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Abstract
This paper describes our approach for TalentCLEF 2025 Task A, focusing on multilingual and cross-lingual
job title matching. The core challenge lies in the inherent brevity and ambiguity of job titles across different
languages (English, Spanish, and German) and professional sectors. Our methodology employs a curriculum
learning strategy to fine-tune an embedding model, gradually exposing it to more complex data involving job
titles and their descriptions. We further enhance retrieval performance through a hybrid system combining
semantic search with BM25 keyword matching, followed by a multilingual cross-encoder reranker. Experimental
results on the validation set demonstrate the effectiveness of our phased training approach and hybrid retrieval,
achieving a top average mAP of 56% on the validation set and an average mAP of 53% on the test set.
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1. Introduction

The modern workplace has undergone a profound transformation in recent years, driven by technological
innovation, globalization, and shifting social dynamics. Technological advancements—particularly in
artificial intelligence and natural language processing—are reshaping how companies source, assess,
and manage human capital. At the same time, the globalization of the workforce, enabled by remote
hiring and digital collaboration tools, has introduced new complexities in matching candidates to job
roles across linguistic and cultural boundaries. These developments require intelligent systems capable
of handling large-scale, multilingual data while maintaining the semantic integrity of role descriptions
and candidate profiles.

A central challenge in this space is the variability and ambiguity of job titles. Job titles are often brief,
under-specified, and highly context-dependent.

Furthermore, different organizations frequently use distinct terms to describe similar roles. For
instance, the positions of “Software Engineer,” “Backend Developer,” and “Platform Engineer” may
share significant overlap in responsibilities, yet differ in naming conventions based on organizational or
regional preferences. This terminological inconsistency becomes even more pronounced in multilingual
contexts, where translation, cultural nuance, and domain-specific jargon further complicate the task of
semantic alignment.

Task A of TalentCLEF 2025 [1] addresses this problem by focusing on multilingual and cross-lingual
job title matching across English, Spanish, and German. The objective is to retrieve and rank relevant job
titles for a given query title, leveraging both linguistic and contextual understanding. Effective solutions
to this task must reconcile lexical variation, cross-language equivalence, and domain specificity while
remaining computationally efficient and scalable.

In this notebook, we present AlexU-NLP’s approach to Task A, which combines curriculum learning,
hybrid retrieval, and re-ranking to address the multifaceted challenges of job title normalization
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and retrieval. Our methodology employs a curriculum-based fine-tuning strategy for a multilingual
embedding model, progressively introducing more complex data—from isolated job titles to rich title-
description pairs—thereby enhancing the model’s capacity to learn meaningful semantic representations.
To maximize retrieval performance, we adopt a hybrid strategy that integrates dense semantic search
with BM25-based sparse retrieval, followed by a multilingual cross-encoder re-ranker.

This system not only achieves strong performance on the TalentCLEF 2025 validation and test sets
but also demonstrates practical relevance in real-world Human Capital Management (HCM) scenarios.
By improving the robustness and adaptability of job title matching systems, our approach supports
more accurate talent identification and enhances the alignment between workforce capabilities and
organizational needs in a multilingual, cross-sector labor market.

2. Related Work

In the evolving landscape of job recommendation systems, recent research has focused on enhancing
the semantic understanding of job titles and descriptions to improve candidate-job matching. Zbib
et al.[2] introduced an unsupervised method that learns job title similarities by leveraging noisy skill
labels, demonstrating effectiveness in text ranking and job normalization tasks.

Complementing this, Laosaengpha et al. [3] proposed a Job Description Aggregation Network (JDAN)
that derives job title representations directly from job descriptions, bypassing the need for explicit skill
extraction and achieving superior performance over traditional skill-based approaches. Addressing
multilingual challenges, Zhang et al.[4] developed ESCOXLM-R, a multilingual language model pre-
trained on the ESCO taxonomy across 27 languages, which achieved state-of-the-art results on various
job-related tasks.

Furthermore, Deniz et al. [5] combined unsupervised and contrastive learning techniques to create
a multilingual job title encoder, enhancing cross-lingual job recommendation capabilities. These
advancements collectively contribute to more accurate and inclusive job matching systems in a global
context.

3. Dataset

The corpus for Task A [6] comprises job titles in English, Spanish, and German, spanning various job
domains and professional sectors.

• Training Data: Provided as 15,000 pairs of related job titles per language (English, Spanish,
German).

• Validation Data: Structured into three distinct files per language: queries, corpus elements, and
qrels (query relevance assessments). This set contains 100 query job titles per language, each
with a list of related job titles from the corpus. A knowledge base of 2,500 unique job titles per
language serves as the corpus for retrieval tasks within the validation set.

• Test Data: A background set comprising 5,000 job titles. The evaluation is conducted on a subset
of the background set, that will be a gold standard corpus of 100 job titles in each language.

4. Methodology

4.1. Data Augmentation

To enhance the contextual understanding of job titles during model fine-tuning and inference, we
implemented a two-pronged data augmentation strategy. First, for enriching the training dataset, we
used the European Skills, Competences, Qualifications and Occupations (ESCO) taxonomy [7]. We
utilized this resource to source authentic job descriptions corresponding to the titles in our training set.
The integration of these descriptions furnished the model with rich, real-world contextual information,



which is vital for effective fine-tuning. Second, to address the common challenge of missing descriptions
for corpus entries during the inference phase, we employed the Qwen3-14B large language model
(LLM) [8]. This model was tasked with generating synthetic yet contextually plausible job descriptions
for each title within the inference corpus using zero-shot prompting. This ensured that every entry in
our retrieval corpus, both for validation and testing, consisted of a title paired with a description, a step
whose impact is quantified in our results (Section 6.4).

4.2. Embedding Model and Fine-tuning Rationale

We selected the multilingual-E5-large-instruct model [9] as our core embedding backbone
due to its strong performance on multilingual tasks and its instruction-tuned architecture, which is
beneficial for understanding task-specific nuances. Effectively fine-tuning such models for our task
requires careful consideration, as simplistic fine-tuning strategies can present certain challenges. For
instance, training exclusively on brief job title pairs risks overfitting to lexical patterns, limiting the
model’s ability to generalize to semantically equivalent but lexically diverse titles. Conversely, directly
incorporating lengthy job descriptions from the start might lead the model to become overly reliant on
this rich contextual data, diminishing its focus on the job titles themselves and impacting performance
when such descriptions are absent or of variable quality. To navigate these pitfalls and foster a more
balanced and robust learning process, we adopted a curriculum learning strategy, detailed in the
subsequent section.

4.3. Curriculum Learning Implementation

We implemented a curriculum learning approach that incrementally increases the complexity of the
training data. This allows the model to first establish a robust understanding of job title semantics before
integrating the richer contextual information from job descriptions. A key aspect of our methodology
is its emphasis on cross-lingual learning. For instance, for each English job title, our training data
included not only pairs with its relevant English title and description but also pairs with translations of
both the title and its description into German and Spanish. This systematic exposure to semantically
equivalent information across languages is designed to encourage the alignment of embeddings in the
multilingual space, thereby mitigating language-specific clustering. The curriculum was structured
into several stages. These are briefly described in the following subsections, while full details regarding
their specific configurations can be found in Section 5.4.

4.3.1. Initial Stages

The curriculum commenced with training on symmetric (job title, job title) pairs. These initial stages
prioritized monolingual data, with the model being trained on pairs within each language (en-en, es-es,
de-de) before progressing to cross-lingual title pairs (en-es, en-de). The primary objective of these early
stages was to preserve and refine the pretrained model’s intrinsic ability to align job titles based purely
on their semantics, forming a strong foundation for subsequent learning.

4.3.2. Intermediate Stages

Following the initial alignment, the curriculum gradually introduced asymmetric pairs of (job title, job
title + job description). This was done in a controlled manner, balancing these richer contextual pairs
with the title-only examples from the preceding stages. Similar to the early stages, this phase also began
with same-language pairs before incorporating cross-lingual pairs. This part of the curriculum acted
as a form of soft domain adaptation, injecting more extensive contextual cues to help disambiguate
job titles and discourage overfitting to short, potentially ambiguous title tokens, while simultaneously
reinforcing the symmetric retrieval structure learned earlier.



4.3.3. Final Stages

The concluding stages of the curriculum placed a strong emphasis on the asymmetric (job title, job
title + job description) format. This was intended to allow the model to fully adapt to the anticipated
real-world inference conditions, where job descriptions are expected to provide significant contextual
information.

4.4. Hybrid Retrieval and Reranking

Our retrieval architecture employs a two-stage process, consisting of an initial hybrid retrieval phase
followed by a neural reranking mechanism.

In the first stage, we perform a hybrid search by combining signals from dense and sparse retrieval
methods.

• For dense retrieval, query job titles and corpus entries (each comprising a job title and
its corresponding description) are encoded into vector representations using our fine-tuned
𝐸5𝑙𝑎𝑟𝑔𝑒,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 model; relevance is then scored using cosine similarity.

• Concurrently, for sparse retrieval, we utilize the BM25 algorithm to compute lexical similarity
scores between the query (title and description) and each corpus entry (title and description).

The relevance scores from these two retrieval components are first normalized to a common range.
These normalized scores, denoted as 𝑆𝐵𝑀25,𝑛𝑜𝑟𝑚 for BM25 and 𝑆𝑣𝑒𝑐,𝑛𝑜𝑟𝑚 for the vector-based semantic
similarity, are then integrated using a weighted linear fusion. The final fused score, 𝑆𝑓𝑢𝑠𝑒𝑑, for each
candidate document is computed as:

𝑆𝑓𝑢𝑠𝑒𝑑 = (𝑤𝐵𝑀25 · 𝑆𝐵𝑀25,𝑛𝑜𝑟𝑚) + (𝑤𝑣𝑒𝑐 · 𝑆𝑣𝑒𝑐,𝑛𝑜𝑟𝑚)

Based on empirical evaluation on our validation set, we determined the optimal weights to be 𝑤𝐵𝑀25 =
0.15 for the BM25 component and 𝑤𝑣𝑒𝑐 = 0.85 for the semantic vector component.

The resulting candidate list, ranked by 𝑆𝑓𝑢𝑠𝑒𝑑, is subsequently passed to the second stage, where
we used a fine-tuned version of jina-reranker-v2-base-multilingual cross-encoder model
released by Jina AI [10] to perform a more fine-grained relevance assessment on the top-10 candidates
to produce the final ranked output.

5. Experimental Setup

5.1. Baseline

We established a baseline using the paraphrase-multilingual-MiniLM-L12-v2model [11], which
was the official baseline for this task, providing a reference for measuring improvements.

5.2. Embedding Model Selection (Zero-shot)

We evaluated several pretrained multilingual embedding models in a zero-
shot setting on the validation data. The models tested included BGE-M3 [12],
multilingual-E5-large, multilingual-E5-large-instruct [9], LaBSE [13], and
paraphrase-multilingual-mpnet-base-v2 [11]. The multilingual-E5-large-instruct
model demonstrated significantly superior performance, leading to its selection as our base model.

5.3. Fine-tuning Approaches (Without Full Curriculum)

The fine-tuning experiments utilized Multiple Negatives Ranking Loss (MNRL). The positive instances
for this loss consisted of pairs structured as either (job title, job title) or (job title, job title + description),
where the first element consistently served as the anchor and the second as the positive example. We
conducted preliminary fine-tuning experiments:



• Fine-tuning multilingual 𝐸5𝑙𝑎𝑟𝑔𝑒,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 on (job title, job title) pairs resulted in overfitting.
• Fine-tuning multilingual 𝐸5𝑙𝑎𝑟𝑔𝑒,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 on (job title, job title + description) pairs showed sub-

stantial improvement over the title-only approach and zero-shot performance.

We also experimented with ESCOXLM-R [4], a multilingual transformer model pretrained on ESCO data.
We fine-tuned the model on (job title, job title + description) pairs, testing mean, [CLS] token, and
attention pooling strategies for deriving sentence embeddings. All pooling strategies yielded similar
average mAP scores on the validation set.

5.4. Curriculum Learning Configuration

The cross-lingual curriculum learning strategy for the multilingual 𝐸5𝑙𝑎𝑟𝑔𝑒,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 model was imple-
mented in six stages. Throughout each curriculum stage, we also employed MNRL. The data composition
for each stage was as follows:

• Stage 1: 100% monolingual (job title, job title) pairs (en-en, es-es, de-de).
• Stage 2: 60% monolingual (job title, job title) pairs; 40% cross-lingual (job title, job title) pairs

(en-es, en-de).
• Stage 3: 60% monolingual (job title, job title); 20% cross-lingual (job title, job title); 20% monolin-

gual (job title, job title + description).
• Stage 4: 30% monolingual (job title, job title); 20% cross-lingual (job title, job title); 30% monolin-

gual (job title, job title + description); 20% cross-lingual (job title, job title + description).
• Stage 5: 10% monolingual (job title, job title); 10% cross-lingual (job title, job title); 60% monolin-

gual (job title, job title + description); 20% cross-lingual (job title, job title + description).
• Stage 6: 70% monolingual (job title, job title + description); 30% cross-lingual (job title, job title +

description).

5.5. Reranker Fine-tuning

For the second-stage refinement of our retrieval pipeline, we employed the
jina-reranker-v2-base-multilingual cross-encoder model. This model was specifically
fine-tuned for the task using a Binary Cross-Entropy (BCE) loss function. The training data was
formulated from (query, candidate document, label) tuples. Each candidate document consisted of
a job title concatenated with its corresponding description. Positive instances were created using
known relevant query-document pairs (𝑙𝑎𝑏𝑒𝑙 = 1), while hard negative instances (𝑙𝑎𝑏𝑒𝑙 = 0) were
incorporated to improve the model’s discriminative power. These hard negatives were mined from the
corpus by utilizing the jina-embedding-v3 model [14] to retrieve documents (job titles and their
descriptions) that were highly ranked for a given query but were non-relevant.

5.6. LLM-based Reranking

We also explored using a Large Language Model for reranking. The top 10 documents retrieved by our
dense retrieval (curriculum-trained 𝐸5𝑙𝑎𝑟𝑔𝑒,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡) were presented to the Gemma3-27B model [15].
The model was prompted to reorder these candidates based on relevance to the query. The specific
prompt template utilized for this task is detailed in Listing 1:

Listing 1: LLM Reranking Prompt Template
Below is a query and a list of 10 candidate job titles.
Rank them from most relevant (rank=1) to least relevant (rank=10).
Query: {query}
Candidates:
{candidates}
Return only the ordering as comma-separated numbers (e.g. 3,1,2,...):



In the prompt above, {query} is replaced with the actual query job title, and {candidates} is replaced
with a numbered list of the top-10 candidate job titles and their descriptions retrieved by the dense
model.

6. Results and Discussion

All results reported in this section are Mean Average Precision (mAP) scores obtained on the official
validation set, unless otherwise specified for test set evaluations.

6.1. Zero-shot Embedding Model Performance

To establish a baseline and select a strong foundation model, we evaluated several pretrained multilingual
embedding models in a zero-shot setting. Table 1 presents these results. The 𝐸5𝑙𝑎𝑟𝑔𝑒,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 model

Table 1
Zero-shot Performance of Multilingual Embedding Models on the Validation Set (mAP).

Model Spanish English German Average

paraphrase-multilingual-MiniLM-L12-v2 (Task Baseline) 0.3776 0.4992 0.2681 0.3816
bge-m3 0.3051 0.4552 0.2571 0.3391
multilingual-e5-large 0.3387 0.4187 0.2690 0.3421
multilingual-e5-large-instruct 0.4445 0.5831 0.3908 0.4727
LaBSE 0.3676 0.4280 0.2669 0.3542
paraphrase-multilingual-mpnet-base-v2 0.4176 0.5382 0.2892 0.4150

achieved the highest average mAP of 47.27%, outperforming the official task baseline by approximately
9%. This superior performance justified its selection as our base model for fine-tuning.

6.2. Performance of Fine-tuned Models (Without Full Curriculum)

We then investigated the impact of fine-tuning on performance, initially without employing the full
curriculum learning strategy. Table 2 shows the results for 𝐸5𝑙𝑎𝑟𝑔𝑒,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 and ESCOXLM-R (with
various pooling strategies) when fine-tuned on pairs of (job title, job title + job description). Fine-

Table 2
Fine-tuned Model Performance on the Validation Set (mAP) without Curriculum Learning.

Model Pooling Strategy Spanish English German Average

ESCOXLM-R Attention 0.4980 0.5971 0.4509 0.5153
ESCOXLM-R Mean 0.5058 0.6136 0.4629 0.5274
ESCOXLM-R CLS 0.5067 0.6165 0.4625 0.5286

𝐸5𝑙𝑎𝑟𝑔𝑒,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 – 0.5081 0.6215 0.4850 0.5382

tuning 𝐸5𝑙𝑎𝑟𝑔𝑒,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 improved its average mAP from 47.27% (zero-shot) to 53.82%. This underscores
the value of incorporating job descriptions, which provide essential context for disambiguating job
titles. The 𝐸5𝑙𝑎𝑟𝑔𝑒,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 model also consistently outperformed the ESCOXLM-R variants, despite the
latter being pretrained specifically on ESCO data. We hypothesize that the base architecture and the
instruction-tuning of the E5 model make it more amenable for fine-tuning on this specific task structure.

6.3. Impact of Curriculum Learning and Reranking Strategies

Table 3 illustrates the performance of our system, which incorporates the full cross-lingual curriculum
learning strategy for 𝐸5𝑙𝑎𝑟𝑔𝑒,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡, and subsequently evaluates the impact of different reranking



Table 3
Performance of Curriculum-Trained 𝐸5𝑙𝑎𝑟𝑔𝑒,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 with Different Reranking Strategies on Validation (dev) and
Test Sets (mAP).

System Configuration Language mAP (dev) mAP (test)

𝐸5𝑙𝑎𝑟𝑔𝑒,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡

English 0.6497 0.559
German 0.5005 0.516
Spanish 0.5226 0.527
Average 0.5576 0.53

𝐸5𝑙𝑎𝑟𝑔𝑒,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (LLM reranking)

English 0.6510 0.542
German 0.5031 0.503
Spanish 0.5206 0.516
Average 0.5582 0.52

𝐸5𝑙𝑎𝑟𝑔𝑒,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (BM25 & cross-encoder reranking)

English 0.6535 0.554
German 0.5026 0.515
Spanish 0.5229 0.522
Average 0.5597 0.53

approaches. The application of our cross-lingual curriculum learning strategy boosted the average
mAP of 𝐸5𝑙𝑎𝑟𝑔𝑒,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 on the development set to 55.76%, a substantial improvement from the 53.82%
achieved with direct fine-tuning (Table 2). Further enhancements were observed with reranking.

• The hybrid retrieval approach yielded the highest average mAP on the validation set (55.97%
mAP).

• LLM-based reranking with Gemma3-27B also showed a slight improvement over the curriculum-
only model on the validation set (55.82% mAP).

On the test set, both the curriculum-trained model without further reranking and our system (curriculum
+ BM25 + cross-encoder reranker) achieved an average mAP of 53%. This indicates good generalization
for the curriculum-trained model, though the slight gains from reranking observed on the validation
set did not fully translate to the test set for all configurations.

6.4. Impact of Job Descriptions at Inference

A core component of our methodology is the enrichment of job titles with full descriptions, either
sourced from ESCO or generated by an LLM. To explicitly validate the necessity of this step during
inference, we conducted an ablation study on the validation set. We compared the performance of our
final curriculum-trained model under two conditions: 1) the standard approach, where query titles are
used to retrieve from a corpus of job title + description, and 2) a title-only approach, where query titles
retrieve from a corpus containing only job titles, with descriptions omitted.

The results, presented in Table 4, confirm the significant benefit of including descriptions. The average
mAP dropped from 55.76% to 53.18% when descriptions were removed from the inference corpus. This
performance decrease underscores that the contextual information provided by the descriptions is
crucial for the model to disambiguate similar or ambiguous job titles, justifying our data augmentation
strategy for the inference phase.

Table 4
Effect of including job descriptions during inference on the validation set (mAP)

Model Configuration Spanish English German Average

Curriculum E5 (Title + Description) 0.5226 0.6497 0.5005 0.5576
Curriculum E5 (Title Only) 0.4992 0.6280 0.4683 0.5318



6.5. Computational Considerations

All experiments were conducted on a single NVIDIA A100 GPU. We analyzed the trade-off between
retrieval quality and computational cost for our primary system configurations. The baseline curriculum-
trained E5-large-instruct model offers the lowest latency, requiring only a single embedding pass for the
query followed by a fast vector search. Our final system, which adds BM25 (negligible overhead) and a
cross-encoder reranker, introduces higher latency by requiring 10 additional forward passes per query.
This cost yielded a marginal mAP improvement (55.76% to 55.97% on validation), making the system
suitable for applications where accuracy is paramount. The LLM-based reranking using Gemma3-27B
was the most resource-intensive approach, incurring substantial latency and memory usage for a
minimal performance gain on the validation set and a drop on the test set, proving impractical for this
task.

6.6. Limitations

Despite the promising results, this study has certain limitations that should be acknowledged. Firstly,
our data augmentation strategy relies on LLM-generated descriptions for inference, and while efforts
were made to ensure contextual plausibility, the synthetic data may not fully capture the stylistic
diversity or factual nuances of authentic ESCO or real-world job descriptions. Discrepancies in quality
or representativeness could subtly influence model performance on job titles reliant on these synthetic
contexts. Secondly, the system’s evaluation is based on the English, Spanish, and German languages
within the TalentCLEF dataset. Its generalization to entirely different languages or highly specialized
job domains not well-represented in the training data requires further investigation; the observed lower
performance for German titles across several models may hint at existing cross-lingual representation
challenges. Thirdly, the current work did not incorporate specific mechanisms to assess or mitigate
potential performance disparities across job titles that may be stereotypically associated with differ-
ent gender groups; addressing this is an important consideration for ensuring fairness in practical
applications. Finally, the optimal configuration of various components, such as curriculum learning
parameters, hybrid retrieval weights, or the selected LLM prompts, was determined based on validation
set performance. As is common in such iterative development, this process may have led to some degree
of adaptation to the validation data’s specific characteristics, as suggested by the slight variations in
performance gains between the validation and test sets for some of our reranking configurations.

7. Conclusion and Future Work

Our participation in TalentCLEF 2025 Task A demonstrated the efficacy of a carefully designed curricu-
lum learning strategy combined with data augmentation, hybrid retrieval, and cross-encoder reranking
for multilingual job title matching. The phased introduction of complexity and cross-lingual signals en-
abled our model to achieve strong performance. For future work, we plan to explore more sophisticated
hard negative mining techniques for both the embedding model and the reranker.

Further investigation and experimenting with larger, more capable LLMs for reranking (perhaps
with more elaborate prompting) could also yield improvements. Additionally, we intend to improve
the synthetic data generation process by ensuring that the descriptions generated by the LLM more
accurately reflect the linguistic style, content scope, and structural properties inherent in authentic
ESCO descriptions.

Declaration on Generative AI

During the preparation of this work, the authors used Gemini 2.5 Pro in order to: Grammar and
spelling check. After using this tool, the authors reviewed and edited the content as needed and take
full responsibility for the publication’s content.
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