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Abstract

The Voight-Kampff task at PAN CLEF 2025 challenges participants to detect and categorize Al-generated text
in an era of increasingly human-like language models. In this work, we develop a two-stage system leveraging
fine-tuned transformer architectures to tackle both binary and multi-class authorship verification. For Subtask 1,
we fine-tune a bert-base-uncased model to distinguish human-written from machine-generated text, achieving
near-perfect performance across genres with minimal false positives. For Subtask 2, we address severe class
imbalance in multi-class collaborative authorship detection by augmenting underrepresented categories using
backtranslation, synonym/antonym replacement, and random deletion. Fine-tuning a roberta-large model on this
enriched dataset yields significant gains, particularly in minority classes. Our results underscore the effectiveness
of combining targeted data augmentation with robust transformer-based models to capture subtle distinctions in
authorship, offering a scalable foundation for detecting generative Al involvement in real-world texts.
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1. Introduction

The increasing use of large language models (LLMs) in content creation has introduced new challenges
in distinguishing between human- and Al-generated text. While generative Al has shown remarkable
capabilities in mimicking human writing, this raises concerns related to academic integrity, misinforma-
tion, and authorship transparency. As Al-assisted writing becomes more sophisticated, robust detection
systems are needed to identify the degree of machine involvement in written texts.

The Voight-Kampff Generative Al Detection 2025 task [1, 2], part of the PAN shared task series
with the ELOQUENT Lab [1], addresses this problem by evaluating detection systems across two
key subtasks. Subtask 1 focuses on binary classification of texts as either entirely human-written or
machine-generated, even in cases where the Al attempts to imitate a specific human writing style
[2]. This tests the sensitivity and robustness of detection methods against adversarial obfuscation and
unseen model outputs.

Subtask 2 extends the challenge by introducing multi-class classification of collaborative human-Al
texts, requiring systems to detect nuanced degrees of machine involvement. This includes identifying
when humans post-edit Al-generated drafts, co-write with Al models, or minimally edit machine-
generated outputs. The goal is not only to improve detection accuracy but also to understand the
spectrum of human-AI collaboration [2].

To tackle these challenges, this paper explores a range of techniques, including data augmentation
strategies, finetuning, ensemble methods, and neural classifiers. Our system builds upon prior research
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in authorship verification and leverages recent advances in supervised learning, fine-tuning, and hybrid
modeling. We focus on robustness across genres and model types, addressing both fully and partially
machine-generated content.

The rest of this paper is structured as follows: section 2 presents a review of the related works
focusing on the approaches commonly used for authorship detection. Section 3 describes our approach
to solving both subtasks. Section 4 presents our validation results. Lastly, section 5 concludes our paper.

2. Related Work

Authorship verification has evolved from stylistic analysis of human writing to the detection of Al-
generated content. Recent work has leveraged both traditional machine learning and deep learning
models for this task. Fine-tuned transformer architectures such as DeBERTa [3] and RoBERTa have
achieved high performance in binary classification of human vs. Al text [4], while hybrid models that
combine BERT with CNNs enhance local and contextual feature extraction [5].

Some systems introduce data augmentation and R-Drop regularization [6] to improve robustness,
employing loss functions that combine cross-entropy and KL divergence. Ensemble learning approaches
using multiple transformer models (e.g., BERT, RoBERTa, DeBERTa) have shown further improvements
in ROC-AUC scores [7]. Meanwhile, instructional prompting with T5 has been explored to reframe
authorship detection as a sequence-to-sequence task [8].

Beyond transformers, research has explored lightweight classifiers with embeddings like LUAR for
low-resource scenarios [9], and stylometric analysis using Graph Neural Networks (GNNs) alongside
pre-trained models [10]. Approaches such as Tri-Sentence Analysis [11] and hybrid models like BertT
[12] demonstrate effectiveness in handling short texts and improving generalization.

Despite promising results, many systems struggle with generalization to novel Al models or obfuscated
styles, highlighting the importance of continual adaptation and diverse training data in generative Al
authorship verification.

3. Methodology

In this section, we provide details about the datasets for each task, followed by our methodology for
both subtasks individually.

3.1. Datasets

The datasets for this task are provided as newline-delimited JSON files. In subtask 1’s dataset, each
entry includes an identifier, the text content, the originating model (human or specific AI model), a
label (0 for human, 1 for AI), and a genre indicator (e.g., essays, news, fiction).
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Figure 1: Sub-Task 1 Dataset Class Distribution



The dataset for subtask 2, on the other hand, comprises multi-domain documents drawn from
academic sources, journalism, and social media. The data includes a mixture of human-written and
machine-generated samples (produced by models such as GPT-4, Claude, and PaLM) and is annotated
to indicate the type of human-AlI collaboration. The dataset spans multiple languages and provides
detailed labels for each collaboration category.
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Figure 2: Sub-Task 2 Dataset Class Distribution

3.2. Subtask 1: Voight-Kampff Al Detection Sensitivity

In this task, our primary objective was to accurately distinguish between human-written and Al-
generated text. This binary classification problem required a robust modeling pipeline that could
leverage the nuanced differences between the two categories. The distribution of the dataset used for
this task is illustrated in Figure 1, providing insight into the balance of the data across both classes.

The first phase of our workflow involved data preprocessing. The original dataset was provided in a
. jsonl format, which is commonly used for storing structured data in a line-delimited manner. To
facilitate data handling and analysis, we first converted this . jsonl file into a Pandas DataFrame. From
this structure, we extracted only the essential fields required for our task: “id’, ‘text’, ‘label’.
These fields represent, respectively, the unique identifier of each sample, the content of the text, and
its associated label indicating whether the text was Al-generated or written by a human (0 means
human-written, and 1 means Al-generated).

After isolating the relevant information, we transformed the dataset into the Hugging Face Dataset
format. This conversion optimized the data pipeline for fine-tuning pre-trained models. The Hugging
Face Dataset object also provides efficient shuffling, batching, and tokenization utilities, which are
particularly useful for handling text data at scale.

With the dataset prepared, we proceeded to the model fine-tuning phase. We leveraged the Hugging
Face transformers library due to its modularity, ease of use, and strong support for state-of-the-art
pre-trained language models. We used the AutoModelForSequenceClassification interface to
load the bert-base-uncased model with two output labels (human and Al), and the AutoTokenizer
for consistent input preprocessing. We selected this variant of BERT for its proven effectiveness in
various natural language understanding tasks, particularly in text classification. The fine-tuning process
involved training the model on the labeled dataset to adapt BERT’s pretrained representations to our
specific task of authorship classification.

Training was carried out using the Trainer API, which provided integrated training and evaluation
loops, model checkpointing, and metric logging. All hyperparameters used during training, including
learning rate, batch size, and number of epochs, are detailed in Table 1. These parameters were chosen



based on standard practices for fine-tuning transformer models and adjusted to fit the computational
constraints and performance needs of our project.

Table 1
Hyperparameters Used in Both Subtask 1 and Subtask 2 Experiments

Hyperparameter  Value

Epochs 3
Learning Rate 2x107°
Batch Size 8
Weight Decay 0.01

We monitored performance after each epoch and retained the best-performing model. For evaluation,
we used the evaluate library to compute micro-averaged F1 scores, ensuring that performance was
balanced across both classes. At inference time, predictions were generated using the Trainer API and
analyzed via a detailed classification report, giving us insights into precision, recall, and F1 score for
both human and AI text classes. This setup ensured a reliable, reproducible training pipeline aligned
with modern standards for fine-tuning transformer-based classifiers.

3.3. Subtask 2: Human-Al Collaborative Text Classification

For this sub-task, our objective was to determine the extent of Al involvement in the generation of a
given piece of text. Unlike the binary classification task described earlier, this problem was framed as a
multi-class classification challenge, where each sample was categorized into one of six distinct labels
based on the degree and type of human-machine collaboration. The classification labels are as follows:

+ 0: fully human-written

« 1: human-written, then machine-polished

« 2: machine-written, then machine-humanized
« 3: human-initiated, then machine-continued

+ 4: deeply-mixed text, where some parts are written by a human and some are generated by a
machine

« 5: machine-written, then human-edited
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Figure 3: Overview of the data preprocessing, augmentation, and fine-tuning pipeline used for multi-class Al
authorship extent classification in Subtask 2.

The distribution of samples across these six categories is visualized in Figure 2, which highlights a
substantial class imbalance in the dataset. This imbalance posed a significant challenge, particularly for
training a model capable of accurately distinguishing underrepresented categories.

As with the earlier task, the dataset was initially provided in . jsonl format. To facilitate preprocess-
ing and further transformations, we first converted the data into a Pandas DataFrame. From the available



fields, only the text and label columns were retained, as these were essential for the classification
task.

Given the imbalance in class distribution, we implemented several data augmentation techniques
targeting the three least represented classes - 3, 4, and 5. These augmentation strategies were designed
to increase the diversity and volume of examples in the minority classes, thereby helping to mitigate
the effects of class imbalance during training. The augmentation methods used include:

« Backtranslation

« Synonym Replacement
« Antonym Replacement
« Random Deletion

Each of these strategies was applied separately to the minority classes, after which the augmented
datasets were merged to form an enriched and more balanced training set, as depicted in Table 2.

Table 2
Class Distribution in Training Dataset for Subtask 2 Before and After Augmentation
Label Before Augmentation After Augmentation
0: Fully human-written 75,270 75,270
1: Human-written, then machine-polished 95,398 95,398
2: Machine-written, then machine-humanized 91,232 91,232
3: Human-initiated, then machine-continued 10,740 53,700
4: Deeply-mixed text 14,910 74,550
5: Machine-written, then human-edited 1,368 6,840

This enhanced dataset was utilized to fine-tune the state-of-the-art Roberta-Large Model. The
large variant was chosen to effectively capture the nuances and nonlinearities present in such a complex
dataset. By training on both the original and augmented data, the model became better equipped to
generalize across all six categories of Al-human text interaction. The hyperparameters used are detailed
in Table 1, and the entire workflow is visually represented in Figure 3.

4. Results and Discussion

4.1. Subtask 1: Voight-Kampff Al Detection Sensitivity

Table 3 reports the detailed classification metrics obtained by fine-tuning a BERT-base-uncased model on
the Subtask 1 dataset. The model achieves an overall accuracy of 98.77%, with precision and recall both
above 98% for human-authored text and above 99% recall for Al-generated text. These results indicate
that the model is highly effective at distinguishing between genuine human writing and obfuscated
machine-generated content, even when the latter is crafted to mimic a specific authorial style.

Table 3

Classification report for Subtask 1 (BERT-base-uncased).
Class Precision Recall F1-score Support
Human (0) 0.9968 0.9687 0.9825 1,277
Al (1) 0.9830 0.9983 0.9906 2,312
Accuracy 0.9877
Macro avg 0.9899 0.9835 0.9865 3,589
Weighted avg 0.9879 0.9877 0.9877 3,589

The exceptionally high recall for the Al class (0.9983) suggests that the detector rarely misses machine-
generated instances, even when those instances employ novel obfuscation methods. Conversely, the



slight asymmetry in recall (0.9687) for the human-authored class highlights a small proportion of false
positives—Al texts misclassified as human—which could stem from particularly human-like AI outputs.
Overall, the model’s balanced precision and recall showcase its robustness and sensitivity in the face of
adversarial style-mimicking.

The ROC curves and confusion matrix visualized in Figure 4 further reinforce the model’s high
discriminative ability. The curves show excellent separation between the classes, and the confusion
matrix reveals very few misclassifications, aligning with the reported metrics.
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Figure 4: ROC curves and confusion matrix for Subtask 1.

The scores obtained after running the model on TIRA [13] are presented in Table 4. It showcases our
model’s flawless performance across all genres in the validation phase, achieving a perfect ROC-AUC
of 1.0 and consistently high scores across C1, F1, F0.5U, and Brier metrics—underscoring both its
discriminative power and calibration quality.

Table 4

Evaluation metrics for the Subtask 1 Submission on TIRA [13].
Dataset Genre Roc-Auc Brier C@1 F1 FO5U Mean
pan25-generative-ai-detection-val  All 1.0 0.986 0983 0.987 0.980  0.987
pan25-generative-ai-detection-val  Essays 1.0 0.982 0980 0.988 0.981 0.986
pan25-generative-ai-detection-val  Fiction 1.0 0.987 0983 0.983 0975 0.985
pan25-generative-ai-detection-val  News 1.0 0.987 0985 0.991 0.986  0.990

Essays Fiction News

119 13 - 800

True Negative
True Negative
True Negative

N

S]

=1

)

(=)}

T
-
<]
=]

Actual
Actual
Actual

i
3
3

Number of Samples

=200

True Positive
True Positive
True Positive

Predicted Negative Predicted Positive Predicted Negative Predicted Positive Predicted Negative Predicted Positive
Predicted Predicted Predicted

Figure 5: Confusion Matrix for Each Genre for Subtask 1.

Furthermore, the confusion matrices for each genre in the test dataset are shown in Figure 5, which
provides further insight through confusion matrices for each genre on the test set. The model demon-
strates perfect recall in Essays and News (no false negatives), with only 13 and 16 false positives,



respectively, highlighting its conservative and accurate labeling of Al-generated text. In Fiction, al-
though a small number of misclassifications occur (28 false positives, 4 false negatives), the model still
exhibits strong performance, effectively handling the complexity of creative writing,.

Finally, Table 5 benchmarks our model against leading baselines on the test dataset, where it outper-
forms across all major metrics—achieving the highest ROC-AUC (0.865), F1 (0.860), and mean score
(0.879), while maintaining the lowest False Positive Rate (0.131). These results confirm that the model
generalizes well and remains reliable across genres, balancing precision and recall better than all
competing approaches.

Table 5

Performance Comparison on Subtask 1 Test Dataset
Model ROC-AUC Brier C@1 F1 F0.5u Mean FPR FNR
Ours 0.865 0.874 0.870 0.860 0.881 0.879 0.131 0.159
Baseline TF-IDF SVM 0.838 0.871 0.836  0.827 0.862 0.856  0.201  0.153
Baseline Binoculars LLaMA 3.1 0.760 0.835 0.793 0.802 0.831 0.818 0.314  0.206
Baseline PPMd CBC 0.636 0.795 0.735 0.763  0.771 0.758  0.784  0.129

4.2. Subtask 2: Human-Al Collaborative Text Classification

Subtask 2 involves a multi-class classification challenge with six distinct levels of collaboration. To
tackle the significant class imbalance, especially for Classes 3, 4, and 5, we implemented targeted data
augmentation techniques. These techniques included back-translation, antonym/synonym substitution,
and random deletion, all aimed at enhancing the representation of the underrepresented categories.

We fine-tuned a RoBERTa-Large model on the augmented dataset and observed decent scores,
especially in the performance of minority classes. Table 6 summarizes the per-class precision, recall,
F1-score, and overall performance metrics.

Table 6

Classification Report with Per-Class and Macro-Averaged Metrics
Class Precision Recall F1-score Support
0 0.644 0.775 0.703 12,330
1 0.403 0.935 0.564 12,289
2 0.712 0.991 0.829 10,137
3 0.899 0.336 0.489 37,170
4 0.152 0.573 0.241 225
5 0.998 0.937 0.967 510
Macro Avg 0.635 0.758 0.632 72,661
Weighted Avg 0.744 0.608 0.588 72,661
Accuracy 0.608

The macro-averaged F1-score of 0.632 shows balanced performance across classes, highlighting the
success of our augmentation strategy in addressing bias toward majority classes. Classes 4 and 5, once
underrepresented, have also seemed to perform well. Class 3 has high precision (0.899) but low recall
(0.336), indicating conservative predictions potentially due to overlap with other classes. Class 1, on the
other hand, has high recall (0.935) but low precision (0.403), suggesting overprediction.

Therefore, to evaluate the impact of each augmentation method, we fine-tuned separate models
using one technique at a time. Table 7 displays the class-wise precision, recall, and F1-scores. Antonym
replacement and random deletion enhanced macro-level performance, with random deletion achieving
the highest macro F1-score of 0.590.

To contextualize our results, we compare our model’s performance with the official PAN shared task
baseline on both the test and validation splits [2]. As shown in Table 8, while our test-time performance



Table 7
Per-class and macro-averaged Precision, Recall, and F1-score for different data augmentation strategies.

Metric / Strategy Class0 Class1 Class2 Class3 Class4 Class5 Macro Avg

Precision

Backtranslation 0.515 0.444 0.682 0.885 0.072 0.977 0.596
Antonyms 0.491 0.455 0.717 0.888 0.136 0.981 0.612
Rand Deletion 0.494 0.461 0.707 0.883 0.143 0.991 0.613
Synonym Subst. 0.514 0.432 0.699 0.877 0.102 0.984 0.601
Recall

Backtranslation 0.859 0.873 0.987 0.296 0.120 0.824 0.660
Antonyms 0.856 0.882 0.985 0.307 0.120 0.820 0.662
Rand Deletion 0.857 0.875 0.987 0.315 0.084 0.855 0.662
Synonym Subst. 0.855 0.883 0.987 0.284 0.098 0.869 0.662
F1-score

Backtranslation 0.644 0.588 0.807 0.443 0.090 0.894 0.578
Antonyms 0.625 0.601 0.830 0.456 0.127 0.893 0.589
Rand Deletion 0.627 0.604 0.824 0.464 0.106 0.918 0.590
Synonym Subst. 0.642 0.580 0.818 0.429 0.100 0.923 0.582

lags behind the baseline, our validation scores significantly exceed it, particularly in terms of macro
F1-score and recall. This suggests that our model is capable of learning from the augmented data, but
may suffer from domain shift or limited generalizability on the blind test set.

Table 8

Performance Comparison with PAN Shared Task Baseline [2]
Model / Split Macro Recall Macro F1-score Accuracy
PAN Baseline (Test) 48.32% 47.82% 57.09%
Ours (Test) 33.86% 31.86% 35.45%
Ours (Validation) 61.86% 63.20% 60.80%

4.3. Summary of Findings

Our experiments confirm that Subtask 1 can be effectively solved with standard fine-tuning of a
transformer-based model, achieving near-ceiling performance even under adversarial-style obfuscation.
In contrast, Subtask 2’s multi-way classification remains challenging due to severe class imbalance
and nuanced distinctions between collaboration levels. Data augmentation proves a viable strategy for
boosting performance on underrepresented classes, but future work should explore complementary
approaches—such as ensembling, stylometric feature fusion, or few-shot prompting with large language
models—to further enhance robustness and fine-grained discrimination.

5. Conclusion

In this study, we focused on both binary and multi-class Al authorship detection tasks for the Voight-
Kampff challenge at the CLEF PAN Lab 2025, utilizing a fine-tuned BERT base uncased model. For
Subtask 1, our approach achieved an impressive accuracy of 98.77%, demonstrating robust F1 scores for
both human and AI classes, which illustrates the model’s effectiveness in binary classification.



Subtask 2 posed a considerable challenge due to severe class imbalance. By applying targeted data
augmentation—specifically focused on underrepresented classes—and fine-tuning a RoBERTa-Large
model, we were able to significantly improve macro F1-score across the board. The largest gains were
observed in minority classes, particularly Class 4 and Class 5, demonstrating that balancing strategies
can effectively improve performance on rare collaboration levels without sacrificing overall accuracy.

Moreover, performance on high-support classes such as Class 0 (fully human-written) and Class 2
(minor AI assistance) remained robust, indicating that augmentation did not negatively impact the
model’s understanding of dominant patterns. However, despite these gains, Class 3 continues to show
low recall, suggesting persistent confusion in capturing intermediate collaboration levels. Future work
could explore the use of contrastive learning, ensemble techniques, or stylometric features to help better
disentangle nuanced authorial blends, especially with more powerful foundation models.
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