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Abstract

This paper explores various approaches to the task of text detoxification, including the use of lexical resources
(such as toxic word dictionaries), methods based on deep learning algorithms (T5, VAE, etc.) and modern large
language models (LLMs). The study is conducted on data from PAN: Multilingual Text Detoxification (TextDetox)
2025 — with the aim of identifying the most effective strategies for handling toxic language depending on linguistic
specifics. It is shown that for low-resource languages, like Tatar, dictionary-based methods show the highest
effectiveness. For widely spoken languages, such as English, deep learning methods show better quality. The
results highlight the importance of considering linguistic features when selecting a detoxification method and
open up possibilities for the further development of adaptive multilingual content filtering systems.
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1. Introduction

The rapid growth of online communication platforms has led to an increasing amount of user-generated
content, which often includes toxic, aggressive, or otherwise harmful language. This phenomenon poses
a serious challenge for maintaining safe and inclusive digital environments. One of the key solutions
to this issue lies in the development of automated systems capable of detecting and neutralizing toxic
language — a task commonly referred to as text detoxification.

Text detoxification involves transforming a given text in such a way that its toxic or offensive elements
are removed or softened, while preserving the original meaning and stylistic coherence. The field of
NLP has seen rapid development in recent years, enabling diverse approaches to address the problem of
text detoxification.

Each of these approaches comes with its own strengths and limitations. Lexical methods, such as
filtering based on lists of toxic words, offer simplicity and speed but often fail to account for context,
sarcasm, or subtle forms of toxicity. Deep learning models provide better contextual understanding
when trained on high-quality annotated datasets[1], yet they may struggle with generalization across
domains and languages[2]. LLMs, particularly those fine-tuned for generation tasks, show good results
in rewriting toxic sentences into non-toxic equivalents while maintaining fluency and intent. However,
performance can vary significantly depending on the linguistic structure and data availability for each
specific language.

This paper presents a comparative analysis of different detoxification strategies across multiple
languages, emphasizing how linguistic characteristics influence the effectiveness of each method. We
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argue that no single approach is universally optimal and that the choice of method should be guided
by the specific properties of the target language. This study utilizes data from PAN: Multilingual
Text Detoxification (TextDetox) 2025[3, 4] to explore the most effective strategies for managing toxic
language, taking into account linguistic and cultural differences. We use the Joint metric from PAN,
which consists of three components: Style Transfer Accuracy, Content Preservation, and Fluency. Each
component ranges from 0 to 1, and higher values of both individual components and the final score
indicate better performance.

2. The formation of toxic words in different languages

In modern linguistics, toxic words are commonly referred to as invective vocabulary. The invective
lexicon of a language is enriched through several sources: reinterpretation of existing literary units,
borrowings from foreign languages, and slang. Importantly, invective vocabulary differs from slang in
terms of stability: while slang undergoes frequent changes and updates, the core set of invectives tends
to remain relatively stable over long periods.

As an example, consider American English, where a significant source of lexical borrowings is African-
American vernacular, including such expressions as "motherf*cker” or "of*y". However, invectives should
be distinguished from colloquial speech, which may appear similar but lacks the same emotionally
charged connotation. Colloquial words such as "sh*t" or "a*s", although considered vulgar in formal
contexts, can function as neutral terms in informal speech — especially within certain social groups[5].

Thus, the meaning and communicative function of the same word depend on the speaker’s social
status and context, leading to an overlap between invective and colloquial vocabulary. This process
facilitates lexical exchange between these two linguistic layers.

The formation of invective vocabulary can be classified into several key directions. First, many invec-
tives originate from colloquial, slang, or marginal vocabulary often used to express social differences
and conflicts. Second, a major contribution to the development of invectives comes from pejoration —
the semantic re-evaluation of literary and conversational words, during which originally neutral or
positive meanings transform into negative ones.

Linguist LI Kremikh identifies several types of pejoration, among which metaphorical pejoration is
considered the most productive. It is based on the transfer of negative meaning to an object through
similarity or association. Examples include the Spanish words "globo" ("balloon"), used metaphorically
to refer to a fat person, and "buzon de correos” ("mailbox"), used to describe someone with a large
mouth.

Of particular importance in invective vocabulary are zoomorphisms — metaphors in which people
are compared to animals based on stereotypical associations. For instance, the Spanish words "cerdo”
and "cochino” (both meaning "pig") or the English "pig" and "dirty dog" are used to describe messy or
rude individuals. Similarly, repurposed names of fruits and vegetables, such as "melon" ("melon") and
“carrot” (used derogatorily for red-haired people), illustrate how stable phonetic forms can undergo
substantial semantic transformation and shift in communicative function.

An interesting phenomenon is the positive use of invectives. In some cases, these expressions are
used to convey admiration or praise, reflecting their deep integration into everyday speech and the
wide range of emotions they can convey. For instance, in the Tatar language, the word "a1" ("dog"),
which functions as an invective, appears in the phrase "Ax, 31, s111He HUYeK ocTta xa1 UTK3H!" ("Wow,
what a masterful way to solve the problem!"), where it serves as a compliment to one’s skills. Such
expressive usage of invectives is also widely employed in literature to reflect natural, vivid speech[6].

Ethnolinguistic factors play a significant role in the formation and functioning of invective vocabulary,
especially evident when comparing related or contact languages. The Tatar language, with its rich
historical and cultural layer, contains numerous invectives whose semantics are closely tied to collective
memory and religious identity. A comparative analysis of Tatar invectives with corresponding units in
Bashkir, Chuvash, Udmurt, Mari, and Turkish — a fellow Turkic language — reveals consistent patterns
in the development of offensive vocabulary and its national-cultural characteristics.
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For example, in Tatar, the lexemes "rape" ("christian cross", "damned") and "uyksraran” ("christened”,
and in an invective sense — "damned") emerged under the influence of the Christianization of Volga
Tatars in the 16th-18th centuries. Originally neutral or positively connotated, these words transformed
into strong invectives with clearly negative semantics within the Muslim community. The invective
"uykbiHran” demonstrates high derivational productivity, generating forms such as "uyKprHUBIK"
("scoundrel”), "uyksiabin kut" ("disappear!”, "go to hell!"), "uyxerager” ("all is lost"), and "aykbIHTrBIpEI"
("may he perish"), which can serve as insults, curses, or exclamatory interjections.

It is important to note that the strength of the invective tone of these words depends on the religious
and cultural identity of the addressee: for Muslims, they carry a clearly negative nuance, while for
Christians, they retain a neutral or even positive meaning. Similar semantic shifts are observed in
Russian as well (e.g., "Hexpuctp" ("heathen") and "kpecra Ha tebe ner" ("
used to refer to people of different faiths).

Thus, invective vocabulary serves not only as a means of expressing insult but also as a marker of
deep cultural-historical layers and boundaries of linguistic consciousness, reflecting complex processes
of identity interaction within society.

no cross, no crown"), originally

3. Lexical methods

One of the simplest and fastest ways to reduce the level of toxicity in text is the dictionary-based
approach, which involves replacing potentially toxic words with neutral equivalents or completely
removing offensive terms. The replacement can be either full (replacing the entire word) or partial
(applied when a toxic word appears as part of a longer lexical unit).

We use a Multilingual Toxic Lexicon [7] which consists of toxic words and phrases for each language
from the current task. Three types of processing were considered in this section:

« copy base — the text remains unchanged;
« replace — toxic words or their parts are removed or replaced,;
+ delete — toxic words are removed without replacement.

Copy base method consisted in the fact that the toxic was not changed in any way. In other words, we
looked at the metrics of unmodified sentences. Replace method involved removing the toxic component
from a word. For example, if the dictionary includes the word "f*ck", but "f*cker" not in the toxic
dictionary, only the suffix "er" would remain after processing.

Delete method consisted of removing an entire word if it contained any toxic substring. For instance,
if the toxic dictionary included the word "f*ck", but "f*cker" was not included, then full word "f*cker"
would be deleted.

Results of lexical methods presented in Table 1. The values in the table are given for the Joint metric.

However, in some languages, such as Ukrainian and Japanese, the replace method demonstrated sig-
nificantly better metrics. This effect may be attributed to specific contextual features that inadvertently
amplify the negative tone of the text during word replacement. Delete method showed significantly
better results for the Arabic language. Therefore, when applying automated detoxification methods, it
is essential to take into account the linguistic structure and contextual usage of words.

The highest level of toxicity was observed when using the copy base method, where the input text
remained unchanged. Although this approach preserves the original meaning of the message, it does
not address the task of reducing toxicity and should only be used as a baseline for comparison.

The purely dictionary-based approach has several limitations, including an inability to account for
context, the need for regular dictionary updates, and the risk of false positives. Hence, a promising
direction for future work appears to be the combination of lexical filtering with text rewriting models,
which can not only eliminate toxic elements but also restore textual structure and preserve semantic
meaning.



Table 1
Results for delete, replace and copy base approaches. Values in the table are given for the Joint metric.

language copy-base delete replace

en 0.353 0.473 0.430
es 0.566 0.603 0.613
de 0.572 0.586 0.577
zh 0.477 0.516 0.501
ar 0.564 0.611 0.565
hi 0.417 0.480 0.461
uk 0.442 0.581 0.694
ru 0.424 0.514 0.533
am 0.461 0.461 0.437
it 0.653 0.668 0.676
ja 0.440 0.441 0.636
he 0.425 0.436 0.418
fr 0.447 0.518 0.521
tt 0.510 0.573 0.572
am 0.419 0.425 0.449

4. Deep learning approaches

A more recent solution in the field of text detoxification involves approaches based on deep learning
models, such as T5 (Text-To-Text Transfer Transformer) [8] and its variations. These models are capable
not only of removing or replacing toxic words but also of rewriting the original text while preserving
its semantic structure and stylistic features. Thanks to their training on parallel corpora — where each
toxic sentence has a corresponding non-toxic version — these models can generate more natural and
contextually appropriate outputs.

Such models demonstrate strong performance in neutralizing offensive language without significantly
altering the meaning of the original message. Their effectiveness is especially evident when they are
fine-tuned on high-quality detoxification datasets. A more detailed discussion of these experiments will
follow in the section on large language models (LLMs).

For the current set of experiments, we used the HRQ-VAE [9] model, which has shown promising
results in text paraphrasing tasks. The model is based on the Variational Autoencoder (VAE) [10]
architecture and is designed for soft style transfer, including reducing the level of toxicity in text.

The experiments were conducted on the English language using both the pretrained version of the
model and several versions fine-tuned on the Paradetox [11, 12] parallel dataset. We applied the models
trained on three different datasets: MSCOCO [13], Paralex [14], and QQP [15], evaluating its ability to
reduce toxicity in input sentences. We also explored how different training strategies affect performance
whether toxic phrases are included or excluded from paraphrase clusters. A paraphrase cluster is a
group containing sentences that are similar in meaning. For example, the sentences "How do I get to
the nearest metro station?", "Can you tell me how to get to the subway?", and "Where is the closest
metro station?" have similar meanings, so they are placed in the same cluster.

Results of different HRQ-VAE models for English presented in Table 2.The values in the table are
given for the Joint metric.

Our findings show that the model’s performance depends heavily on the quality of the training
data and the strategy used to form paraphrase clusters. In some configurations, the model was able to
significantly reduce toxicity levels, while in others, it failed to fully eliminate harmful content or even
preserved negative connotations.

In summary, the HRQ-VAE model demonstrates potential for use in text detoxification, particularly
when fine-tuned on carefully curated parallel datasets. However, like other methods, it requires careful
tuning and contextual awareness to avoid unintended preservation or amplification of toxic tone.



Table 2
Results of different HRQ-VAE models for English. “args for no question” and “args for question” refer to training
parameters used for datasets without and with questions, respectively.

Model Result
HRQ-VAE, train on MSCOCO 0.074
HRQ-VAE, train on Paralex 0.138
HRQ-VAE, train on QQP 0.208
HRQ-VAE, clusters with toxic, args for no question 0.606
HRQ-VAE, clusters with toxic, args for question 0.592
HRQ-VAE, clusters without toxic, args for no question  0.492
HRQ-VAE, clusters without toxic, args for question 0.478

5. Large language models

A modern stage in the development of text models is represented by large language models (LLMs) such
as ChatGPT [16], Llama3 [17] and others. These models possess significant capacity for understanding
and generating natural language, making them promising candidates for solving complex tasks, including
text detoxification. Unlike traditional approaches based on rigid rules or simple neural architectures,
LLMs are capable not only of removing or replacing potentially toxic words, but also of rewriting
phrases while preserving the original meaning, style, and logical coherence.

One of the key advantages of LLMs is their ability to interpret user instructions through prompts,
which enables flexible control over the generation process. For example, prompts such as "Make this
more neutral" or "Paraphrase this sentence" allow the model to understand that the tone of the text needs
to be adjusted without sacrificing its informational content. This makes LLMs particularly suitable for
use in real-world content filtering systems, where both the reduction of toxicity and the maintenance
of communication quality are essential.

In the course of this study, several versions of the Flan-T5 [18] model (small, large) were tested.
These models were initially trained on the Paradetox dataset and further fine-tuned on a mixed dataset
that included Paradetox, Parallel Detoxification Dataset small [19], Paranmt-for-detox [20], and Fil-
tered_paranmt [21]. The training was conducted using different prompts, such as "Make more neutral"
and "Detoxify", which allowed us to assess the impact of prompt formulation on the quality of text
rewriting. mT0 [22] model from the TextDetox 2024 Multilingual Text Detoxification task.

Results of different prompts presented in Table 3. The values in the table are given for the Joint
metric.

Table 3
Results of different prompts in English (Joint metric). For the mT0 model, the prompt was translated to each
language.

Model Result  Prompt

flan-t5-small 0.680  “Detoxify: ”

flan-t5-small 0.686  “Make more neutral: ”
flan-t5-large 0.705  “Make more neutral: ”

mt0 0.727  “Detoxify:”

mt0 0.723  “Remove or edit toxic words:”
mt0 0.729  “Remove toxic words: ”

mt0, replace toxic ~ 0.676  “Detoxify:”

The results demonstrated that the Flan-T5-large variant outperformed smaller versions in terms
of detoxification performance. Specifically, after 4696 training steps, the joint metric reached 0.70497
when using the "Make more neutral” prompt, compared to 0.68628 for Flan-T5-small. This indicates that
increasing the number of model parameters has a positive effect on its ability to reduce textual toxicity.



It is also worth noting that T5-based models can be adapted to specific languages and domains. For
instance, the spivavtor [23] model, designed for the Ukrainian language, showed improved results when
prompted with "Ilepe¢pasyitre” ("Paraphrase"). It achieved a joint metric of 0.33832, significantly lower
than that of dictionary-based approaches. This supports the conclusion that T5-based models have
strong potential for application in multilingual environments.

Results for spivavtor models on Ukrainian language presented in Table 4. The values in the table are
given for the Joint metric.

Table 4
Results for spivavtor models on Ukrainian language. The prompt “[Mepedpasyiite” requests rephrasing, while
“CnpocTitbh peuenHs” instructs sentence simplification.

Model Result  Prompt

spivavtor-large  0.291  “[lepedpasyiite” (Paraphrase)
spivavtor-large  0.301  “Cnpocrtits peuerns” (Simplify sentence)
spivavtor-xxI 0.338  “Tepedpasynte” (Paraphrase)

Additionally, we evaluated the Llama3[24] model with varying temperature settings, different prompts,
and multiple LoRA adapters [25], which allowed us to explore the impact of both generation parameters
and architectural modifications on detoxification quality. In our experiments, pre-trained versions of
Llama3 were enhanced with adapters trained on parallel datasets of toxic and non-toxic text.

Prompts were carefully selected to explicitly instruct the model to reduce toxicity while preserving
the original meaning. Generation was performed using various temperature values (ranging from 0.01
to 0.95), allowing us to evaluate the balance between deterministic and diverse outputs.

The influence of temperature on detoxification quality proved to be inversely proportional. Lower
temperature values yielded better results, as the model generated outputs that closely adhered to
the original sentence structure and meaning. In contrast, higher temperature values increased output
variability — although the overall meaning was preserved, the rewritten sentences often used completely
different wording, sometimes reintroducing potentially harmful expressions.

We also tested several LoRA adapters that differed in size and training data. Interestingly, an adapter
trained on only 50 examples performed slightly better than another trained on 200 examples. However,
the difference between these configurations was minimal, and both still produced outputs that were
relatively close to the base Llama3. Results of llama3-70B model presented in Table 5. The values in the
table are given for the Joint metric.

Table 5
Results of llama3-70B model on English, evaluated with different temperature values and LoRA adapters (Joint
metric).

Model Result
Ilama3-70b, temp=0.95 0.601

llama3-70b, temp=0.05 0.626
llama3-70b, temp=0.01 0.628

llama3-70b, temp=0.01, LoRA 50 examples 0.627
llama3-70b, temp=0.01, LoRA 200 examples  0.626

6. Leaderboard overview

Our team, The Toxinators 2000, participated in the Multilingual Text Detoxification task at PAN 2025.
The developed system combined dictionary-based filtering with generative rewriting using a large
language model (LLMs) mT0. According to the evaluation on the platform, we ranked 5th out of 32
teams, achieving an average score of 0.675 across all languages. Additionally, on the LLM-as-Judge



leaderboard, we ranked 13th out of 32 teams, achieving an average score of 0.648 across all languages.
The best results were obtained for the following languages on leaderboard:

Table 6
Results on leaderboard.

Language Result Result on LLM-as-Judge

English 0.727 0.842
Spanish 0.696 0.758
Deutsch 0.757 0.828
Chinese 0.543 0.715
Arabic 0.715 0.788
Hindi 0.627 0.759
Ukrainian 0.770 0.766
Russian 0.754 0.818
Ambharic 0.491 0.638
Italian 0.746 0.742
Japanese 0.644 0.745
Hebrew 0.415 0.495
French 0.760 0.790
Tatar 0.617 0.611
Hindi 0.449 0.503

The full leaderboard is available on the competition page.

7. Conclusion

In the course of this study, various approaches to the task of text detoxification were examined, including
the use of lexical resources (dictionaries), deep learning models, and modern large language models
(LLMs). The main objective was to compare the effectiveness of these methods across several languages
— English, Russian, Ukrainian, and others — and to identify optimal strategies for processing toxic
content depending on linguistic characteristics and data availability.

The mT0 model , when combined with preliminary removal of toxic words and word parts, demon-
strated better performance than the baseline system. For example, in Tatar, the score increased from
0.580 to 0.617 and in Japanese — from 0.582 to 0.644. At the same time, the dictionary-based method
achieved the best results for Hindi, increasing the score from 0.351 to 0.449.

These findings confirm that the effectiveness of text detoxification methods is directly influenced
by linguistic specificity. No single approach proves universally optimal; instead, the choice of method
should be guided by the morphological complexity, cultural context, and data availability of the target
language.

Thus, future research should focus on developing language-adaptive detoxification systems, which
combine the strengths of dictionary filtering, deep learning, and prompt-based LLM rewriting to ensure
both high-quality output and meaningful reduction of toxic content.
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