
Team CNLP-NITS-PP at PAN: Advancing Generative AI
Detection: Mixture of Experts with Transformer Models
Notebook for the PAN Lab at CLEF 2025

Lekkala Sai Teja1,*, Annepaka Yadagiri1 and Partha Pakray1

1National Institute of Technology, Sichar, India

Abstract
Generative Artificial Intelligence (Gen AI) texts are evolving globally, from mundane to significant matters. We
humans tend not to know that the texts are written by them, but not by an AI, so we do things like adding our
content to the original generated AI texts. This works proposes a new method for the classification of potentially
obfuscated text and for the classification of a document collaboratively authored by humans and AI. This work
is a part of PAN at CLEF 2025 shared task named Voight-Kampff Generative AI Detection. Our new method
explores the integration of Mixture-of-Experts (MoE) architecture with transformer-based language models
for text classification. This work involves two tasks: Voight-Kampff AI Detection Sensitivity and Human-AI
Collaborative Text Classification. The SoftMoE employs a gating mechanism to dynamically combine expert
outputs, while the HardMoE selects a single expert per input. We stand in the 5th position in Subtask 1 and the
11th position in Subtask 2, with our results consistently outperforming the official baselines. Our experiments tell
us that MoE-enhanced models achieve competitive performance.

Keywords
PAN 2025, Gen AI Detection, Mixture-of-Experts, Transformers

1. Introduction

A significant advancement of transformer-based language models [1] has made a great impact in
natural language processing (NLP) [2] capabilities, particularly in text classification tasks. These
models, such as BERT [3], RoBERTa [4], and DeBERTa [5], have demonstrated remarkable performance
across a wide range of benchmarks by capturing deep contextual representations and long-range
dependencies in text. However, the computational complexity and resource demands of these models
shows challenges for both scalability and efficiency as the number of trained parameters increases
during the training. Moreover, the trend of continuously increasing the size of model architectures to
gain exceptional improvements in accuracy raises concerns about energy consumption and inference
speed. As a result, many of the researchers are showing their interest in developing lightweight and
scalable transformer variants or hybrid architectures that can maintain high accuracy while significantly
reducing computational overhead, energy consumption, and including environmental sustainability.

Mixture of Experts (MoE) [6] [7] architectures offer a promising solution by distributing the compu-
tational load across multiple specialized sub-networks, or “experts” through a gating network, each of
which is responsible for handling different aspects or subsets of the input data. This dynamic allocation
of processing tasks allows the model to activate only a small portion of the total parameters during
inference, which reduces computational overhead while preserving or even enhancing performance.

In this study, we investigate the application of both Soft and Hard MoE frameworks integrated with
transformer models, including DistilBERT [8], DeBERTa, ModernBERT [9], XLNet [10], RoBERTa [4],
and ALBERT [11], for binary and multi-class text classification on the respective datasets. The Soft MoE
dynamically combines expert outputs through a gating mechanism, while the Hard MoE selects a single
expert per input, optimizing for computational sparsity. By leveraging the CLS token for classification

CLEF 2025 Working Notes, 9 – 12 September 2025, Madrid, Spain
*Corresponding author.
$ lekkalad_ug_22@cse.nits.ac.in (L. S. Teja); annepaka22_rs@cse.nits.ac.in (A. Yadagiri); partha@cse.nits.ac.in (P. Pakray)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:lekkalad_ug_22@cse.nits.ac.in
mailto:annepaka22_rs@cse.nits.ac.in
mailto:partha@cse.nits.ac.in
https://creativecommons.org/licenses/by/4.0/deed.en


and visualizing expert routing, we aim to evaluate the effectiveness of these MoE variants in improving
classification performance.

2. Task

Generative AI Detection This is a shared task organized by the PAN 2025 laboratory [12, 13, 14]
on digital text forensics and stylometry. In addition, it is divided into two subtasks, Subtask 1 (Webis)
AI Detection Sensitivity Analysis, Subtask 2 (MBZUAI ) Fine-grained recognition of the collaborative
document of human-AI.
Subtask 1 AI Detection Sensitivity Analysis for Identifying Unobfuscated and Obfuscated LLM-

Generated Text.
Subtask 2 Detailed classification of documents created through human-AI collaboration: For a given

document produced by humans and AI systems, assign it to one of these categories: (1) Fully human-
written, (2) Human-initiated, then machine-continued, (3) Human-written, then machine-polished, (4)
Machine-written, then machine-humanized (obfuscated), (5) Machine-written, then human-edited, (6)
Deeply-mixed text sections.

3. Dataset Statistics

This task provides two datasets presenting one for each subtask.
In Subtask 1 dataset is with Human texts and texts from the AI models are gpt-3.5-turbo, gpt-4o-

mini, gpt-4o, ministral-8b-instruct-2410, gemini-2.0-flash, o3-mini, gemini-1.5-pro, llama-3.1-8b-instruct,
deepseek-r1-distill-qwen-32b, falcon3-10b-instruct, llama-3.3-70b-instruct, gpt-4.5-preview, gpt-4-turbo-
paraphrase, gemini-pro, gpt-4-turbo, qwen1.5-72b-chat-8bit, llama-2-70b-chat, mistral-7b-instruct-v0.2,
gemini-pro-paraphrase, text-bison-002, mixtral-8x7b-instruct-v0.1, llama-2-7b-chat. Model Distribution
follows the Figure 1 below.

Table 1
Subtask 1 Dataset split by Human and Machine labels

Split Human Machine
Train 9,101 14,606
Dev 1,277 2,312

(a) Distribution of Model in Train Set (b) Distribution of Model in Dev Set

Figure 1: Distributions of Model with count in SubTask 1

In Subtask 2 dataset the dataset is made by the AI texts from the models mixtral-8x7b, gpt-4o, llama3-
70b, gemma-7b-it, llama3-8b, gemma2-9b-it, chatgpt, gemini1.5, llm1-llm2, gpt-3.5-turbo-to-mistral-7b,
mistral-7b, gpt-3.5-turbo-to-gemini1.5, gpt-3, claude3.5-sonnet, llama-370b, gpt-4, llama2, mgt, chatglm,
stablelm, dolly, llama3.1-405b, chatgpt-turbo. Model Distribution follows the Figure 2 below.

Further dataset textual analysis of both subtasks are given in the appendix A.



Table 2
Subtask 2 Dataset distribution across different text generation classes, where Class 1: Human-written, then
machine-polished, Class 2: Machine-written, then machine-humanized, Class 3: Fully human-written, Class 4:
Deeply-mixed text; where some parts are written by a human and some are generated by a machine, Class 5:
Human-initiated, then machine-continued, and Class 6: Machine-written, then human-edited

Split Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
Train 95,398 91,232 75,269 14,910 10,740 1,368
Dev 37,170 12,330 12,289 10,137 510 225

(a) Distribution of Model in Train Set (b) Distribution of Model in Dev Set

Figure 2: Distributions of Model with count in SubTask 2

4. System Description

Our proposed system integrates a Mixture-of-Experts (MoE) architecture with transformer-based
language models to enhance binary and multi-class text classification performance. We implemented
two variants of MoE, namely SoftMoE and HardMoE, with 2 (for subtask 1) and 6 (for subtask 2) experts
to a diverse set of pre-trained transformer models.

4.1. System Architecture

The system is built with a transformer-based backbone added with an MoE layer for classification. The
transformer backbones include DistilBERT, RoBERTa, ALBERT, XLNet, DeBERTa, and ModernBERT, all
base models.

Table 3
Model architecture comparison

Model Layers Hidden Heads Parameters
distilbert-base-uncased 6 768 12 66B
roberta-base 12 768 12 125B
albert-base-v2 12 768 12 11B
xlnet-base-cased 12 768 12 110B
deberta-v3-base 12 768 12 86B
modernbert-base 22 768 12 2T

4.2. MoE Layer

In our approach, we utilize two distinct types of Mixture of Experts (MoE) classifiers: Hard-
MoE and SoftMoE. The HardMoE classifier operates using a discrete gating mechanism, where a
lightweight linear gating network takes the CLS token output from the transformer layer, denoted
as Transformer(x)[:,0,:], and transforms it into a set of expert scores using the equation: g =



W𝑔 hCLS + b𝑔 . The expert associated with the highest score is chosen using an argmax operation,
ensuring that only a single expert is activated per input. The selected expert processes the input
and produces a prediction via a softmax layer. Additionally, the raw gating scores can be utilized for
computing auxiliary losses during training.

In contrast, the SoftMoE classifier relies on a continuous, probabilistic gating mechanism. Instead of
selecting just one expert, the gating network generates a score for each expert, which is then normalized
using the softmax function to produce a set of attention-like weights. These weights are used to compute
a weighted combination of all expert outputs, allowing the model to leverage information from all
experts simultaneously. The core distinction between HardMoE and SoftMoE lies in this gating strategy:
while HardMoE enforces a strict “winner-takes-all" approach, SoftMoE softly blends contributions from
all available experts. The forward pass logic for both architectures, including the flow of data and the
classification process, is detailed in Algorithm 1, and a deeper visualization of the expert routing can be
seen in Figure 3.

Soft MoE: Consists of 2 or 6 expert linear layers, each mapping the 768-dimensional CLS token to 2
or 6 output classes. A gating network (a linear layer followed by a softmax) computes weights for each
expert, producing a weighted sum of expert outputs. Gate weights are stored for visualization and can
be seen in the Appendix 6.

Hard MoE: Similar to Soft MoE but selects a single expert per input based on the highest gate weight,
enforcing computational sparsity. The MoE layer replaces the standard classification head, leveraging
specialized expert knowledge for diverse input patterns.

Dropout: A dropout layer with a probability of 0.1 is applied to the CLS token before the MoE layer
to mitigate overfitting.

Algorithm 1 Forward Pass for MoE Classifier (Hard and Soft)

Input: 𝑖𝑛𝑝𝑢𝑡_𝑖𝑑𝑠, 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘
Output: 𝑜𝑢𝑡𝑝𝑢𝑡_𝑙𝑜𝑔𝑖𝑡𝑠, 𝑔𝑎𝑡𝑒_𝑙𝑜𝑔𝑖𝑡𝑠
Extract ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑡𝑎𝑡𝑒 from base transformer
Get CLS token: 𝑐𝑙𝑠← ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑡𝑎𝑡𝑒[:, 0, :]
Apply dropout to 𝑐𝑙𝑠
Compute: 𝑔𝑎𝑡𝑒_𝑙𝑜𝑔𝑖𝑡𝑠← Linear(𝑐𝑙𝑠)
if model is HardMoE then

𝑒𝑥𝑝𝑒𝑟𝑡_𝑐ℎ𝑜𝑖𝑐𝑒← argmax(𝑔𝑎𝑡𝑒_𝑙𝑜𝑔𝑖𝑡𝑠, dim = 1)
Initialize 𝑜𝑢𝑡𝑝𝑢𝑡_𝑙𝑜𝑔𝑖𝑡𝑠 as zeros
for each expert 𝑖 do

𝑚𝑎𝑠𝑘 ← (𝑒𝑥𝑝𝑒𝑟𝑡_𝑐ℎ𝑜𝑖𝑐𝑒 == 𝑖)
if 𝑚𝑎𝑠𝑘 not empty then

𝑜𝑢𝑡← 𝑒𝑥𝑝𝑒𝑟𝑡𝑖(𝑐𝑙𝑠[𝑚𝑎𝑠𝑘])
𝑜𝑢𝑡𝑝𝑢𝑡_𝑙𝑜𝑔𝑖𝑡𝑠[𝑚𝑎𝑠𝑘]← 𝑜𝑢𝑡

end if
end for

else SoftMoE
𝑔𝑎𝑡𝑒_𝑤𝑒𝑖𝑔ℎ𝑡𝑠← Softmax(𝑔𝑎𝑡𝑒_𝑙𝑜𝑔𝑖𝑡𝑠)
𝑒𝑥𝑝𝑒𝑟𝑡_𝑜𝑢𝑡𝑝𝑢𝑡𝑠← []
for each expert 𝑖 do

𝑜𝑢𝑡← 𝑒𝑥𝑝𝑒𝑟𝑡𝑖(𝑐𝑙𝑠)
Append 𝑜𝑢𝑡 to 𝑒𝑥𝑝𝑒𝑟𝑡_𝑜𝑢𝑡𝑝𝑢𝑡𝑠

end for
Stack 𝑒𝑥𝑝𝑒𝑟𝑡_𝑜𝑢𝑡𝑝𝑢𝑡𝑠
𝑜𝑢𝑡𝑝𝑢𝑡_𝑙𝑜𝑔𝑖𝑡𝑠←

∑︀
(gate_weights× expert_outputs)

end if
return 𝑜𝑢𝑡𝑝𝑢𝑡_𝑙𝑜𝑔𝑖𝑡𝑠, 𝑔𝑎𝑡𝑒_𝑙𝑜𝑔𝑖𝑡𝑠



4.3. Training Method

Models are trained on Amazon Web Services (AWS) Cloud server, Amazon Elastic Compute Cloud (EC2)
instance. In the EC2 instance, we initiated an instance for Accelerated Computing. The specifications
are g6e.xlarge instance, which provides 3rd generation AMD EPYC processors (AMD EPYC 7R13),
with a NVIDIA L40S Tensor Core GPU with 48 GB GPU memory, and 4x vCPU with 32 GiB
memory and a network bandwidth of 20GBps, and our OS type is Ubuntu Server 24.04 LTS (HVM),
EBS General Purpose (SSD) Volume Type.

Models are trained on a CUDA-enabled GPU, and for all the models the hyperparameter settings are
as follows: the batch-size is 32, the maximum sequence length is 512, AdamW optimizer with a learning
rate of 1e-5 and weight decay of 0.01, Cross-entropy loss, ReduceLROnPlateau reduces the learning
rate by a factor of 0.1 if validation loss plateaus for 1 epoch, up to 10 epochs with early stopping, with a
maximum mean of ROC-AUC, Brier, c@1, F1, F0.5u for Subtask 1, and maximum Recall for Subtask 2.

Figure 3: HardMoE and SoftMoE expert routing mechanisms: HardMoE uses discrete expert selection via
argmax over gate logits, while SoftMoE computes a weighted sum of all expert outputs using softmax-normalized
gate weights.

5. Results

For subtask 1, we submitted our best-performing model to TIRA [15] for further execution, and for
subtask 2, we submitted the corresponding “.zip” file, which contained a “predictions.jsonl” file with ‘id’
and ‘label’ in CodaLab. Table 6 shows the performance of models on subtask 1 in val-set and smoke-test
set. Table 7 shows the performance of the models in subtask 2 in the dev set. The AUC-ROC curves of
a few models for subtask 2 are shown in the Appendix D. All the Training results for subtask 1 and
subtask 2 can be seen in the Appendix C. We stood at rank 5 and rank 11 in subtask 1 and subtask 2,
respectively. The final results on the official leaderboard are shown below in Tables 4 and 5.

6. Conclusion

In this paper, we presented our work to the PAN: Voight-Kampff Generative AI Detection 2025. We
used the Mixture-of-Experts architecture with several transformer backbones and checked which model
gives better performance, surpassing the baselines. An ablation study on expert routing highlights
the critical role of the gating mechanism in enhancing performance. We stand at the 5th position in



Table 4
Official results of Subtask 1. Our team, cnlp-nits-pp, secured 5th place with performance values highlighted in
bold.

Rank Team ROC-AUC Brier C@1 𝐹1 𝐹0.5𝑢 Mean FPR FNR

1 mdok 0.853 0.896 0.894 0.898 0.903 0.899 0.108 0.094
2 steely 0.842 0.879 0.877 0.865 0.881 0.880 0.151 0.100
3 nexus-interrogators 0.865 0.874 0.870 0.860 0.881 0.879 0.159 0.083
4 yangjlg 0.845 0.878 0.871 0.856 0.881 0.877 0.172 0.062
5 cnlp-nits-pp 0.825 0.873 0.873 0.854 0.882 0.874 0.176 0.050

Baseline TF-IDF 0.838 0.871 0.836 0.827 0.862 0.856 0.153 0.128
Baseline Binoculars Llama-3.1 0.760 0.835 0.793 0.802 0.831 0.818 0.206 0.210
Baseline PPMd CBC 0.636 0.795 0.735 0.763 0.771 0.758 0.129 0.499

24 asdkkllkk 0.718 0.739 0.739 0.726 0.781 0.753 0.308 0.110

Table 5
Official results of Subtask 2. Our team, annepaka22, ranked 11th with performance values highlighted in bold.

Rank Team Name Recall (Macro) F1 (Macro) Accuracy

1 mdok 64.46% 65.06% 74.09%
2 lbh-1130 61.72% 61.73% 69.28%
3 anastasiya.vozniuk 60.16% 60.85% 69.04%
4 Gangandandan 57.46% 56.31% 66.81%
5 Atu 56.87% 56.45% 66.30%
6 TaoLi 56.74% 55.39% 66.27%
7 adugeen 56.11% 55.25% 64.79%
8 Real_Yuan 54.49% 54.40% 62.89%
9 WeiDongWu 54.09% 53.57% 63.01%

10 zhangzhiliang 54.06% 52.81% 61.65%
11 annepaka22 54.05% 53.49% 62.23%

Baseline 48.32% 47.82% 57.09%
21 YoussefAhmed21 16.48% 14.98% 21.22%

Subtask 1 and the 11th position in Subtask 2, with our results consistently outperforming the official
baselines. These rankings validate the effectiveness and generalizability of our proposed approach
across multiple evaluation criteria. However, further analysis of misclassified cases could uncover
specific weaknesses for future improvement. Our findings highlight the scalability, interpretability, and
superior performance of MoE-enhanced transformers, establishing a robust framework for advancing
generative AI detection and making a significant contribution to the tasks.

Declaration on Generative AI

During the preparation of this work, the author(s) used Grammarly, ChatGPT, and Gemini to: check
grammar and spelling, paraphrase, reword, and refine code, improve writing style, and generate Overleaf-
LaTeX tables. After using this tool/service, the author(s) reviewed and edited the content as needed and
take(s) full responsibility for the content of the publication.

References

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, I. Polosukhin,
Attention is all you need, in: I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, R. Garnett (Eds.), Advances in Neural Information Processing Systems, volume 30,



Curran Associates, Inc., 2017. URL: https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[2] K. Chowdhary, K. Chowdhary, Natural language processing, Fundamentals of artificial intelligence
(2020) 603–649.

[3] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers
for language understanding, in: Proceedings of the 2019 conference of the North American chapter
of the association for computational linguistics: human language technologies, volume 1 (long
and short papers), 2019, pp. 4171–4186.

[4] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov,
Roberta: A robustly optimized bert pretraining approach, arXiv preprint arXiv:1907.11692 (2019).

[5] P. He, X. Liu, J. Gao, W. Chen, Deberta: Decoding-enhanced bert with disentangled attention.
arxiv 2020, arXiv preprint arXiv:2006.03654 (2006).

[6] S. Masoudnia, R. Ebrahimpour, Mixture of experts: a literature survey, Artificial Intelligence
Review 42 (2014) 275–293.

[7] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, J. Dean, Outrageously large
neural networks: The sparsely-gated mixture-of-experts layer, arXiv preprint arXiv:1701.06538
(2017).

[8] V. Sanh, L. Debut, J. Chaumond, T. Wolf, Distilbert, a distilled version of bert: smaller, faster,
cheaper and lighter, arXiv preprint arXiv:1910.01108 (2019).

[9] B. Warner, A. Chaffin, B. Clavié, O. Weller, O. Hallstrom, S. Taghadouini, A. Gallagher, R. Biswas,
F. Ladhak, T. Aarsen, et al., Smarter, better, faster, longer: A modern bidirectional encoder for fast,
memory efficient, and long context finetuning and inference (2024), arXiv preprint arXiv.2412.13663
(2024).

[10] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, Q. V. Le, Xlnet: Generalized autoregressive
pretraining for language understanding, Advances in neural information processing systems 32
(2019).

[11] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut, Albert: A lite bert for self-supervised
learning of language representations, arXiv preprint arXiv:1909.11942 (2019).

[12] J. Bevendorff, D. Dementieva, M. Fröbe, B. Gipp, A. Greiner-Petter, J. Karlgren, M. Mayerl, P. Nakov,
A. Panchenko, M. Potthast, A. Shelmanov, E. Stamatatos, B. Stein, Y. Wang, M. Wiegmann,
E. Zangerle, Overview of PAN 2025: Generative AI Authorship Verification, Multi-Author Writing
Style Analysis, Multilingual Text Detoxification, and Generative Plagiarism Detection, in: Experi-
mental IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of the Fourteenth
International Conference of the CLEF Association (CLEF 2025), Lecture Notes in Computer Science,
Springer, Berlin Heidelberg New York, 2025.

[13] J. Bevendorff, D. Dementieva, M. Fröbe, B. Gipp, A. Greiner-Petter, J. Karlgren, M. Mayerl, P. Nakov,
A. Panchenko, M. Potthast, A. Shelmanov, E. Stamatatos, B. Stein, Y. Wang, M. Wiegmann,
E. Zangerle, Overview of PAN 2025: Voight-Kampff Generative AI Detection, Multilingual Text
Detoxification, Multi-Author Writing Style Analysis, and Generative Plagiarism Detection, in:
J. C. de Albornoz, J. Gonzalo, L. Plaza, A. G. S. de Herrera, J. Mothe, F. Piroi, P. Rosso, D. Spina,
G. Faggioli, N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction.
Proceedings of the Sixteenth International Conference of the CLEF Association (CLEF 2025),
Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York, 2025.

[14] J. Bevendorff, Y. Wang, J. Karlgren, M. Wiegmann, M. Fröbe, A. Tsivgun, J. Su, Z. Xie, M. Abassy,
J. Mansurov, R. Xing, M. N. Ta, K. A. Elozeiri, T. Gu, R. V. Tomar, J. Geng, E. Artemova, A. Shelmanov,
N. Habash, E. Stamatatos, I. Gurevych, P. Nakov, M. Potthast, B. Stein, Overview of the “Voight-
Kampff” Generative AI Authorship Verification Task at PAN and ELOQUENT 2025, in: G. Faggioli,
N. Ferro, P. Rosso, D. Spina (Eds.), Working Notes of CLEF 2025 – Conference and Labs of the
Evaluation Forum, CEUR Workshop Proceedings, CEUR-WS.org, 2025.

[15] M. Fröbe, M. Wiegmann, N. Kolyada, B. Grahm, T. Elstner, F. Loebe, M. Hagen, B. Stein, M. Potthast,
Continuous Integration for Reproducible Shared Tasks with TIRA.io, in: J. Kamps, L. Goeuriot,
F. Crestani, M. Maistro, H. Joho, B. Davis, C. Gurrin, U. Kruschwitz, A. Caputo (Eds.), Advances in

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


Information Retrieval. 45th European Conference on IR Research (ECIR 2023), Lecture Notes in
Computer Science, Springer, Berlin Heidelberg New York, 2023, pp. 236–241. URL: https://link.
springer.com/chapter/10.1007/978-3-031-28241-6_20. doi:10.1007/978-3-031-28241-6_20.

A. Data Analysis

A.1. Sub Task 1 dataset

We have visualized how the data are by the following linguistic features by label count: 1) Stop Word
Count, 2) Hapax Legomenon Rate, 3) Type Token Ratio.

(a) Subtask 1, train dataset Type
Token Ratio histograms for
both Human and Machine La-
bels.

(b) Subtask 1, train dataset Hapax
Legomenon Rate histograms
for both Human and Machine
Labels.

(c) Subtask 1, train dataset Stop
Word Count histograms for
both Human and Machine La-
bels.

(d) Subtask 1, dev dataset Type To-
ken Ratio histograms for both
Human and Machine Labels.

(e) Subtask 1, dev dataset Hapax
Legomenon Rate histograms
for both Human and Machine
Labels.

(f) Subtask 1, dev dataset Stop
Word Count histograms for
both Human and Machine La-
bels.

https://link.springer.com/chapter/10.1007/978-3-031-28241-6_20
https://link.springer.com/chapter/10.1007/978-3-031-28241-6_20
http://dx.doi.org/10.1007/978-3-031-28241-6_20


A.2. Sub Task 2 dataset

We have visualised how the data is by the following linguistic features by label count: 1) Bigram
Uniqueness, 2) Hapax Legomenon Rate, 3) Type Token Ratio.

(a) Subtask 2, train dataset Type
Token Ratio histograms for all
classes.

(b) Subtask 2, train dataset Hapax
Legomenon Rate histograms
for all classes.

(c) Subtask 2, train dataset BiGram
Uniqueness histograms for all
classes.

(d) Subtask 2, dev dataset Type To-
ken Ratio histograms for all
classes.

(e) Subtask 2, dev dataset Hapax
Legomenon Rate histograms
for all classes.

(f) Subtask 2, dev dataset BiGram
Uniqueness histograms for all
classes.

B. SoftMoE Expert Routing SubTask 2

The expert routing visualizations that are present in Figure 6 reveal that the gating mechanism in
SoftMoE exhibits a preference toward a single expert across all transformer backbone models, such as
DistilBERT, ALBERT, and RoBERTa. This skewed distribution indicates that while the gating network is
functional, it often fails to fully utilize the diversity of available experts. From the algorithm (Algorithm 1),
it is evident that the gating logits are computed from the [CLS] token via a learned linear transformation,
and a softmax operation determines the expert weights in the SoftMoE setting. The consistent expert
bias suggests that the learned gating transformation overfits to favor a specific semantic representation
or decision path within the expert pool. While this kind of routing could benefit in tasks where a single
dominance representation leverages, but limits the potential of MoE architectures to improve expert
diversity.

C. Training Results

Table 6
Subtask 1 Performance metrics comparison across validation and smoke-test datasets

Dataset Model Roc-Auc Brier C@1 F1 F0.5u Mean

Val
ALBERT-v2-base-HardMoE 0.995 0.995 0.995 0.996 0.997 0.995
DeBERTa-v3-Large-HardMoE 0.996 0.996 0.996 0.997 0.998 0.996

Smoke-test
ALBERT-v2-base-HardMoE 0.938 0.941 0.941 0.933 0.972 0.945
DeBERTa-v3-Large-HardMoE 0.969 0.971 0.971 0.968 0.987 0.973



(a) DistilBERT Soft MoE Expert
Routing

(b) ALBERT Soft MoE Expert
Routing

(c) DeBERTa Soft MoE Expert
Routing

(d) ModernBERT Soft MoE Expert
Routing

(e) RoBERTa Soft MoE Expert
Routing

Figure 6: All Expert Routing plots of SoftMoE models

Table 7
Subtask 2 Performance of SoftMoE and HardMoE methods across different models on Dev Set

Method Model Accuracy Macro F1 Macro-Recall

SoftMoE

DistilBERT-base-uncased 0.552 0.589 0.687
ALBERT-base-v2 0.528 0.46 0.536
DeBERTa-v3-base 0.535 0.576 0.743
ModernBERT-base 0.555 0.626 0.731
RoBERTa-base 0.544 0.629 0.772
XLNet-base-uncased 0.563 0.612 0.775

HardMoE

DistilBERT-base-uncased 0.56 0.601 0.701
ALBERT-base-v2 0.561 0.64 0.777
DeBERTa-v3-base 0.514 0.581 0.74
ModernBERT-base 0.543 0.62 0.728
RoBERTa-base 0.547 0.587 0.798
XLNet-base-uncased 0.545 0.595 0.781
RoBERTa-large 0.575 0.616 0.782

DeBERTa-v3-large 0.612 0.683 0.818



D. AUC-ROC Curves SubTask2

D.1. SoftMoE AUC-ROC

(a) DistilBERT Soft MoE AUC-
ROC Curves

(b) ALBERT Soft MoE AUC-ROC
Curves

(c) DeBERTa Soft MoE AUC-ROC
Curves

(d) ModernBERT Soft MoE AUC-
ROC Curves

(e) RoBERTa Soft MoE AUC-ROC
Curves

(f) XLNet Soft MoE AUC-ROC
Curves

Figure 7: Six AUC-ROC plots of SoftMoE



D.2. HardMoE AUC-ROC

(a) DistilBERT Hard MoE AUC-
ROC Curves

(b) ALBERT Hard MoE AUC-ROC
Curves

(c) DeBERTa Hard MoE AUC-
ROC Curves

(d) ModernBERT Hard MoE AUC-
ROC Curves

(e) RoBERTa-base Hard MoE AUC-
ROC Curves

(f) XLNet Hard MoE AUC-ROC
Curves

(g) DeBERTa-V3-Large Hard MoE
AUC-ROC Curves

(h) RoBERTa-Large Hard MoE
AUC-ROC Curves

Figure 8: Eight AUC-ROC plots of HardMoE


	1 Introduction
	2 Task
	3 Dataset Statistics
	4 System Description
	4.1 System Architecture
	4.2 MoE Layer
	4.3 Training Method

	5 Results
	6 Conclusion
	A Data Analysis
	A.1 Sub Task 1 dataset
	A.2 Sub Task 2 dataset

	B SoftMoE Expert Routing SubTask 2
	C Training Results
	D AUC-ROC Curves SubTask2
	D.1 SoftMoE AUC-ROC
	D.2 HardMoE AUC-ROC


