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Abstract
This paper describes the approach of the Unibuc - NLP team in tackling the "Voight-Kampff" Generative AI
Detection task from PAN at CLEF 2025 [1, 2]. In the Subtask 1: Voight-Kampff AI Detection Sensitivity we
have explored different approaches of leveraging embeddings extracted from LLMs, using either classical ML
models or further fine-tuning LLMs with a classification head for the downstream binary classification task. Our
experiments showed that using a majority vote ensemble of classical ML models (Light GBM, XGB, Logistic
Regression and SVM) is comparable with fine-tuning for downstream task achieving around 99.4% F1 score. For
the Subtask 2: Human-AI Collaborative Text Classification we explored a way of combining features at different
layers extracted using transformer backbone with layer-wise projection and attentive pooling which proved
modest results.
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1. Introduction

As artificial intelligence continues to advance and generative AI technologies are more and more popular,
distinguishing between machine-generated and human-authored texts has become very difficult. The
"Voight-Kampff" Generative AI Detection task from PAN at CLEF 2025 [1, 2] aims to advance the research
in the field and find ways to develop real systems capable of detecting not only AI generated texts but
also machine-altered ones. The need for such systems is becoming a necessity day by day in order to
maintain the intergrity and authenticity of the content from the internet. Such tools can help mitigate
the risks associated with social manipulation, deepfakes, fake news, propaganda, misinformation and
so on.

For the Subtask 1: Voight-Kampff AI Detection Sensitivity we experimented various methods of
utilizing the embeddings from large language models (LLMs), including classical machine learning
approaches and fine-tuning classification head for the binary classification task. The results indicate
that a majority vote ensemble of classical models - specifically LightGBM, XGBoost, Logistic Regression
and SVM - offers a slightly better performance and faster training times and resources compared to the
fine-runing approach.

For the Subtask 2: Human-AI Collaborative Text Classification, we have tried a different approach
by fusing together layers of a transformer backbone model with layer-wise projection and attentive
pooling strategies.

2. Related work

The detection of AI-generated text has become a rapidly evolving research area, particularly with
the advent of large language models. Recent shared tasks such as the PAN 2024 "Voight-Kampff"
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Generative AI Authorship Verification challenge have provided valuable benchmarks and insights into
the capabilities and limitations of current detection systems [3, 4]. Early approaches to authorship
verification, such as one-class classification [5] and compression-based models [6] have been extended
to address the challenges posed by neural text generation [7, 8]. More recent work has focused on
zero-shot detection methods, leveraging statistical properties of model outputs [9]. Despite these
advances, studies have shown that both human and automated heuristics can be unreliable, especially
as generative models improve in mimicking human style [10, 11]. Our work builds on these foundations,
evaluating both classical and transformer-based approaches for robust detection of machine-generated
and collaboratively authored texts.

3. Dataset

3.1. Subtask 1: Voight-Kampff AI Detection Sensitivity

The first subtask is formulated as a binary classification problem and the dataset contains either human-
written texts (label 0) or ai-written texts (label 1). The genre of the text is also available and it can be
one of the following: essays, news or fiction. Some of the news texts were sampled from the last year
task dataset [12].

Overall the train split has 23, 707 samples and dev split has 3, 589. The distribution of the labels in
each split is shown in Table 1. The predominant genre for both labels is fiction, followed by essays and
news. As for the models used to generate text, gpt [13] comes first followed by mistral [14], gemini
[15], llama [16] and deepseek [17] (more info in section 7 and Figure 2).

Table 1
Label distribution in train and dev splits for task 1 dataset.

human-written (0) ai-written (1) Total

Train 9, 101 14, 606 23, 707
Dev 1, 277 2, 312 3, 589

3.2. Subtask 2: Human-AI Collaborative Text Classification

The second subtask is a multi-class classification problem where the goal is to classify texts into six
distinct categories based on the nature of human and machine contributions:

• Fully human-written: The document is entirely authored by a human without any AI assistance.
• Human-initiated, then machine-continued: A human starts writing, and an AI model com-

pletes the text.
• Human-written, then machine-polished: The text is initially written by a human but later

refined or edited by an AI model.
• Machine-written, then machine-humanized (obfuscated): An AI generates the text, which

is later modified to obscure its machine origin.
• Machine-written, then human-edited: The content is generated by an AI but subsequently

edited or refined by a human.
• Deeply-mixed text: The document contains interwoven sections written by both humans and

AI, without a clear separation.

Overall the train split has 288, 919 samples and dev split has 72, 661. The distribution of the labels
in each split is shown in Table 2.

In the train split, models used for text rewriting and generation are mostly from mistral [14], gpt
[13], gemini [15] and llama [16] (more info in Figure 3). Most of the texts that are fully human-written,
machine-written then machine-humanized or human-written then machine-polished come from the



LLM-DetectAlve dataset [18]. The next big source of the texts is TriBERT [19] where ChatGPT is mainly
used to produce deeply-mixed texts and human-initiated then machine-continued.

On the other hand, in the dev split llama [16] is mainly used for text generation followed by gpt [13]
and mistral [14], gemini [15] being less used in this split. While in this split a good amount of fully
human-written, machine-written then machine-humanized or human-written then machine-polished
texts come from the LLM-DetectAlve dataset [18], there is a huge amount of human-written and
human-initiated then machine-continued texts that are sampled from m4gt-bench [20]. Also in dev set
there are more samples from RoFT [21] than in the train set (more information in Figure 4).

Table 2
Label distribution in train and dev splits for task 2 dataset.

Label category Train Dev

Fully human-written (0) 14, 910 225
Human-initiated, then machine-continued (3) 1, 368 510
Human-written, then machine-polished (1) 10, 740 37, 170
Machine-written, then machine-humanized (obfuscated) (2) 75, 270 12, 330
Machine-written, then human-edited (5) 95, 398 12, 289
Deeply-mixed text (4) 91, 232 10, 137

Total 288, 919 72, 661

4. System overview

We explored 3 different ways of laveraging LLM embeddings for either binary or multi-class classification
tasks. For subtask 1 we conducted experiments with systems described in sections 4.1 and 4.2. For the
second subtask we did our experiments with systems from sections 4.2 and 4.3.

4.1. Frozen LLM embeddings with classical machine learning models

This approach is using the last layer embeddings extracted from Qwen3-0.6B [22] to train different
classic machine learning classifiers:

• Light GBM [23]
• XGBoost [24]
• Logistic Regression [25]
• SVM [26]

In the final approach we used an ensemble of the above models combining predictions in a majority
voting manner. So the final prediction is the class voted by most of the models in the ensemble. The
embeddings model was kept frozen and used only to extract embeddings from the last layer.

4.2. LLM fine-tuning with classification head for downstream task

The next approach also laverages the rich representational capacity of large language models, which
can capture both complex linguistic patterns and semantic relationships through their high-dimensional
vector space representations, and used as input for the final classification head. Experiments were
conducted with embeddings extracted using differnet LLM backbones: Qwen2.5-0.5B 1, Qwen3-0.6B 2,
Mistral7B-v0.1 3, Llama-3.1-8B 4 and fine-tuning them with a classification head on top of the last token.

1https://huggingface.co/Qwen/Qwen2.5-0.5B
2https://huggingface.co/Qwen/Qwen3-0.6B
3https://huggingface.co/mistralai/Mistral-7B-v0.1
4https://huggingface.co/meta-llama/Llama-3.1-8B



4.3. Combine transformer-based embeddings at different layers with layer-wise
projection and attentive pooling

We experimented this approach only for subtask 2. It uses embeddings from transformer-based models,
combines them using frame-wise projection, pooling strategies and a lightweight classification head.

4.3.1. Backbone and Feature Extractor

The model uses a pretrained transformer as a backbone to extract contextualized token embeddings.
This part of the model is always kept frozen during the training process.

4.3.2. Layer Aggregation Block

The information across multiple hidden layers of the transformer are aggregated using a learnable,
softmax-normalized weighted scheme. The weighted sum of hidden states is normalized via layer
normalization (without element-wise affine tranformation), producing a single sequence of contextual
embeddings for each input.

4.3.3. Frame-wise Processing Block

The aggregated embeddings are further processed by a configurable frame-wise module, which can be
either a simple linear projection or a small neural network. This step reduces the dimensionality and
introduces additional non-linearity, preparing the features for temporal pooling.

4.3.4. Time Pooling Strategies

To summarize the sequence of embeddings into a fixed-size representation, the model supports several
time pooling strategies:

• Statistical Pooling (SP): Concatenates the mean and standard deviation across the sequence.
• Attentive Statistical Pooling (ASP): Computes attention-weighted statistics using a learnable

attention mechanism.

5. Experimental setup

For both subtasks, we kept 20% of the training set for validation and hyperparameter tuning (taking into
consedireation the label distribution as well), and the dev split was used to test the final models. For
the dataset splits and implementation for classical machine learning models (4.1) we used scikit-learn
[27] 5, xgboost 6 and lightgbm 7 whereas for LLM fine-tuning (4.2) and transformer-based embeddings
combined (4.3) we used PyTorch [28] 8.

In order to find the best parameters for each of the classical models from 4.1 we did hyperparameter
tuning using optuna [29] 9 and the final configuration is reported in Table 6.

For the second approach 4.2 we loaded the backbone LLMs using QLoRA [30] (full parameters
in Table 7) in order to be able to fine-tune the entire model (including the LLM backbone) for the
downstream task 10. All hyperparameters used for training in Table 8.

The backbone transformer model used for the last approach 4.3 is RoBERTa [31] 11. The final model
we used a hidden dimension of 128 for the frame-wise processing block and an attentive statistical

5https://scikit-learn.org/stable/
6https://xgboost.readthedocs.io/en/release_3.0.0/
7https://lightgbm.readthedocs.io/en/stable/
8https://pytorch.org
9https://optuna.org
10All experiments were conducted using 1 Nvidia RTX 4090 GPU
11https://huggingface.co/FacebookAI/roberta-base



pooling with 4 heads and 256 hidden dimension with ReLU activation. All other training parameters
are available in Table 9.

The evaluation platform used for this challenge was TIRA [32].

6. Results

6.1. Subtask 1: Voight-Kampff AI Detection Sensitivity

The metrics used to evaluate the system are the following:

• ROC-AUC: The area under the ROC (Receiver Operating Characteristic) curve.
• Brier: The complement of the Brier score (mean squared loss).
• C@1: A modified accuracy score that assigns non-answers (score = 0.5) the average accuracy of

the remaining cases.
• F1: The harmonic mean of precision and recall.
• F0.5u: A modified F0.5 measure (precision-weighted F measure) that treats non-answers (score =

0.5) as false negatives.
• Mean: The arithmetic mean of all the metrics above.

The overall results of the first approach 4.1 are available in Table 3 and those using the second
approach 4.2 are available in Table 4.

Looking at Figure 6 it seems like the biggest problem for the model is that is classifies fiction
texts generated with gemini-1.5-pro and llama-3.1-8b-instruct as human-written fiction texts. In the
embeddings visualization plot Figure 5 we can see that there are some red squares (ai-written fiction)
that are really close to the blue squares (human-written fiction).

Table 3
Reported metrics for the classical ML models on the dev set.

Model ROC-AUC Brier C@1 F1 F0.5u Mean
XGBoost 0.999 0.991 0.989 0.991 0.992 0.992
Light GBM 0.999 0.992 0.989 0.991 0.992 0.993
Logistic Regression 0.999 0.994 0.994 0.995 0.996 0.996
SVM 0.999 0.994 0.992 0.994 0.996 0.995
Ensemble 0.999 0.994 0.991 0.993 0.995 0.995

Table 4
Reported metrics for the fine-tuning LLM approach on the dev set.

Model F1 Accuracy Precision Recall
Qwen2.5-0.5B 0.978 0.972 0.980 0.977
Qwen3-0.6B 0.993 0.991 0.993 0.993
Llama-3.1-8B 0.997 0.996 0.999 0.996
Mistral-7B-v0.1 0.995 0.993 0.997 0.992

6.2. Subtask 2: Human-AI Collaborative Text Classification

The metrics used to evaluate the system are the following:

• Recall (Macro): Macro recall is the average recall computed independently for each class,
measuring the proportion of true positives identified out of all actual instances for each class,
and then averaging across all classes.



• F1 (Macro): Macro F1 is the average of the F1 scores calculated for each class, where the F1 score
is the harmonic mean of precision and recall, providing a balanced measure of a model’s accuracy
across all classes.

• Accuracy: Accuracy is the proportion of all predictions that are correct, calculated as the number
of correct predictions divided by the total number of predictions.

The overall results of the third approach 4.3 are available in Table 5.

Table 5
Reported metrics for the combined transformer-based embeddings using layer-wise projection and attentive
pooling on dev and test sets. *Based on the error analysis Figure 7 we reported the metrics on dev set removing
the samples from m4gt-bench which proved to be the harderst to predict.

Model Recall (Macro) F1 (Macro) Accuracy Split
RoBERTa-base 0.750 0.592 0.541 Dev
RoBERTa-base 0.443 0.427 0.514 Test
RoBERTa-base 0.890 0.842 0.917 Dev (no samples from m4gt-bench)*

Looking at Figure 7 we can see that the hardest dataset is m4gt-bench (which was not present in the
training dataset at all) with 28, 192 samples that were not classified as human-initiated, then machine-
continued (97% of the samples from m4gt-bench with this label) and 1, 750 were not classifier as fully
human-written (55% of the samples from m4gt-bench with this label). Furthermore looking at Figure 8
and Figure 9 we see that llama2 is the hardest model to be detected (also not present in the training
split at all) with 11, 793 samples that were human-written, then machine-continued misclassified as
human-written, then machine-polished. We have also reported the metrics we got on the dev set when
removing the samples from m4gt-bench Table 5 to prove that the architecture we used for this type of
classification fails to generalize well on unseen data, but manages to learn good enough representations
from the training set.

7. Conclusions and Future Work

The experimental results demonstrate that both classical machine learning models and fine-tuned large
language models (LLMs) achieve exceptionally high performance on the subtask 1 of distinguishing
between human-written and ai-written texts, with F1, ROC-AUC, and related metrics consistently
above 0.99 for most models. However, detailed error analysis reveals that the main challenge lies
in distinguishing between human-written and AI-generated fiction, especially for texts produced by
advanced models such as gemini-1.5-pro and llama-3.1-8b-instruct, which were also fewer in the train set,
where the model tends to misclassify AI-generated fiction as human-written. This is further supported
by the embeddings visualization, which shows significant overlap between these classes.

For the human-AI collaborative text classification subtask, the results are more modest, with macro F1
and recall scores around 0.43 and accuracy at 0.51, suggesting that this remains a challenging problem
and that current models struggle to generalize in this setting, the difference between human-written
then machine-continued and human-written then machine-polished being very subtle and hard to be
detected, especially when the generative model has never been seen in the training dataset.

Future work will focus on addressing these limitations by exploring more sophisticated representation
learning techniques, incorporating additional context or metadata, and experimenting with advanced
ensemble methods. Furthermore, targeted data augmentation and adversarial training could help the
models better distinguish subtle differences between human and machine-generated texts, particularly in
challenging genres such as fiction. Finally, interpretability analyses and error-driven model refinement
will be essential to further improve robustness and reliability in real-world applications.
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Figure 1: Task 1 dataset overview - train split

Figure 2: Task 1 dataset overview - dev split



Figure 3: Task 2 dataset overview - train split

Figure 4: Task 2 dataset overview - dev split



Figure 5: Qwen3-0.6B embeddings visualized in 2D using T-SNE (tarin + dev)

Table 6
Best hyperparameters for classical models used in the final ensemble model obtained using optuna.

Hyperparameter XGBoost LightGBM Logistic Regression SVM
n_estimators 260 218 – –
learning_rate 0.1114 0.2004 – –
max_depth 8 9 – –
num_leaves – 37 – –
subsample 0.8541 0.9007 – –
colsample_bytree 0.8348 0.9641 – –
min_child_weight 4 – – –
min_child_samples – 69 – –
reg_alpha – 0.4093 – –
reg_lambda – 0.6594 – –
gamma 0.0913 – – –
C – – 0.1156 2.5501
penalty – – l1 l1
solver – – saga –
max_iter – – 524 1229
random_state – – 42 –
loss – – – squared_hinge
tol – – – 0.00015



Table 7
QLoRA-related hyperparameters used for all fine-tuned LLMs.

Parameter Value
load_in_4bit True
load_in_8bit False
use_double_quant True
quant_type nf4
compute_dtype bfloat16
lora_r 8
lora_alpha 32
lora_dropout 0.05
lora_bias none
lora_target_modules {q_proj, k_proj, v_proj, o_proj}

Table 8
Fine-tuning hyperparameters used for all LLMs.

Parameter Value
batch_size 16
num_epochs 0.5
learning_rate 2e-5
lr_scheduler_type constant
max_grad_norm 0.3
max_length 1024
weight_decay 0.01
warmup_ratio 0.03
optim paged_adamw_32bit
gradient_accumulation_steps 4
eval_strategy steps
save_strategy steps
seed 42

Table 9
Training hyperparameters for RoBERTa-base fine-tuning.

Parameter Value
model_name FacebookAI/roberta-base
batch_size 4
num_epochs 5
learning_rate 0.0003
max_length 512
gradient_accumulation_steps 4
seed 42



Figure 6: Missed samples on the dev set by the ensemble model for subtask 1.

Figure 7: Heatmap of misclassified samples for each source dataset on dev set subtask 2.



Figure 8: Heatmap of misclassified samples for each model on dev set subtask 2.

Figure 9: Confusion matrix of samples generated using llama2 model on dev set subtask 2.
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