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Abstract

This submission addresses Subtask 1 of the Voight-Kampff Generative Al Detection task, which is part of the
PAN 2025 lab. The goal of the subtask is to distinguish Al-generated texts from human-written ones, even when
the machine-generated texts have been intentionally obfuscated to appear more human-like. As Large Language
Models (LLMs) continue to improve in fluency and coherence, this distinction becomes increasingly difficult
and requires robust detection strategies. This submission introduces a zero-shot method based on token-level
statistics, which are extracted from two pre-trained LLMs: a base model and an instruction-tuned model. This
method LOG-AID computes five core features: mean surprisal under each model, Jensen-Shannon divergence
between their predictive distributions, average entropy difference, the mean entropy of the base model and the
average logarithmic rank of the ground-truth tokens. These features are combined into a fixed-size vector and
classified using a logistic regression model. On the official test set, the proposed system achieved a mean score of
0.827 across five metrics, surpassing strong baselines such as Binoculars (0.818) and PPMd Compression (0.758). In
particular, the combination of uncertainty-based measures (surprisal, entropy) and rank-based features (log-rank)
enhances discriminative power. This contribution offers a simple, interpretable and self-contained classification
approach that does not require any fine-tuning. The method relies solely on internal probability structures of
pre-trained models and may serve as a lightweight baseline for future work in Al text detection.
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1. Introduction

LLMs offer considerable benefits across domains. For example, they can enhance productivity by
accelerating content creation and software development [1], increase accessibility through simplified
language and assistive integration [2] or downstream tasks like sentiment analysis, translation, and
summarization [3]. However, their growing fluency also enables large-scale misuse. LLMs can be
exploited to generate convincing misinformation [4], produce spam and phishing content or facilitate
academic fraud [5].

The Voight-Kampff Generative Al Detection (VKGen) task [6], hosted as part of PAN 2025 [7],
addresses this challenge by providing a controlled benchmark for identifying Al-generated texts that
have undergone stylistic obfuscation. In Subtask 1, the goal is to classify individual texts as either
human-written or machine-generated, using only the raw text as input. The difficulty is amplified by
the fact that the Al-generated samples may be modified to mimic human style and genre conventions [6].

This submission presents a simple and robust approach that requires no fine-tuning. The method
leverages two pretrained language models, a base model and its instruction-tuned counterpart, to
compute token-level metrics that reflect model confidence and divergence. These include mean
surprisal, Jensen-Shannon divergence between predictive distributions, entropy differences, the base
model’s average entropy, and the average logarithmic rank of ground-truth tokens.
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These five features are aggregated and passed to a logistic regression classifier.

Unlike many existing systems, this method does not rely on text similarity, fine-tuned classifiers or
data augmentation. Instead, it exploits model-intrinsic probabilities to characterize how expected a
text appears from the perspective of different LLMs. This lightweight framework aims to provide a
transparent and modular baseline for robust detection.

2. Related Work

The participating methods in the PAN 2024 Voight-Kampff Generative AI' Competition showed a wide
range of methods. Many models were based on BERT or DeBERTa, either fine-tuned or combined with
additional components such as R-Drop, LSTM, CNN or contrastive learning [8]. At the same time, a
more classical approach was surprising: the third-placed method from Lorenz et al. achieved a mean
score of 0.886 using only TF-IDF term count features and linear classifiers such as an SVM, which
demonstrated the current relevance of proven feature engineering strategies [8]. The winning solution
from Tavan and Najafi [9] was convincing with an ensemble of fine-tuned LLMs (Mistral, Llama2) and
the Binocular’s method as a central component [8]. It is worth noting that Binoculars in conjunction
with Falcon-7B was also the strongest baseline in the competition [8]. The Binoculars method compares
token-level output distributions between two LLMs to detect asymmetries in confidence. Specifically, it
computes a ratio of perplexity from a performer model and the cross-entropy measured by an observer
model [10]. Binoculars is one of the so-called white-box approaches [11]. These require direct access to
the underlying LLM. Logit-based methods use the raw output of the model, i. e., the values from the last
linear layer before the softmax function is applied. White-box methods typically work zero-shot. They
therefore do not require their own training, but analyze the probability distributions provided by the
model directly. The logits can be used to calculate statistical variables such as token-surprisal, entropy,
rank of a token or divergence from expected patterns [11].

The GLTR (Giant Language model Test Room) method, presented by Gehrmann et al, is a vi-
sualization tool for the recognition of Al-generated texts [12]. It is assuming that generative
language models prefer to choose words from the upper range of the probability scale. GLTR
uses the prediction distributions of an LLM (e.g., GPT-2) to calculate the probability, rank and
entropy of the prediction distribution for each token. Here, the rank refers to the occurrence
in the vocabulary when this is sorted according to the probability of a token in its previous text
sequence. In a user study, the tool increased the recognition rate of generated texts from 54% to 72% [12].

In the publication on DetectLLM, two powerful zero-shot methods for recognizing machine-generated
texts were presented [13]. The methods DetectLLM-LRR and DetectLLM-NPR use either the ratio of log
likelihood to log rank or the change of the log rank value under specific text perturbations to identify
generated texts based on their typical statistical instabilities. However, the average logarithmic rank
position of the tokens (log(rank)) already proved to be a particularly strong baseline, achieving higher
ROC values compared to the non-logarithmic rank [13].

In addition Venkatraman et al. showed that surprisal can be used for the AI detection task [14].
Surprisal describes how unexpected or surprising a token is in a given context. Their method GPT-who
calculates its mean value, variance and the differences between consecutive tokens. Furthermore,
texts were segmented in 20 token long subtexts. For all 20-token-segments the surprisal features were
calculated using a sliding window. The most extreme surprisal variances were extracted as additional
features. These features were classified using a logistic regression. The approach achieved an average
F7 score of 0.88 on the TuringBench dataset [14].



Overall, logit-based metrics, including surprisal or entropy, in combination with simple classifiers like
logistic regression, can achieve remarkably strong performance in recognising machine-generated text.

3. Method

3.1. Task Definition and Evaluation Protocol

Subtask 1 of the PAN 2025 VKGen Challenge addresses the binary classification problem of determining
whether a given text was authored by a human or generated by an Al system. In contrast to previous
years, this year’s task introduces additional challenges by incorporating adversarially obfuscated texts,
designed to humanize the writing style [6]. The input consists of a single text 7 and the goal is to
predict whether it is machine-generated (y = 1) or human-authored (y = 0). The expected system
output is a score s € [0, 1], where [6]:

e 5 < 0.5:7 is classified as human-written,
« 5> 0.5: 7 is classified as Al-generated,
« 5 = 0.5 : the system abstains from making a prediction.

It should be emphasized that the LOG-AID method always outputs predictions without defining an
uncertainty range for which s = 0.5 applies. In other words, we do not have any non-predictions,
which have an effect on performance metrics such as c@1. In this specific case, c@1 equals the standard
accuracy metric, according to Stamatatos et al. [15]. The participants were provided with two data
sets: a training set with 17,730 texts (9,101 human, 8,629 machine) and a validation set with 3,589 texts
(1,277 human, 2,312 machine). The texts come from three genres (fiction, news, essays) and exhibit
a wide variety of styles and models. A total of 29 different Al models were used, with GPT models
dominating. Each entry contains the label, the genre, the text and, where applicable, the generating
model. A separate test set was retained and used exclusively for the final evaluation [6].

3.2. System Workflow

The proposed detection method LOG-AID for the PAN25 Voight-Kampff Challenge adopts a two-stage
architecture. In the first stage, each input text is analyzed independently using two pre-trained causal
language models: Falcon-7B! and its instruction-tuned variant Falcon-7B-Instruct’. These models
operate in a zero-shot, autoregressive setting to compute token-level output distributions (e. g., logits).
From these, six interpretable statistical features are derived, including mean surprisal, entropy difference
and Jensen-Shannon divergence for both models. As well as entropy and the mean logit rank for the
base model. To ensure efficiency, models are loaded sequentially. In the second stage, the feature vector
is standardized using a z-score normalization and passed to a logistic regression classifier trained to
distinguish between human and Al-generated texts.

3.3. Metric Descriptions

Surprisal quantifies how surprising a token wy is for a language model in the given context w.; and
corresponds to the negative logarithm of the associated prediction probability [14]:

Surprisal (wy) = —logp (wy | w<¢) (1)

In our approach, this metric is averaged over all tokens of a text. This reflects the average model
uncertainty in predicting the words that actually occur. A lower mean surprisal value indicates a
higher predictability of the text [14]. With Shanon entropy, the entropy of the prediction probability
distribution p (w | x<¢) is calculated for each token xy:

'https://huggingface.co/tiiuae/falcon-7b
*https://huggingface.co/tiiuae/falcon-7b-instruct
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H(p) = - pilogp; 2)
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Here V is the size of the vocabulary and p; is the predicted probability for the i token. In this
implementation, entropy is computed per token using the scipy.stats.entropy * function applied to the
softmax-normalized logit distributions. The average entropy is then calculated as the average of all
token-specific entropy values over the entire text:

T
1
Mean Entropy = T Z H (py) 3)
t=1

In addition, the difference between the mean entropies of two models is calculated to determine divergent
uncertainties between a base model and an instruct model:

T
A = [ HO ()~ HO) () @)
t=1

To quantify the typicality of a token under the model’s predictive distribution, we compute the loga-
rithmic rank of each observed token within the vocabulary. The rank measures how highly the actual
token x; is located in the model’s predicted probability distribution p (w | z<;), where x4 denotes the
preceding context [12]. Formally, let rank (x;) € N denote the position of the token z; in the list of all
vocabulary items w € V, sorted by descending probability p (w | x<;). The average log-rank over a
sequence of 7" tokens provides a robust scalar feature that reflects the model’s overall perception of
how typical the observed sequence is:

T
1
Mean log - Rank(x) = T Z log (rank(z¢)) (5)
=1

where x; is the token at position ¢ and rank () is the index (starting at 1) of z; in the sorted distribution.
Low log-rank values indicate that tokens consistently appear near the top of the model’s predicted
distribution-suggesting a more stereotyped or expected sequence-while high values reflect less typical
or more surprising lexical choices [12]. The Jensen-Shannon divergence (JSD) is used to quantify the
divergence between the conditional probability distributions of two language models at each token
position. It compares two probability distributions P and () (in this case the logit probabilities of the
base-model and the instruct-model) over the vocabulary V. The JSD is defined as [16]:

1 1 1
ISD(P(Q) = 5 Dxr(PM) + 5 D (Q|IM),  with M = (P + Q) (6)
Here, Dx;, denotes the Kullback-Leibler divergence and M the mixed distribution. The Kullback-Leibler
divergence between two discrete probability distributions P and ) over the vocabulary V is defined as
[16]:

v
Dxu(PQ) = pi log% (7)
i=1 !

where p; and ¢; denote the predicted probabilities of token ¢ under P and (), respectively. Since JSD is
symmetric and restricted to the interval [0, log 2], it is particularly suitable for comparing probabilistic
model [16]. In this method, the JSD is calculated for each token x; based on the previous tokens .
The mean JSD across all tokens serves as a measure of the average prediction deviation between the
base and instruct models.

*https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html
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3.4. Configurations and Development Environment

The final prediction is generated using a logistic regression classifier trained on the six-dimensional
feature-vectors. Prior to classification, all feature values are standardized using z-score normalization
(StandardScaler*). The logistic regression model® is configured with L2 regularization (default penalty),
a regularization strength parameter C=1.0, and a maximum iteration limit of 1000. To account for class
imbalance, the class_weight parameter is set to ’balanced’. The texts are processed in batches of the
size 8. Training was conducted on a single NVIDIA H100 GPU (80GB HBM3) with CUDA 12.7, using
approximately 60 GB of GPU memory. The program was then made accessible to the standardized
evaluation procedures on the TIRA platform during the course of the competition and tested there.
TIRA is a sandbox-based evaluation platform that enables the reproducible, isolated and fair execution
of participant solutions [17].

4. Results

To evaluate the effectiveness of the proposed detection method, we report results on the official PAN25
test set. Evaluation was carried out by the competition organizers on data unknown to participants
(see Tab. 1). All scores were computed using the PAN evaluation toolkit and include the following
metrics: AUC, Brier score complement, C@1, F1 score, F0.5u, and the arithmetic mean of these five
values [6]. The metrics used examine different aspects to evaluate model performance. AUC measures
the probability that a positive example receives a higher score than a negative one [18]. The F}-score
measures the harmonic mean of precision and recall. The value is influenced by the selected positive
class [19]. The brier score is the mean square error (MSE) between the predicted probabilities and
the true labels [20]. The evaluation metrics all have a range of [0, 1]. The classic Brier score shows
better performance at low values, which would make averaging with the other metrics inaccurate. To
counteract this, its complement was formed within the competition. Another special feature of this
year’s competition was to give participants the opportunity to define a range of uncertainty in which
no statement needs to be made. The c@1 value therefore also deals with non-predictions and is defined

as follows [15]:
cal == (nc + 2 n“) (8)
n

n

Where n is the total number of instances, n. is the number of correctly classified cases and n,, is the

number of non-predicted cases. Since LOG-AID always makes a prediction, n,, = 0, which is why
Ne * Ny,

disappears. The accuracy can be derived from the c@1 term as follows:

Ne TP + TN
— = = Accuracy 9)
n TP+ TN+ FP + FN

As this is an unbalanced data set, the larger class is more important in the evaluation. For this reason,
an additional metric, the balanced accuracy curve (BAC), is listed in Table 1. This is defined as follows

[21]:

TPR+TNR 1 TP N

BAC = == + (10)
2 2\TP+FN FP+TIN

Table 1 shows that the presented approach performs better than two of the three baselines. LOG-AID

outperforms both the PPMd compression-based system and the Binoculars zero-shot baseline across all
metrics, whereas the TF-IDF baseline performs better overall.

*https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
*https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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Table 1
The final outcomes of the submitted solutions on the test data are shown. The two rightmost columns present
the balanced accuracy and its rank, which was computed based on the reported FPR and FNR values.

rk | Team AUC Brier cQl I Fyss.  Mean FPR FNR | BAC  rkgac
1 mdok 0.853 0.896 0.894 0.898 0.903 0.899 0.108 0.094 | 0.899 1
2 steely 0.842 0.879 0.877 0.865 0.881 0.880 0.151 0.100 | 0.875 8
3 nexus-interrogators | 0.865 0.874 0.870 0.860 0.881 0.879 0.159 0.083 | 0.879 6
4 yangjlg 0.845 0.878 0.871 0.856 0.881 0.877 0.172 0.062 | 0.883 4
5 cnlp-nits-pp 0.825 0.873 0.873 0.854 0.882 0.874 0.176 0.050 | 0.887 2
6 unibuc—n]p 0.828 0.885 0.864 0.845 0.876 0.872 0.187 0.052 | 0.881 5
7 moadmoad 0.822 0.866 0.865 0.855 0.882 0.871 0.175 0.058 | 0.884 3
8 iimasnlp 0.838 0.868 0.856 0.851 0.877 0.869 0.171 0.077 | 0.876 7
9 bohan-li 0.848 0.858 0.852 0.847 0.870 0.866 0.174 0.092 | 0.867 12
10 | advacheck 0.802 0.855 0.855 0.854 0.879 0.863 0.169 0.084 | 0.874 9
11 | hello-world 0.838 0.871 0.836 0.827 0.862 0.856 0.153 0.128 | 0.860 13
X Baseline TF-IDF 0.838 0.871 0.836 0.827 0.862 0.856 0.153 0.128 | 0.856 x
12 | xlbniu 0.794 0.847 0.847 0.840 0.869 0.854 0.188 0.077 | 0.868 10
13 | shushantatud 0.823 0.850 0.840 0.831 0.862 0.852 0.203 0.093 | 0.852 14
14 | ds-gt-pan 0.803 0.844 0.844 0.835 0.867 0.851 0.195 0.070 | 0.868 11
15 | styloch 0.793 0.866 0.821 0.823 0.853 0.844 0.201 0.131 | 0.834 19
16 felix—volpel 0.815 0.854 0.816 0.822 0.855 0.843 0.212 0.115 | 0.837 18
17 | sinai-inta 0.811 0.841 0.807 0.818 0.860 0.838 0.222 0.079 | 0.850 15
18 | pindrop 0.782 0.854 0.814 0.815 0.853 0.835 0.211 0.115 | 0.837 17
19 | diveye 0.786 0.828 0.806 0.823 0.862 0.831 0.211 0.104 | 0.843 16
20 | s-titze 0.797 0.848 0.798 0.807 0.849 0.827 0.243 0.131 | 0.813 20
X Baseline Binoculars | 0.760 0.835 0.793 0.802 0.831 0.818 0.206 0.200 | 0.80 X
21 iunlp 0.734 0.799 0.799 0.829 0.850 0.814 0.178 0.210 | 0.806 21
22 | hiwiy 0.765 0.806 0.771 0.830 0.791 0.807 0.000 0.636 | 0.682 24
23 | team-a 0.603 0.783 0.783 0.824 0.801 0.788 0.049 0.457 | 0.747 23
X Baseline PPMd 0.636 0.795 0.735 0.763 0.771 0.758 0.129 0.499 | 0.686 x
24 | asdkklkk 0.718 0.739 0.739 0.726 0.781 0.753 0.308 0.110 | 0.791 22

5. Conclusion

This work presents a lightweight approach to detecting machine-generated text, based on a compact
set of statistical features extracted from the output distributions of two pre-trained language models.
Without relying on fine-tuning or large-scale training, the system achieves competitive results in
the PAN25 Voight-Kampff Challenge, surpassing several strong baselines. By combining token-level
metrics such as surprisal, entropy, log-rank, and Jensen-Shannon divergence into a logistic regression
classifier, the system captures robust signals of artificiality and human-like variation. Empirical results
demonstrate high accuracy on the test set. The method could be supplemented with additional features
in future work. For example, not only the mean of entropy and surprisal could be computed, but also
their standard deviations or burstiness. Moreover, it would be worthwhile to explore topic-masking
techniques such as POSNoise [22] to guarantee a detection robustness against topic-related biases.
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