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Abstract
With the rapid development of generative large language models (LLMs), hybrid texts generated by human-AI
collaboration are becoming increasingly common in real-world scenarios. Their detection and classification
have become key challenges to ensure information authenticity and academic integrity. This paper proposes a
three-level features fusion model called DBG (DeBERTa-BiLSTM-Geometric Attention) for the complex human-AI
collaborative text classification problem in the PAN-CLEF 2025 task. The model achieves fine-grained classification
through a three-stage collaborative mechanism: first, the decoupled attention of the DeBERTa-v3-large pre-trained
model is used to capture global semantic features. Second, the bidirectional language dependency pattern in the
text sequence is modeled through a bidirectional LSTM. Finally, the geometric attention module is innovatively
introduced, combining one-dimensional convolution with a learnable position enhancement factor to dynamically
enhance local discriminative features. Experiments show that DBG significantly outperforms the baseline model
in six types of hybrid text classification tasks, with Macro Recall reaching 56.87% (an increase of 8.55% over
RoBERTa-base), and F1 Macro Score and Accuracy increased to 56.45% and 66.81% respectively. This study
provides technical support for risk prevention and control of human-machine collaborative content, and provides
new ideas for the text traceability problem in generative AI ethical governance.
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1. Introduction

With the rapid development of computing chip GPU hardware, computing power continues to
improve, driving the rapid development of artificial intelligence. In the era of big data, there is a huge
amount of data, which is enough to build a large data set, making it possible to scalably train language
models, which has completely changed the field of natural language processing. The advent of Large
Language Models (LLMs) has revolutionized traditional statistical machine learning methods. These
models demonstrate superior capabilities in tackling diverse Natural Language Processing (NLP) tasks.
Moving beyond earlier tasks like spam detection, sentiment analysis, automatic response, and academic
text summarization, generative large language models, trained on vast amounts of text data, are now
capable of generating fluent and coherent text [1, 2, 3, 4, 5]. In recent years, LLMs such as GPT-3/4, PaLM,
and Claude have seen rapid technological progress, with the quality of the generated text approaching
and even surpassing that of human writing. The GPT-3 model released by OpenAI in 2020, with its
huge scale of 175 billion parameters, can generate logically coherent long articles, poems, codes and
other content based on simple instructions; and the GPT-4 launched in 2023 has made breakthroughs in
multimodal understanding and complex reasoning capabilities, further blurring the boundaries between
human and machine-generated content. According to Stanford University’s "2023 Artificial Intelligence
Index Report", GPT-4 has performed better than 90% of human candidates in professional exams (such
as the bar exam), and the semantic rationality and style diversity of its generated text have reached
the level of being indistinguishable from the real thing. This progress has led to the development of
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large language models (LLMs), which has greatly changed the way people generate and interact with
machine text. LLMs have demonstrated a strong ability to generate text that matches human writing.

To enhance the performance of generative AI detection for large language models and improve clas-
sification accuracy in subtask 2’s human-machine collaborative text classification task, the complexity
inherent in the six distinct classification categories necessitates the development of a more robust model
architecture. Therefore, we propose a novel model for multi-accumulated text classification called DBG,
which cleverly combines advanced pre-training, sequence modeling and geometric attention mechanism
to address the key challenges of language analysis. DBG is based on DeBERTa-v3-large, and uses its
decoupled attention to capture subtle contextual relationships in text sequences. To enhance sequential
pattern learning, we integrate a bidirectional LSTM layer to process the representation encoded by
DeBERTa[6], thereby effectively modeling forward and backward language dependencies. The architec-
ture also integrates a novel geometric attention module with a learned position enhancement factor[7],
which uses one-dimensional convolution to dynamically highlight discriminative text features while
preserving structural relationships within the sequence. The entire model exhibits synergistic effects
through three core mechanisms:

(1) DeBERTa’s powerful contextual embedding builds a semantic foundation.
(2) BiLSTM layers model hierarchical language patterns.
(3) Geometric attention mechanism optimizes feature extraction through learnable spatial reasoning.
Experimental verification on benchmark datasets shows that our model achieves significant perfor-

mance improvements, especially macro recall (baseline 48.32% vs ours 56.87%). In addition, F1, recall,
is also significantly higher than the baseline model, highlighting that the DBG model has a strong
human-machine collaborative classification capability and is believed to be able to effectively solve the
complex problems in generative AI author authentication.

2. Related Work

Despite their revolutionary potential, the technological advancements of Large Language Models
(LLMs) are accompanied by significant societal risks: the misuse of machine-generated text exhibits
exponential growth, manifesting as critical issues including opinion manipulation, disinformation
propagation, and systematic plagiarism. This underscores the imperative to establish ethical constraints
and risk mitigation frameworks alongside technological deployment. Against this backdrop, Generative
AI Authorship Verification has emerged as a critical research focus. Notably, the Voight-Kampff task
subtrack for human-AI collaborative text classification at PAN@CLEF 2025 demonstrates particular
foresight—by defining six categories of human-AI collaboration patterns, this initiative transcends
the limitations of conventional binary classification. It not only directly addresses detection blind
spots for hybrid text but also provides multidimensional support for ethical governance and technical
optimization[5]. Current mainstream techniques can be categorized into three primary approaches:
Jakesch et al.[8] revealed through cognitive experiments that humans’ reliance on surface-level fea-
tures (e.g., first-person pronouns, domestic topics) for text attribution constitutes a fundamental flaw,
demonstrating that such heuristic rules are vulnerable to exploitation by "hyper-humanized" generated
content. Chakraborty [9] leveraged BERT’s contextual embeddings to capture implicit patterns in
generated text, while Guo et al.[10] innovatively integrated Transformer encoders with spaCy-derived
multi-scale textual features, enhancing long-text semantic coherence analysis via BiLSTM. Nevertheless,
current research exhibits notable limitations, First, while mainstream methods achieve high accuracy
(>89%) for purely machine-generated text[11], their performance plummets by 37-52% when detecting
human-AI hybrid documents[5], with particularly low F1-scores (merely 0.63) in fine-grained collab-
orative category classification. Second, supervised learning approaches generally suffer from model
dependency, exhibiting up to 28 percentage points of accuracy degradation when detecting outputs from
closed-source models (e.g., GPT-4, Claude 3). Third, existing systems struggle to adapt to LLMs’ rapid
evolution—novel RLHF alignment techniques have increased human-like feature density in generated
text by 42%, while multimodal content exceeds current detection frameworks’ scope. Fourth, surface-



feature-based strategies incur false positive rates as high as 65% in specialized domains[9], exposing
deficiencies in semantic depth analysis mechanisms. These bottlenecks compellingly demonstrate the
necessity for novel verification frameworks specifically designed for hybrid text characteristics and
adaptive to dynamic technological evolution.

3. Methodology

This paper proposes the DBG model (DeBERTa-BiLSTM-Geometric Attention) to perform multi-
dimensional feature modeling for generative text classification tasks. The model architecture is based
on the DeBERTa-v3-large pre-trained language model, and builds deep contextual representations
through the decoupled attention mechanism. A bidirectional LSTM network is connected after the
encoding layer to capture the bidirectional language dependency pattern in the sequence. The geometric
attention module is innovatively introduced, and the spatial enhancement factor of text features is
dynamically learned using a one-dimensional convolution kernel. The extraction of discriminative
features is optimized through learnable local position weights. The three-layer architecture forms a
synergistic mechanism: DeBERTa provides global semantic representation, BiLSTM models sequence
pattern evolution, and geometric attention strengthens the discriminative power of local features. The
joint optimization of the three significantly improves the fine-grained classification ability of generated
text.

3.1. Dataset Preprocessing

This experiment is based on the PAN 2025 human-machine collaborative text classification task dataset,
which is publicly provided by the Zenodo platform and covers academic papers, news reports, social
media and other multi-field texts. Data annotation includes six types of human-machine collaboration
(see Table 1 for details), covering complex scenarios such as human-led creation, machine-generated
post-processing, and deep mixed text. The original data is stored in JSONL format. Each piece of data
contains text content (the ‘text‘ field) and category labels (the ‘label‘ field), supporting multilingual
analysis in English, Spanish and German. The type label is an int of 0-5, that is, [0, 1, 2, 3, 4, 5], and the
corresponding text description is as follows:

id2label = {
0: “fully human-written”,
1: “human-written, then machine-polished”,
2: “machine-written, then machine-humanized”,
3: “human-initiated, then machine-continued”,
4: “deeply-mixed text; where some parts are written by a human and some are generated by a

machine”,
5: “machine-written, then human-edited”
}
The sample sizes of the training set and the development set are 288,918 and 72,661 respectively,

and the category distribution shows a significant imbalance. For example, the "Human-initiated, then
machine-continued" category accounts for 51.2% of the development set, while "Deeply-mixed text"
accounts for only 0.3% (see Table 1 for details). This distribution characteristic reflects the diversity
of human-machine collaboration modes in real scenarios, but it is not a good thing for us to use
large models to solve human-machine collaboration text classification tasks. In order to obtain better
classification accuracy, sometimes we need to think about how to solve the problem of data imbalance.

In order to better input data into the model to train our model, we preprocess the data as follows:

• Label normalization: Map the category label to an integer value of 0-5, and use the id2label
dictionary to maintain semantic interpretability. For possible label missing, set invalid labels to
-1 and filter abnormal samples.



• Text segmentation: Use DebertaV2Tokenizer dedicated to DeBERTa-v3-large to segment the
text into subwords. Set the maximum sequence length to 512, truncate the tail of overlong text,
and fill the insufficient part with [PAD] tags.

• Batch encoding: Generate a fixed-length tensor through the truncation = True and padding =
"max_length" parameters, and construct input_ids and attention_mask as model input.

This preprocessing process effectively retains the semantic and structural features of the text, while
adapting to the input specifications of the pre-trained model, providing structured data support for
subsequent multi-task learning.

Table 1
Distribution of samples in training set and development set

LABEL CATEGORY TRAIN DEV

Machine-written,then machine-humanized 91,232 10,137
Human-written, then machine-polished 95,398 12,289
Fully human-written 75,270 12,330
Human-initiated,then machine-continued 10,740 37,170
Deeply-mixed text (human + machine parts) 14,910 225
Machine-written, then human-edited 1368 510
Total 288,918 72,661

3.2. Network Architecture

The traditional human-machine collaborative text classification methods have the following main
shortcomings: reliance on artificial feature engineering and single-modal encoding leads to insufficient
capture of complex patterns of generated text, one-way sequence modeling makes it difficult to parse
traces of two-way collaboration, and the static attention mechanism lacks dynamic enhancement
of local key features, resulting in limited fine-grained classification performance. The DBG model
proposed in this paper adopts a three-level feature enhancement architecture, as shown in Figure 1. The
model extracts global semantic features through the DeBERTa pre-trained encoder, captures sequence
pattern dependencies through bidirectional LSTM, and strengthens local discriminative features through
geometric attention. The three-stage together to improve the fine-grained classification capabilities of
human-machine collaborative text.

3.2.1. DeBERTa Disentangled Attention Encoder

As the model base, it is responsible for extracting deep contextual semantic representations from the
input text and solving the semantic ambiguity problem of the generated text. We use the DeBERTa-
v3-large pre-trained model, whose core is the disentangled attention mechanism, which separates the
content and position encoding calculations:

Attn(𝑄𝑐,𝐾𝑐, 𝑉𝑐, 𝑃 ) = Softmax
(︂
𝑄𝑐𝐾

𝑇
𝑐 +𝑄𝑟𝑃

𝑇

√
𝑑

)︂
𝑉𝑐 (1)

Where Qc, Kc are content vectors, Qr is the relative position vector, and P is a trainable position embed-
ding matrix. This design enables the model to independently model the relative position relationship
between words and enhances the ability to capture long-range dependencies in the generated text.
Output hidden stateH𝑑 ∈ R𝐿×1024, where L is the sequence length and 1024 is the DeBERTa hidden
layer dimension.



3.2.2. Projection Dimensionality Reduction and Bidirectional LSTM

The feature dimension is reduced by flattening to reduce computational complexity, and local language
patterns are captured by bidirectional temporal modeling to solve the sequence coherence differences
of generated text.

(1) Projection layer: DeBERTa output is mapped to a low-dimensional space:

H𝑝 = W𝑝H𝑑 + b𝑝 ∈ R𝐿×256 (2)

Among them,W𝑝 ∈ R1024×256is a trainable parameter, and the core semantic information is retained
after dimensionality reduction.

(2) BiLSTM:
−→
h𝑡 = LSTM

(︁
h𝑡
𝑝,
−−→
h𝑡−1

)︁
(3)

←−
h𝑡 = LSTM

(︁
h𝑡
𝑝,
←−−
h𝑡+1

)︁
(4)

By concatenating the forward
−→
h𝑡 and the backward

←−
h𝑡 hidden states, we obtain the bidirectional

temporal feature
−→
H𝑙 =

[︁−→
H𝑙 ;

−→
H𝑙

]︁
∈ R𝐿×512, which effectively models the contextual dependencies in

the generated text.

3.2.3. Geometric Attention Enhancement Module

By focusing on key local features through learnable spatial weights, the problem of hidden feature
extraction of machine-generated fragments in generated text is solved.

(1) One-dimensional convolution transformation: feature space transformation of bidirectional LSTM
output:

𝑄 = Conv1D(𝐻𝑙,𝑊𝑄), 𝐾 = Conv1D(𝐻𝑙,𝑊𝐾) (5)

(2) Location enhances attention:

𝐴 = Softmax
(︂
𝜎

(︂
𝑄𝐾⊤
√
𝑑
⊙ 𝜂

)︂)︂
(6)

𝜎 is the SiLU activation function, which dynamically adjusts the attention distribution; 𝜂 ∈ R is a
learnable position enhancement factor, which amplifies the weight contribution of important positions

(3) Residual connection:
𝐻𝑎 = Conv1D(𝐴𝑉 ) +𝐻𝑙 (7)

The original sequence structure information is retained to avoid feature shift caused by the attention
mechanism.

3.2.4. Classification decision layer

The final classification is completed based on the aggregated features of the [CLS] tag, and the
global representation is used to distinguish complex collaborative patterns. The first position vector
(corresponding to the [CLS] tag) of the geometric attention output is taken as the global feature:

𝑦 = 𝑊𝑐𝐻
(0)
𝑎 + 𝑏𝑐 ∈ R6 (8)

Where 𝑊𝑐 ∈ R512×6 maps the features to 6 category spaces. Practical analysis shows that the [CLS]
tag can effectively aggregate the collaborative mode features of the full text after multi-layer attention
transfer.

This architecture achieves multi-granular modeling of traces of human and machine collaboration in
generated text through a hierarchical feature refinement mechanism. Experiments have verified that
its classification performance on different collaboration modes is significantly better than the baseline
model (see Chapter 3).



Figure 1: DBG Architecture

4. Experiments and Results

4.1. Experiment Settings

In the training experiment of DBG, we trained the model on the training data of the official train,
and used dev as the validation data of the model. The ratio of train.jsonl to dev.jsonl is about 8:2. This
model uses the DeBERTa-v3-large pre-trained model to build the classification framework, setting
the projection layer dimension to 256, and the bidirectional LSTM adopts a single-layer bidirectional
structure. We apply layer normalization between LSTM layers and set the recurrent connection drop
rate to 0.3. The geometric attention module contains 8 parallel convolutional layers. The model adopts
a hierarchical learning rate strategy in the training phase. The pre-trained DeBERTa uses a learning
rate of 1e-5, and the newly added module uses a learning rate of 1e-4. The model is trained for 5 epochs
in total, and mixed precision training is performed using the AdamW optimizer. The batch is set to 8
and 4 steps of gradient updates are accumulated, and global gradient clipping (threshold 1.0) and early
stopping mechanism (development set loss is terminated after 10 rounds of no improvement) are used.
In data processing, the text content is unified to a length of 512 tokens, and DebertaV2Tokenizer is used
for word segmentation. The experiment was run on a single RTX 3090 GPU, with a fixed random seed
of 42 to control parameter initialization and data shuffle, and a full training cycle of 20 hours.

In the test phase, we used the model saved in the training phase to reason on the unlabeled test set
(subtask2_test.jsonl) provided by the CodaLab platform. First, the original text was standardized
into an input sequence of 512 tokens in length through DebertaV2Tokenizer. After loading the optimal
training model, full batch reasoning was performed on the RTX 3090 GPU with a batch size of 16.
Mixed precision calculation and torch.no_grad mode were enabled to accelerate the prediction
process. After obtaining the category probability distribution of each sample through argmax, the
integer prediction label (range 0–5) was strictly bound to the original test sample ID in the key-value pair
format of "id": "label", and written into a new result JSONL file (such as predictions.jsonl)
by line. This process took about 1 hour. Finally, the format_checker.py script provided by the
official was used to verify the text format, and finally a standardized submission file that meets the
requirements of the CodaLab evaluation platform was generated.

4.2. Metrics

According to the particularity of this human-machine collaborative classification task, the official
defines four indicators, namely Macro Recall, F1 Macro Score, F1 Micro Score and Accuracy. Among
them, Macro Recall is the most important and is the primary indicator of the ranking list. These
indicators are good for evaluating the performance of the model and the degree of completion of the
task. The following section will introduce these indicators in detail.
Macro Recall: The arithmetic mean of the recall rates of all categories, treating the recognition



ability of each category equally[12]. Its formula is defined as follows:

Macro Recall =
1

𝐶

𝐶∑︁
𝑖=1

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
(𝐶 = 6) (9)

Among them, 𝑇𝑃𝑖 represents the number of true positive samples (correctly predicted samples) of the
𝑖th category; 𝐹𝑁𝑖 represents the number of false negative samples (missed samples) of the 𝑖th category
F1 Macro Score: The arithmetic mean of the F1 scores of all categories, which comprehensively

balances the precision and recall[13]. Its formula is defined as follows:

F1 Macro =
1

𝐶

𝐶∑︁
𝑖=1

2 · Precision𝑖 · Recall𝑖
Precision𝑖 + Recall𝑖

(10)

Among them, Precision𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
, Recall𝑖 = 𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
. Relying on the characteristics of macro-

average, the F1 value of each category is calculated independently and then averaged to avoid large
categories dominating the results.
F1 Micro Score: The F1 value calculated based on global statistics (the sum of TP/FP/FN of all

categories) reflects the performance dominance of high-frequency categories[14]. Its formula is defined
as follows:

F1 Micro =
2 ·

∑︀𝐶
𝑖=1 𝑇𝑃𝑖

2 ·
∑︀𝐶

𝑖=1 𝑇𝑃𝑖 +
∑︀𝐶

𝑖=1 (𝐹𝑃𝑖 + 𝐹𝑁𝑖)
(11)

Accuracy: The ratio of correctly predicted samples to the total number of samples measures the
overall classification performance[15]. Its formula is defined as follows:

Accuracy =

∑︀𝐶
𝑖=1 𝑇𝑃𝑖

𝑁total
(𝑁total = Total number of samples) (12)

These four indicators effectively quantify the effectiveness of DBG in the human-machine collabora-
tive text classification task through the combined effect of a comprehensive evaluation model. Accuracy
focuses on category balance, Macro Recall focuses on full category coverage, F1 Macro Score focuses on
fine-grained classification stability, and F1 Micro Score focuses on the dominance of high-frequency
categories. A multi-dimensional evaluation system covering scenarios with uneven data distribution is
comprehensively constructed to effectively evaluate the model’s capabilities in this classification task.

4.3. Results

The model we proposed performed well in the PAN-CLEF 2025 Subtask 2: Human-AI Collaborative
Text Classification task, and was significantly higher than the baseline model in four key indicators,
demonstrating its effectiveness and competitiveness in this task. As shown in Table 2, our model
achieved a significant breakthrough in the official indicator Macro Recall, reaching 56.87%, which is
8.55% higher than the 48.32% of RoBEta-base, indicating that it has a higher discriminative ability in this
human-machine collaborative text classification; in addition, the F1 Macro Score score is 56.45%, which
significantly exceeds the baseline model, reflecting its stability in this classification task. The Accuracy
score is 66.81%, which is 9.72% higher than the 57.09% of the baseline model, reflecting the model’s
robust performance in dealing with the class imbalance problem in this classification task.However,
through our testing, the average single sample inference delay of the 512 token sequence on the RTX
3090 GPU for DBG is * * 1200ms * * (standard deviation 85ms), with a peak memory usage of 10GB. In
the future, knowledge distillation technology will be used to improve inference speed.

In terms of competition ranking, our entry ranked 5th in the official leaderboard of PAN-CLEF
2025 Subtask 2 (a total of 22 contestants). This ranking fully demonstrates the competitiveness of
DBG and its excellent classification ability in this task among many excellent entries and different
types of participating models. It can be said that it has excellent discrimination ability in complex



classification tasks such as multi-class text classification and single text content with mixed and varied
content.However, through our tests, DBG’s single-sample inference latency for a 512-token sequence
on an RTX 3090 GPU averaged 1200ms (standard deviation 85ms), and the peak memory usage reached
10GB. In the future, knowledge distillation technology will be used to improve inference speed.

Table 2
Performance on PAN-CLEF 2025 Subtask 2

Approach Macro Recall(%) F1 Macro Score(%) Accuracy(%)

Baseline RoBERTa-base 48.32 47.82 57.09
DBG(ours) 58.87 56.45 66.81

5. Conclusion

In this paper, a multi-level classification framework DBG combining pre-trained language model,
sequence modeling and dynamic attention enhancement is proposed to solve the classification problem
of generative AI and human collaborative text. Through the deep semantic encoding of DeBERTa, the
bidirectional sequence dependency modeling of BiLSTM and the local feature extraction of geometric
attention, the model effectively solves the problem of hidden feature extraction of human-machine
collaboration traces in mixed text. Experiments verify the robustness of DBG in scenarios with highly
uneven data distribution. It performs well in various indicators, with a Macro Recall score of 56.87%, an
F1 Macro Score score of 56.45%, and an Accuracy score of 66.81%, all of which exceed the benchmark.
This achievement provides a technical solution for practical needs such as authenticity verification of AI-
generated content and academic misconduct detection, and lays the foundation for multimodal human-
machine collaborative analysis. In future work, we will further improve DBG, including optimizing
its hyperparameters, enhancing data preprocessing, improving deep feature fusion capabilities, and
exploring the combination of other methods to improve system performance and detection accuracy.
At the same time, we will also explore the expansion of cross-language transfer capabilities and
the optimization of the explainability of attention mechanisms to meet more complex generative AI
governance challenges.
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