Human or Not? Light-Weight and Interpretable Detection

of Al-Generated Text
Notebook for the PAN Lab at CLEF 2025

Maximilian Seeliger®*T, Patrick Styll**!, Moritz Staudinger! and Allan Hanbury!

ITU Wien Informatics, FavoritenstrafSe 9-11, 1040 Vienna, Austria

Abstract

Text generated by Large Language Models (LLMs) is becoming less distinguishable from their human-written
counterparts. Reliable detection of the differences between the two is increasingly important to limit the spread
of fake content, plagiarism and the manipulation of public opinion. We study the binary classification problem of
distinguishing human-written from Al-generated text. We propose a two-step learning algorithm. In the first
step, it calculates the correlation between the rows of the binary term-document matrix (TDM) and the binary
labels associated with the documents. This step runs in O(nlmax + nm) time, where n is the number of texts,
Imax is the maximum text length, and m is the vocabulary size. In the second step, it uses these values to map
any text to a sequence of correlations, which can be interpreted as a signal. This can be done in linear time
O(l) where [ is the size of the text. Together with other statistical measurements, this signal serves as a feature
for standard machine learning algorithms. Furthermore, we give a perspective on the interpretability of our
proposed approach for global and local (instance-level) explanations. Our work demonstrates that while large
language models like RoBERTa remain state-of-the-art in terms of raw accuracy for Al-text identification, our
interpretable and computationally efficient approach offers a competitive alternative, particularly in scenarios
where interpretability is important. We evaluate our approach within the Voight-Kampff Generative Al Detection
task, which is part of the PAN lab at CLEF 2025.
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1. Introduction

With the advancement of Large Language Models (LLMs), generated texts are increasingly difficult to
distinguish from their human counterparts [1]. This can pose risks to non-specialists readers, including
but not limited to the spread of fake content, plagiarism, the publication of Al-written articles in
scientific journals or the manipulation of public opinion [2, 3, 4]. As a consequence, there is an increased
interest in automatic approaches capable of distinguishing machine-generated from human-written
contents. Most of these approaches rely on computationally-expensive language model (LM) backbones,
either using them directly [1] or exploiting certain statistical features, such as likelihood scores, that
can be extracted from them [5, 6, 7, 8, 9]. Furthermore, since these methods depend on stochastic neural
models, they are inherently non-interpretable. To address these pitfalls, we propose a new light-weight
and interpretable method that relies only on statistical word-correlations rather than LM-backbones,
but still achieves competitive performance.

To demonstrate the effectiveness of our approach, we use data from the Voight-Kampff Generative Al
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Detection challenge, which is part of the PAN lab at CLEF 2025 [10, 11, 12]. The challenge is divided
into two tasks: (1) binary classification of texts as either human- or Al-generated, and (2) multi-class
classification estimating the degree of human or machine authorship in mixed-authorship texts. Each
task consists of an individual dataset.

Our contributions include:

+ A novel two-step learning algorithm that transforms text into a sequence of correlation values,
interpretable as a signal.

+ A collection of global and local interpretations based on the output of the learning algorithm.

« A simple approach to use hand-crafted linguistic features together with correlation signals, fed into
a standard machine learning algorithm, to achieve competetive performance for distinguishing
human-written from Al-generated text.

2. Main Method

We formally introduce the problem setting and propose the concept of correlation signals as well as a
simple way to use them for classification. We use binary term-document matrices and the Phi-coefficient
as fundamental building blocks to obtain a word-correlation value for each word. We map the words in
a given text to their respective word-correlation and call this sequence a correlation signal.

2.1. Problem Setting

We study the problem of distinguishing human-written from Al-generated text in a supervised binary
classification setting. Let X’ be the instance space, containing all possible texts, and let Y = {0, 1}
denote the binary label space, where label 0 represents human-written text and label 1 Al-generated
text. For training, we get a set of n labeled training instances {(7;,y;)}; € X x Y and try to find a
function f : X — ) that correctly classifies unseen instances.

Let T = {T1,T5,...,T,} be the set of texts from the training data. We consider each text T; as a
sequence of word tokens (w1, wa, . .., w;), resulting from tokenization (cf. Section 4.3), and expand
the notation of set inclusion to allow w € T; to denote that the word w is contained at any position in
the text 7;. We define the vocabulary of 7 as Vocab(7) = {w | w € T; for all T; € T} and say that
m = [Vocab(7)| is the number of words in the text corpus.

2.2. Correlation Signals

We construct a binary term-document matrix B from 7, where a row represents for a specific word the
inclusion relation to each text from the training dataset.

Definition 1. A binary term-document matrix B € {0,1}""*" indicates at position B; ; whether a

word w; € Vocab(T) is contained in document Tj for1 <i <mand1 < j < n:

1 ifw; €T;
Bz‘,j:{ s €

0 otherwise

Given the i’th row B;. € {0,1}" and the label vector y = (y1,%2,...,¥yn), We are interested in
quantifying the predictive power that the occurrence of the word w; has (i.e. which label is more likely,
after knowing that w; occurs in the text). For this, we calculate the correlation between these two
vectors.



Definition 2. The Phi-coefficient [13] (also known as Matthews correlation coefficient) is a special case

of the Pearson correlation coefficient for binary vectors. Given two binary vectors x,y € {0,1}" it is

defined as

1 n — =
n Zizl Y — Y

Vz(l—z)-y(1—7p)

p(x,y) =

where

This leads to the definition of word-correlations. For a word w;, represented in the ¢’th row of the
term-document matrix, we denote its word-correlation with the function ¢(w;) = ¢(B;,.,y), where y
is the label vector. We further extend this notation to texts and say that text T = (wy, wa, ..., w;) is
mapped to its correlation signal with

A1) = (), p(wa). .. o))

For the given corpus 7 of size | 7| = n with a vocabulary of size |[Vocab| = m, let li,ax be the length of
the longest text. We do preprocessing of the training corpus in O(nlyax + nm) time. Constructing
the binary term-document matrix takes O(nlmax) time by reading through each text in O(nlmnax) time
and updating entries in the matrix corresponding to occurring words in (1) time. The subsequent
calculation of the Phi-coefficient for each word individually takes O(n) time and is done in cumulative
O(nm) time. The preprocessing results in a associative datastructure of size O(m), that maps each
word to its word-correlation. Given constant lookup in this datastructure (e.g. hash table), we only need
O(l) time to construct a correlation signal for a query text 7" of size |T'| = .

2.3. Classifier

Given the mapping ¢ from a text to its correlation signal, we define a classifier

F(T) = {1 if 17 Dacpr) © > 7
0 otherwise

for a given parameter 7. Intuitively, the average correlation signal acts as a soft decision boundary: if

a text contains more words that tend to appear in Al-generated texts, its average correlation will be

positive, and vice versa. The threshold 7 determines the decision boundary in this latent correlation

space. In practice the optimal decision threshold 7 is chosen to minimize classification error for the

given distribution of the training data (see Figure 1).

3. Interpretability

This section gives a perspective on the interpretability of the proposed approach. Correlation signals
are based on the word-correlations assigned to each individual word. This word level contribution
offers ways to analyze the underlying model on a global and local (instance-level) scale to explain the
final predictions.

3.1. Correlation Signals

Globally, we can look at the magnitude of the correlations and see that Al models appear to avoid
specific words more (strong negative correlation, min,,ecvocab(7) p(w) = —0.4849) than they seem to
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Figure 1: Distribution of the means of correlation signals for the two classes on instances of the training set of
task 1 (cf. Section 4). The threshold 7 = —0.0317 is optimal with respect to the training data.

favor specific words (positive correlation, max,,cvocab(7) e(w) = 0.3338). A list of tokens with the
largest/smallest correlation scores is given in Table 7 in Appendix B. Furthermore, interpreting text as a
correlation signal opens the door to more advanced analyses, such as spectral methods to investigate
global patterns and structural trends (see Appendix C).

On the local scale, these scores can be used to explain individual instances, as the final output sum can
be traced back to the specific token-level contributions at each point in the sequence. Predictions are
constructed sequentially from the individual word-correlations in a text. This allows to pinpoint exactly
the word or sub-sentence structure that lead to either predicted class. Given an appropriate threshold T,
we can see in Figure 2 how the models prediction changes from one class to the other as a result of
words with an opposing word-correlation occurring.

-Capabilities. This endeavor employed a genetic  algorithm as the  optimization strategy to lenhance  these  organisms' behaviors...
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It has also (FGHNGHEEE the importance  of data  privacy, (digital ecosystem diversity, and the need for inclusive  tech  policies...
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The company paused political ads in the week after the November presidential election
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Figure 2: Example of how the cumulative sum (top) of individual words/signals (bottom) determine the final
prediction. Positive values indicate higher correlation to machine-generated texts, while negative values are
indicative of human-written texts. Excerpts were taken from the validation set and correctly classified.



3.2. n-gram extension

We generalize our approach to n-grams by treating them the same as simple word tokens. We calculate
an n-gram-correlation score analogous to word-correlations and build the final correlation signal as a
sequence of such n-gram-correlations.

Intuitively, we can capture more nuanced language interactions from the text by using n-grams as they
capture local contextual dependencies. However, n-grams for n > 1 are sparse. There is a total of 56987
tokens contained in the text corpus of the training data. Only 0.3% of the tokens in the validation set
are not present during training. However, about 34% of the 2-grams and 84% of the 3-grams in the
validation set have not been seen during training. This leads to poor generalization to unseen data,
while the ability to find n-gram-correlations that fit the training dataset improves with larger n. (This
effect explains the reduced performance of the corsig-2gram and corsig-3gram runs in Table 3.)

4. Experimental Evaluation

We evaluate the performance of correlation signal classifiers. There are two main objectives in our
experiments: (1) Determine the ability of our approach to generalize to new instances and (2) identify
if correlation signals contain additional predictive information, not contained in simple linguistic
measures. We will evaluate our approach on the dataset provided in the PAN Lab’s Voight-Kampff
Generative Al Detection challenge [10]. This challenge is split into two tasks. Task 1 consists of training
and validation data for the binary classification setting presented in Section 2.1. Task 2 is a variation
with 6 classes for different human-AlI collaboration schemes (cf. Table 1).

The experiments are implemented in Python and the code is available on GitHub!.

4.1. Exploratory Data Analysis

For both tasks of the Voight-Kampff Generative Al Detection challenge, separate datasets are provided.
As shown in Table 1, the class distributions in the training and validation sets are relatively balanced
for task 1. In contrast, task 2 shows significant imbalances, both across individual classes and between
the training and validation splits. Specifically, in the training set, classes 3-5 together account for
less than 10% of the data. This is even more prominent in the validation set, where classes 4-5
collectively represent only 1.01% of samples. The most significant inconsistency appears in class 3:
while it comprises just 3.72% of the training data, it dominates the validation set with 51.16%. Such
inconsistencies between training and validation distributions can severely impair controlled evaluation
of model performance, as they lead to incorrect representations of the target data distribution during
training.

4.2. Baselines

We introduce a simple baseline classifier that takes several hand-crafted features into account. For
task 1, simple classification based on the respective optimal threshold 7 of said features already achieves
a high performance that translates well from training to validation data (see Table 2). The features are
calculated separately for the train and validation set and then fed into any standard machine learning
algorithm (Random Forest, RF, in our case) to serve as a baseline. Additionally, we employ Facebook’s
RoBERTa base model [14] (roberta-base’ via Hugging Face) as a Language Model (LM) baseline
classifier, which has proven beneficial in previous studies [1]. We fine-tune RoBERTa using a maximum
input sequence length of 500 tokens, running for three epochs on a T4 GPU provided by Google Colab.

'https://github.com/max-seeli/steely
*https://huggingface.co/FacebookAl/roberta-base


https://github.com/max-seeli/steely
https://github.com/max-seeli/steely
https://huggingface.co/FacebookAI/roberta-base

Table 1
Class Distributions in Train and Validation Datasets for Task 1 and Task 2.

37,170 51.16%
225 0.31%
510 0.70%

Human-initiated, machine-continued
Deeply-mixed (human + machine parts)
Machine-written, human-edited (5

Task  Dataset Label Count Ratio
Train Human (0) 9,101 38.39%
Task 1 Al(1) 14,606 61.61%
o Human (0) 1,277 35.58%
Validation ALY 2312 64.42%
Fully human-written (0) 75,270  26.05%
Human-written, machine-polished (1) 95,398  33.02%
Train Machine-written, humanized (2) 91,232 31.58%
Human-initiated, machine-continued (3) 10,740  3.72%
Deeply-mixed (human + machine parts) (4) 14,910  5.16%
Task 2 Machine-written, human-edited (5) 1,368  0.47%
Fully human-written (0) 12,330 16.97%
Human-written, machine-polished (1) 12,289 16.91%
Validation Machine-written, humanlzedg ; 10,137 13.95%
(4)
(5)

The selected hyperparameters are based on default values and were chosen to establish a reasonable
initial baseline for comparison.

Table 2
Extracted baseline features and their classification performance on task 1 when thresholding via their respective 7.
Feature ACCirain  ACC,q
document length 65.08% 65.51%
average sentence length?® 59.70% 61.27%
average word length’ 78.60%  79.66%
type-token ratio (TTR) 64.87% 61.30%
stopword ratio 77.09% 76.76%
punctuation density 62.93% 66.15%

inverse document frequency (IDF) 71.40% 73.67%

® We refer to a sentence as a dot-delimited sequence of characters.
> We refer to a word as a space-delimited sequence of characters.

4.3. Data Preprocessing

To prepare the input data for processing into correlation signals, we first use a word-tokenizer that
is sensitive to punctuation for the English language. Subsequently, we employ the Porter stemming
algorithm [15] and remove English stopwords.

For the RoBERTa baseline, we use the model specific tokenizer and do not further preprocess the inputs.

4.4. Task 1: Binary Classification

For task 1, we analyze six systems and present the evaluation metrics in Table 3. We run the statistical
baseline with the name stats and the RoBERTa baseline as roberta. The systems corsig-<n>gram
for n € {1,2,3} uses our main approach as presented in Section 2 as well as the extension to n-grams
from Section 3.2. Finally, the system stats-corsig is an adaptation to the statistical baseline, that



uses the correlation signal \%I > zer () for each text T € T as an additional feature.

We can clearly see the negative effect n-grams with n > 1 have on the discriminative power of
correlation signals, as we witness a slight decline in the performance metrics from corsig-1gram
to corsig-2gram and a significantly more pronounced drop in performance when looking at
corsig-3gram. The reason for this behaviour is the sparsity of n-grams as explained in Section 3.2.

Furthermore, system stats-corsig displays a substantial increase over the stats baseline. This
indicates that correlation signals contain statistical information, not available from simple linguistic
features. stats-corsig also shows that combined with correlation signals, a simple statistical baseline
is sufficient for competetive performance levels to the roberta baseline.

Table 3

Validation-Set performance for Task 1 (higher is better).
Run Roc-Auc Brier C@1 F1  FO5U Mean
corsig-1gram (ours) 0902 0916 0916 0.935 0.927 0.919
corsig-2gram (ours) 0.895 0920 0.920 0.940 0.917 0.918
corsig-3gram (ours) 0.510  0.651  0.651 0.787  0.698 0.659
stats-corsig (ours) 0.992 0969 0957 0967 0.962 0.969
stats (baseline) 0.945 0918 0.894 0.920 0.905 0.916
roberta (baseline) 0.996 0.984 0984 0.988 0.983 0.987

4.5. Task 2: Multi-Class Classification

For task 2, it is important to note that we are no longer dealing with binary classification, but rather a
multi-class setting with six distinct classes. Consequently, our approach for creating correlation signals
via a binary label vector y and classifying the summed up signals via 7, as introduced in Sections 2.2
and 2.3, no longer works. We definey = (y1,y2,...,yn) € {0,1,2,3,4,5}" and build the correlation
signals according to ¢(w;) = ¢(B;.,y). Instead of using a threshold 7 for classification, we use the
RF clsfsiﬁer as described in Section 4.2, both with and without normalization |—11ﬂ| > zer ¢(x) for each
TeT.

The results of our experiments on the validation-set can be seen in Table 4. The RoBERTa baseline
(roberta) clearly outperformed the RF classifiers, both with (stats-corsig) and without (stats)
the correlation signal, which just slightly outperform guessing levels.

We hypothesize that the lack of performance can be attributed to an inconsistent class distribution
between the training and validation sets, as described in Section 4.1. To verify this, we combined the
original training and validation data and performed a new stratified split. The results on the new
validation set confirm our assumptions, as we receive an F1-score of 96% via the RoBERTa baseline
(roberta-strat). Additionally, we can now we observe a clear performance gain when using the
correlation signal as a feature in the RF classifier (stats-corsig-strat) compared to using baseline
features alone (stats-strat). Nonetheless, the RF classifier still underperforms relative to the LM
baseline, suggesting that our feature-based approach may be less effective for multi-class classification
tasks.

5. Conclusion

In this work, we presented a lightweight and interpretable approach for distinguishing human-written
from Al-generated text. Our method leverages the statistical correlation between individual words
and class labels, encoding texts as correlation signals that can be processed efficiently and explained



Table 4
Validation-Set (top) and stratified Validation-Set (bottom) performance for Task 2 (higher is better).

Run Accuracy Macro F1  Macro Recall Mean
roberta (baseline) 0.57 0.61 0.67 0.616
stats (baseline) 0.29 0.21 0.32 0.273
stats-corsig (ours) 0.31 0.22 0.33 0.287
roberta-strat (baseline) 0.97 0.96 0.96 0.963
stats-strat (baseline) 0.55 0.45 0.43 0.477
stats-corsig-strat (ours) 0.68 0.66 0.63 0.657

both globally and locally. We demonstrated that this signal-based representation achieves strong
performance in the binary classification setting and adds complementary value when combined with
standard statistical features.

In the multi-class classification setting, we observed that correlation signals alone may not capture
the full complexity of mixed-authorship scenarios. However, they still offer predictive gains when
incorporated into classical models, provided that the data distribution is properly balanced. While
language models like ROBERTa remain state-of-the-art in terms of raw accuracy, our findings show
that interpretable, transparent, and computationally efficient methods can provide competitive alterna-
tives—particularly when interpretability is a key concern.

In future work, we plan to introduce a relevance weight (e.g. tf-idf) for each word to calculate a weighted
correlation signal, ensuring that more significant words impact the overall signal more. When removing
stopwords, we already saw a performance improvement, which indicates that less relevant terms
primarily add noise, hindering the prediction. Future work also includes extending correlation-based
features to more fine-grained signals over richer linguistic representations (e.g., syntactic or semantic
structures), and exploring hybrid models that combine the interpretability of correlation signals with
the expressiveness of neural networks.

6. Declaration on Generative Al

During the preparation of this work, we used ChatGPT to paraphrase and reword. After using this
service, we reviewed and edited the content as needed and take full responsibility for the publication’s
content.
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A. Further Results

The PAN Lab’s challenge organizers evaluated the submitted models from Task 1 on additional datasets.
The test-set is a previously unknown part of the original dataset for competition purposes and the
Eloquent dataset comes from a related competition, where participants are asked to generate text, such
that it is indistinguishable from human text. We present the results in Tables 5 and 6.

Table 5

Test-Set performance for Task 1 (higher is better).
Run Roc-Auc Brier C@1 F1  FO5U Mean
corsig-1gram (ours) 0.823 0.823 0.823 0.867 0.895 0.846
corsig-2gram (ours) 0.826 0.837 0.837 0.880 0.896 0.855
corsig-3gram (ours) 0.518 0.709 0.709 0.827 0.749 0.702
stats-corsig (ours) 0.972 0924 0.886 0914 0.944 0.928
stats (baseline) 0921 0.898 0.851 0.892 0.895 0.891
roberta (baseline) 0.966  0.927 0925 0.945 0.965 0.945

Table 6

Eloquent dataset performance for Task 1 (higher is better).
Run Roc-Auc Brier C@1 F1  FO5U Mean
corsig-1gram (ours) 0.613 0.632 0.632 0.761 0.863 0.700
corsig-2gram (ours) 0.698 0.674 0.674 0.791  0.888 0.745
corsig-3gram (ours) 0.500 0923 0923 0.960 0.937 0.849
stats-corsig (ours) 0918 0917 0916 0.953 0.967 0.934
stats (baseline) 0.835 0.930 0933 0.964 0.965 0.925

roberta (baseline) 0.724  0.579 0.575 0.703 0.852 0.687




B. Significant Word-Correlations

Table 7
Tokens most correlated with machine-generated texts (positive scores, left) and human-written texts (negative
scores, right). Tokens are stemmed, leading to truncated word forms.

Machine-generated (Positive) Human-written (Negative)
Token Score Token Score Token Score Token  Score
echo 0.334 landscap 0.215 go -0.485 three -0.297
challeng 0.318 reson 0.212 went -0.425 talk -0.294
shadow 0.293 impact 0.211 littl -0.417 ye -0.293
despit 0.286 reveal 0.211 look -0.416 till -0.293
within 0.283 approach 0.207 say -0.400 half -0.292
highlight 0.276 resolv 0.207 said -0.399 come -0.291
complex 0.274 path 0.206 get -0.382 pretti -0.291
cast 0.273 gentl 0.204 put -0.377 made -0.289
reflect 0.271 beneath 0.204 came -0.371 make -0.284
whisper 0.269 solac 0.204 never -0.369 round -0.283
amidst 0.265 profound 0.203 think -0.364 gave -0.283
weight 0.265 danc 0.201 thing -0.362 anyth -0.282
signific 0.263 air 0.201 good -0.357 realli -0.282
remind 0.262 unspoken  0.200 two -0.350 first -0.278
underscor  0.260 measur 0.199 much -0.348 quit -0.277
potenti 0.253 resili 0.199 know -0.348 tell -0.274
testament 0.247 transform  0.198 got -0.344 answer  -0.267
emphas 0.242 warmth 0.197 well -0.344 done -0.265
flicker 0.242 concern 0.197 great -0.344 enough  -0.257
navig 0.236 intric 0.196 give -0.340 peopl -0.256
gaze 0.230 crucial 0.196 would  -0.333 oh -0.254
role 0.229 tension 0.195 want -0.332 whole -0.253
linger 0.228 spark 0.193 ask -0.318 money  -0.249
tapestri 0.227 serv 0.193 noth -0.316 man -0.247
share 0.227 remain 0.192 old -0.315 take -0.246
ensur 0.225 narr 0.191 one -0.314 last -0.246
stark 0.223 emerg 0.187 told -0.307 hous -0.243
embrac 0.221 spirit 0.187 poor -0.303 year -0.240
unfold 0.219 sens 0.186 see -0.301 better -0.236
shift 0.216 scent 0.186 girl -0.298 heard -0.235




C. Spectral Analysis of Correlation-Signals

Since we are looking at texts in the form of signals (see Section 2.2), we hypothesize that there are
certain structural differences between human-written and Al-generated texts that can be uncovered by
analyzing their frequency components. Specifically, let ¢(7"); denote the real-valued correlation signal
of the word at position j of text 7. We interpret ¢ (7') as a discrete-time process, which encodes some
sort of evidence towards Al- or human-authorship. Our goal is to examine the power spectral density
(PSD) for a text T" via the periodogram Pr, which serves as a basic estimator for the PSD. Pr is defined
as

2

-1
Pr(f) = | (1)) - e 27t
n=0

where f € {0,1,...,] — 1} is the discrete frequency index and [ is the length of document 7.
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Figure 3: Example of how an Al-generated text T can be seen as a signal ¢(T) (top) and how this signal can be
used for spectral analysis Pr (bottom).

To conduct spectral analysis, will will use Welch’s method, which segments the signal into overlapping
windows, applies a tapering function and finally averages the resulting periodograms. This method,
however, assumes stationarity of the signal, which means that the mean and variance do not change
over time; this is non-trivial for natural language. Similarly to [9], we applied the Augmented Dickey-
Fuller (ADF) test [16] to examine this property. Our null hypothesis Hg of the ADF test is non-stationarity,
meaning that p < .05 test results would reject H( and hence accept the alternative hypothesis of
stationarity in the signals. For the training set of task 1, we see that 99.92% of texts accept H1, which is
also why we assume that Welch’s method can be applied to this kind of correlation signal. An example
of a resulting PSD for an Al-generated text can be seen in Figure 3.

— Human 3.5- —— fully human-written

— Al human-written, then machine-polished
—— machine-written, then machine-humanized
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Figure 4: The mean periodograms (power density spectrum) of the individual classes show distinct differences

(highlighted in orange) in both task 1 (left) and task 2 (right).



After calculating Pr for all 7' € T, we average the values of these periodograms within each individual
class; Figure 4 shows that there are indeed distinct differences in the mean power density spectra of the
correlation scores.

For task 1, we can see that both classes have a peak in the low-frequency range, which means that
occurring patterns change slowly across the texts. In our context, this would indicate that the correlation
scores remain mostly positive or negative over many words. This aligns with our expectation that
human- and machine-authored segments typically span full sentences or paragraphs rather than just
single words.

We see a similar trend in task 2. There are two large low-frequency peaks for human-initiated and
machine-continued text as well as deeply-mixed texts, suggesting that machine- and human-authored
parts are interleaved on the sentence- or paragraph-level. As expected, such a peak does not exist
for fully human-written texts. Interestingly, we can see a minor peak at higher frequencies for the
machine-written, then human-edited category. This could indicate that human editors made small local
changes, such as modifying individual words or short phrases, rather than rewriting entire segments.
Such finer-grained edits introduce higher-frequency peaks in the correlation signal.
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