of the
CLEF Association (CLEF 2024), Lecture Notes in Computer Science, Springer, Berlin Heidelberg
New York, 2024.

T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A simple framework for contrastive learning of visual
representations, in: H. D. III, A. Singh (Eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, PMLR, 2020, pp.
1597-1607. URL: https://proceedings.mlr.press/v119/chen20j.html.

C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, Understanding deep learning (still) requires
rethinking generalization, Commun. ACM 64 (2021) 107-115. URL: https://doi.org/10.1145/3446776.
doi:10.1145/3446776.

L. Lorenz, F. Z. Aygiiler, F. Schlatt, N. Mirzakhmedova, BaselineAvengers at PAN 2024: Often-
Forgotten Baselines for LLM-Generated Text Detection, in: G. Faggioli, N. Ferro, P. Galus¢akova,
A. G. S. Herrera (Eds.), Working Notes Papers of the CLEF 2024 Evaluation Labs, CEUR-WS.org,
2024, pp. 2761-2768. URL: http://ceur-ws.org/Vol-3740/paper-262.pdf.

H. Cao, Z. Han, J. Ye, B. Liu, Y. Han, Enhancing Human-Machine Authorship Discrimination
in Generative Al Verification Task with BERT and Augmented Data, in: G. Faggioli, N. Ferro,
P. Galus¢akova, A. G. S. Herrera (Eds.), Working Notes Papers of the CLEF 2024 Evaluation Labs,
CEUR-WS.org, 2024, pp. 2536—2540. URL: http://ceur-ws.org/Vol-3740/paper-230.pdf.

J. Huang, Y. Chen, M. Luo, Y. Li, Generative Al Authorship Verification Of Tri-Sentence Analysis
Base On The Bert Model, in: G. Faggioli, N. Ferro, P. Galus¢akova, A. G. S. Herrera (Eds.),
Working Notes Papers of the CLEF 2024 Evaluation Labs, CEUR-WS.org, 2024, pp. 2632-2637. URL:
http://ceur-ws.org/Vol-3740/paper-243.pdf.

Z.Lin, Z. Han, L. Kong, M. Chen, S. Zhang, J. Peng, K. Sun, A Verifying Generative Text Authorship
Model With Regularized Dropout, in: G. Faggioli, N. Ferro, P. Galus¢akova, A. G. S. Herrera (Eds.),
Working Notes Papers of the CLEF 2024 Evaluation Labs, CEUR-WS.org, 2024, pp. 2728-2734. URL:
http://ceur-ws.org/Vol-3740/paper-257.pdf.

O. Halvani, C. Winter, L. Graner, On the usefulness of compression models for authorship
verification, in: Proceedings of the 12th International Conference on Availability, Reliability
and Security, ARES 17, Association for Computing Machinery, New York, NY, USA, 2017. URL:
https://doi.org/10.1145/3098954.3104050. doi:10.1145/3098954.3104050.

A. Hans, A. Schwarzschild, V. Cherepanova, H. Kazemi, A. Saha, M. Goldblum, J. Geiping, T. Gold-
stein, Spotting llms with binoculars: Zero-shot detection of machine-generated text, 2024. URL:
https://arxiv.org/abs/2401.12070. arXiv:2401.12070.

E. Tavan, M. Najafi, MarSan at PAN: BinocularsLLM, fusing Binoculars’ Insight with the Proficiency
of Large Language Models for Machine-Generated Text Detection, in: G. Faggioli, N. Ferro,


https://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.1145/3446776
http://dx.doi.org/10.1145/3446776
http://ceur-ws.org/Vol-3740/paper-262.pdf
http://ceur-ws.org/Vol-3740/paper-230.pdf
http://ceur-ws.org/Vol-3740/paper-243.pdf
http://ceur-ws.org/Vol-3740/paper-257.pdf
https://doi.org/10.1145/3098954.3104050
http://dx.doi.org/10.1145/3098954.3104050
https://arxiv.org/abs/2401.12070
http://arxiv.org/abs/2401.12070

P. Galus¢akova, A. G. S. Herrera (Eds.), Working Notes Papers of the CLEF 2024 Evaluation Labs,
CEUR-WS.org, 2024, pp. 2901-2912. URL: http://ceur-ws.org/Vol-3740/paper-281.pdf.

[13] Z.Chen, Y. Han, Y. Yi, Team chen at PAN: Integrating R-Drop and Pre-trained Language Model
for Multi-author Writing Style Analysis, in: G. Faggioli, N. Ferro, P. Galus¢akova, A. G. S. Herrera
(Eds.), Working Notes Papers of the CLEF 2024 Evaluation Labs, CEUR-WS.org, 2024, pp. 2547-2553.
URL: http://ceur-ws.org/Vol-3740/paper-232.pdf.

[14] B. Gunel, J. Du, A. Conneau, V. Stoyanov, Supervised contrastive learning for pre-trained language
model fine-tuning, 2021. URL: https://arxiv.org/abs/2011.01403. arXiv:2011.01403.

[15] M.Frobe, M. Wiegmann, N. Kolyada, B. Grahm, T. Elstner, F. Loebe, M. Hagen, B. Stein, M. Potthast,
Continuous Integration for Reproducible Shared Tasks with TIRA.io, in: Advances in Information
Retrieval. 45th European Conference on IR Research (ECIR 2023), Lecture Notes in Computer
Science, Springer, Berlin Heidelberg New York, 2023, pp. 236-241.


http://ceur-ws.org/Vol-3740/paper-281.pdf
http://ceur-ws.org/Vol-3740/paper-232.pdf
https://arxiv.org/abs/2011.01403
http://arxiv.org/abs/2011.01403

	1 Introduction
	2 Related Work
	2.1 Supervised Classification Models
	2.2 Zero-Shot Detection Models
	2.3 Multi-model Decision Aggregation Models

	3 System Overview
	3.1 Contrastive-Enhanced ModernBERT-large
	3.1.1 Data Augmentation
	3.1.2 Supervised Fine-Tuning with Joint Loss

	3.2 Supervised Fine-Tuning with LLMs
	3.3 Contrastive-enhanced Dual-Model Decision(CeDD)

	4 Results and Discussion
	4.1 Implementation Details
	4.2 Evaluation Metrics
	4.3 Validation-set Results
	4.4 Test-set Results

	5 Conclusion
	Acknowledgments

