
CEDNAV–UTB: Efficient Image Retrieval for Arguments
with CLIP
Notebook for the Touché Lab at CLEF 2025

Diego Alberto Guevara Amaya1, Jairo Enrique Serrano Castañeda2, Juan C. Martinez-Santos2

and Edwin Puertas2

1Naval Technological Development Center, Colombian Navy, Cartagena, Colombia
2School of Digital Transformation, Universidad Tecnológica de Bolívar, Cartagena, Colombia

Abstract
This paper introduces an efficient and reproducible system for argumentative image retrieval developed by the
UTB–CEDNAV team for the 2025 edition of the Image Retrieval for Arguments challenge at Touché@CLEF. The
system leverages the CLIP model (ViT-B/32) to represent textual arguments through images. Unlike previous
approaches that rely heavily on complex text processing, image generation models, or multi-stage architectures,
this solution focuses on computational simplicity. It significantly reduces energy consumption by reusing
embeddings, enabling parallel processing, and eliminating redundant steps. According to measurements made
using the CodeCarbon tool, this strategy resulted in an energy consumption reduction of over 85% in subsequent
runs. The implementation is easy to deploy in environments like Google Colab and adheres to all Touché
evaluation standards. This work provides a strong baseline for developing sustainable and scalable multimodal
retrieval systems.
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1. Introduction

Image Retrieval for Arguments is a task that leverages natural language processing and computer vision
to enhance the analysis, generation, and presentation of complex ideas. This task is part of the Touché
Lab at CLEF 2025 challenge [1], organized in collaboration with ImageCLEF [2], and evaluates systems
capable of retrieving or generating images relevant to a textual argument. Each image should help
convey the argument by illustrating it, providing examples, or evoking an emotional response, as shown
in Figure 1.

Figure 1: Retrieval for Arguments Touché-CLEF
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To accomplish the task, we used the CLIP model (Contrastive Language–Image Pretraining) [3].
This model encodes both text and images into vector representations, enabling direct comparison and
measurement of their semantic relatedness. CLIP has demonstrated strong performance in multimodal
tasks and requires no additional training when used directly as a retrieval engine.

The task of Image Retrieval for Arguments has practical applications in education, digital media, and
language assistance systems. Images reinforce textual content, enhance understanding of technical
or abstract concepts, and support visual assessment, thereby reducing bias and misinterpretation.
Moreover, integrating relevant images into automatic argument generation and analysis pipelines
contributes to the development of more valuable and accessible multimodal systems.

Current systems often prioritize improving retrieval accuracy without considering the computational
efficiency of the process. Recent studies, such as Anthony et al. (2021) [4], highlight the importance
of measuring and minimizing the carbon footprint during the training and execution of models, en-
couraging the use of tools that effectively track and optimize energy consumption. However, moving
toward more sustainable artificial intelligence requires addressing the increasing energy demands of
modern models. Canales (2024) [5] discusses several strategies to reduce the environmental impact
of AI systems. In response to this need, the present research proposes a solution that optimizes the
use of cloud infrastructure, executes processes in parallel, and reuses intermediate results—such as
embeddings and rankings—to reduce energy consumption without compromising task performance.

This work presents a functional, easy-to-understand, and optimized baseline that solves the task
using CLIP without requiring additional training. The system delivers reproducible and reliable results
with minimal manual intervention. Key contributions include:

• A multimodal pipeline for image retrieval using CLIP.
• A computational efficiency strategy that minimizes unnecessary resource usage.
• A validated baseline on the dataset provided by Touché 2025.

We organized the remainder of the document as follows: Section 2 presents the previous approaches
used in earlier editions of the challenge and compares them with the proposed methodology. Section 3
describes the general architecture of the system and its workflow. Section 4 details the validation and
preliminary evaluation process. Section 5 offers a critical discussion of the results obtained. Finally,
Section 6 proposes possible lines of future work.

2. Background

This section provides context for the study by reviewing prior approaches, the CLIP model used, and
the criteria applied for data selection in the UTB–CEDNAV System. It addresses four key aspects: (i)
related work in previous argumentative image retrieval tasks, (ii) the text–image matching model that
serves as the core of the system, (iii) the data selection strategy designed to ensure both efficiency and
relevance and (iv) a quantitative evaluation of the system’s environmental impact, offering insight into
its computational sustainability compared to more resource-intensive methods. This review situates the
proposed approach within the current state of the art and justifies the methodological decisions made.

2.1. Related Work

The task of Image Retrieval for Arguments has been in previous editions of the Touché challenge through
various methods. Brummerloh et al. (2022)[6] employed sentiment analysis with BERT, optical character
recognition (OCR) with Tesseract, and image clustering, which improved stance classification but
relied heavily on text processing and manual validation. Elaina et al. (2023)[7] incorporated ChatGPT-
generated arguments and combined CLIP with IBM Debater as a re-ranker, which introduced generative
biases and reduced accuracy. Ostrower et al. (2024)[8] proposed generating reference images using
TinyLLaMA and Stable Diffusion to compare with the corpus via CLIP. Still, the high computational
cost prevented surpassing the traditional baseline. In contrast, the UTB-CEDNAV System avoids the



use of OCR, sentiment analysis, artificial generation, and external services. It relies solely on real data
(image captions), significantly reducing computational load, bias, and ambiguity.

2.2. CLIP (ViT-B/32)

Developed by OpenAI and introduced by Radford et al. (2021) [9], CLIP is a multimodal learning
model designed to associate images and text within a shared vector space. Although primarily built for
image–text matching, its architecture supports comparisons across different modalities—text-to-text,
image-to-image, and text-to-image—while preserving semantic consistency. This flexibility makes it
especially effective for tasks such as argumentative image retrieval, where semantic similarity between
claims and captions is crucial. In the UTB–CEDNAV System, CLIP is used precisely for this purpose,
leveraging its ability to represent complex concepts in a unified space without requiring OCR or
sentiment analysis.

Although CLIP was originally designed for multimodal tasks, its text encoder has proven effective
for measuring semantic similarity in scenarios where the goal is to align textual descriptions of visual
content. In the context of the Touché 2025 task, each image is accompanied by a human-written caption
that reflects its visual semantics. Using CLIP embeddings for both claims and captions ensures that both
vectors lie in the same multimodal space, preserving compatibility with future image-based extensions
without additional re-training.

Moreover, adopting a text-only model like SBERT would require aligning two independently trained
encoders: one for textual claims and another for captions intended to describe visual content. Since
the captions are tightly coupled to the image semantics, we found that CLIP’s text encoder provides a
better inductive bias for the retrieval task.

Finally, our approach avoids the computational cost of running the image encoder, while still leverag-
ing CLIP’s alignment between natural language and visual concepts. This makes it both efficient and
semantically coherent for the task, especially when prioritizing sustainability and simplicity.

2.3. Select Dataset Features

It is important to acknowledge that the image captions used in this work were generated using the
LLaVA model by the task organizers prior to system execution. While our approach avoids running
large-scale models during retrieval, the initial creation of captions involved significant computational
effort and energy consumption. This upstream cost, although external to our implementation, should be
considered when evaluating the total environmental footprint of the end-to-end pipeline. Nonetheless,
by focusing exclusively on reusing these pre-generated captions, our system minimizes additional
emissions and promotes sustainable downstream processing.

Building on this foundation, and to further optimize task performance, this work draws on findings
by Theng and Bhoyar (2024) [10], who emphasize that the quality and relevance of data directly impact
model performance. Although the dataset was selected by the organizers and is considered fixed, our
system focuses on selecting the most informative elements within each data instance. Specifically, we
prioritize image captions, which in our view contain the most semantically relevant and computationally
efficient representation of the image content. This selection is guided by three criteria:

• Computational efficiency: Reducing unnecessary data lowers processing time and resource
usage.

• Direct semantic relevance: Prioritizing elements closely tied to the task objective enhances
model interoperability.

• Reduction of non-informative textual noise: Eliminating irrelevant or redundant content
prevents the model from learning spurious patterns, as described by Maheronnaghsh et al. (2024)
[11]



2.4. Environmental Impact Assessment

To evaluate the environmental impact of the UTB–CEDNAV System, the team employed CodeCarbon
[12], an open-source library developed by MLCO2, to estimate the carbon footprint associated with
the computational load of running machine learning models. This tool tracks the energy consumption
of Python scripts. It translates it into estimated CO2 emissions, taking into account factors such as
hardware type, geographical location, and runtime duration.

The integration of CodeCarbon reflects a growing need to develop AI systems that are both sustainable
and transparent regarding their environmental cost. Unlike previous approaches to argumentative
image retrieval, this work not only avoids computationally intensive techniques like OCR or synthetic
image generation but also quantifies its efficiency using objective environmental metrics.

The values obtained through CodeCarbon support the system’s minimalist design, demonstrating
that we achieved strong performance while maintaining low energy consumption, thereby reinforcing
the feasibility of sustainable solutions in real-world scenarios.

3. System Overview

Building on the outlined context, we designed the system to address the task of Image Retrieval for
Arguments by adhering to two core principles: processing efficiency and sustainable use of computational
resources.

3.1. Selecting Dataset Elements

The system begins with an analysis of the official Touché 2025 dataset, published on Zenodo [13], which
comprises 32,339 images associated with 128 claims across 27 argument topics.

After reviewing the dataset’s structure and content, we selected the following components:

• arguments.xml: Contains the textual arguments, particularly the claims that define the core of
each argument (see Figure 2)

Figure 2: Example argument structure [13]

• touche25-image-retrieval-and-generation-main.zip: file is approximately 20 GB in size, that includes
images, HTML files, captions, and metadata. The key component is image-caption.txt, which
provides precise and efficient image descriptions (see Figure 3)

After analyzing the metadata provided by the organizers, we observed that each image has a corre-
sponding caption, offering a precise and concise description. Given this consistency, and in line with
our objective of minimizing computational cost, we opted to compare textual embeddings between the
claims of the arguments and the captions of the images. This approach allowed us to avoid direct image
processing while preserving semantic alignment throughout the retrieval process.

3.2. Embeddings Pipeline

Once we identified the relevant dataset elements, the system loads captions from image-caption.txt
files in parallel using ThreadPoolExecutor, as described by Sreedeep S. (2024) [14]. Each caption is
linked to its corresponding image_id and stored in a dictionary-like structure for efficient access.



Figure 3: Example "image.web" and "caption.txt" [13]

Claims and captions are then transformed into normalized vector representations using the CLIP
model (ViT-B/32). These embeddings capture semantic meaning in a shared multidimensional space
and are stored in organized, separate files for later use. Before processing new data, the system checks
for existing embeddings to avoid redundant computations, as illustrated in Figure 4. This caching
mechanism reduces execution time, promotes scalability, and supports experiment reproducibility. The
impact of this optimization is quantified in Section 3.4 through environmental metrics.

Figure 4: Pipeline CEDNAV-UTB System

3.3. Retrieval

Given that the captions reliably describe the content of the images and are consistently available, the
system computes semantic similarity exclusively between claim and caption embeddings. This text–text
approach aligns with the task requirements while simplifying the retrieval process.

To identify the most relevant images for each argument, the system calculates cosine similarity
between the embedding of each claim and those of all captions. Cosine similarity quantifies the angle
between vectors in a shared semantic space, with values closer to 1 indicating stronger alignment.

Images whose captions rank among the TOP_K most similar are selected as final results. These are
formatted according to the Touché 2025 submission specifications and exported in submission.jsonl
format.

3.4. Implementation

The system was implemented in Google Colab, offering a practical balance between performance,
simplicity, and scalability. The reuse of embeddings and conditional file downloading reduce memory



and storage overhead during execution.
To assess the system’s environmental impact, we employed the CodeCarbon tool to estimate energy

consumption and associated CO2 emissions throughout the pipeline. Although the shared task requires
a single submission, development involves multiple validation and testing runs to ensure retrieval
quality, parameter tuning, and reproducibility.

The initial run—generating all embeddings from captions and claims—consumed approximately
0.00349 kWh, resulting in 0.00093 kg of CO2 emissions. In contrast, subsequent executions that
reused precomputed embeddings averaged only 0.00013 kg of CO2 per run, as shown in Figure 5.
These results support the benefits of the reuse strategy discussed in Section 3.4.
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Figure 5: Energy emissions iterations.The second, third, fourth, and fifth iterations reused the embeddings
generated during the first iteration, optimizing execution time and reducing the system’s overall energy con-
sumption.

Although a large language model (LLM) was not directly implemented as a baseline, recent studies
indicate that such models exhibit significantly higher energy consumption. For instance, Anthony
et al. (2021) [4] report that a single inference with an LLM can consume between 0.01 and 0.3 kWh,
depending on the model size and the underlying infrastructure. This far exceeds the energy consump-
tion recorded by our CLIP-based approach. The difference highlights the efficiency of the proposed
solution, particularly during iterative validation phases, where the reuse of embeddings contributes to
a cumulative reduction in emissions.

4. Discussion

The UTB–CEDNAV system distinguishes itself from previous work by adopting a direct, reproducible,
and lightweight approach. Unlike earlier proposals that rely on intensive text processing—such as OCR
and sentiment analysis [6], re-ranking with external argumentation models [7], or synthetic visual
generation via diffusion models [8]—this system operates exclusively on real data provided in the official
dataset (claims and captions).

The design avoids external dependencies such as re-rankers, additional classifiers, or APIs, which
simplifies the pipeline and facilitates deployment. While approaches based on OCR or image generation
may require significantly more operations per argument—due to reliance on resource-heavy models like
Tesseract, LLaMA, or Stable Diffusion—UTB–CEDNAV performs a direct embedding transformation
using CLIP followed by semantic similarity computation.



An important optimization is the pre-check for existing embeddings, allowing the system to skip
redundant computations. This promotes reusability of intermediate results and contributes to efficient
runtime behavior, particularly during iterative development and testing.

The deliberate exclusion of HTML parsing, generative components, and synthetic data reflects a clear
focus on algorithmic transparency and methodological traceability. Furthermore, the final submission
was successfully validated using the official Touché tool, ensuring strict compliance with the task
requirements.

Although the UTB–CEDNAV system did not surpass the baseline performance (nDCG@5 = 0.2360), it
adheres to a clear design philosophy centered on simplicity and responsible resource use. The winning
team also leveraged CLIP embeddings, but used a larger and more compute-intensive model variant
(ViT-L/14-336), suggesting that performance gains come at the cost of higher complexity. These results
highlight an important trade-off between accuracy and sustainability in multimodal retrieval systems.

5. Conclusions

This work presents a robust, reproducible, and environmentally responsible system for argumentative
image retrieval in the Touché 2025 challenge. Its design is grounded in three core principles:

• The exclusive use of the CLIP model (ViT-B/32) to transform text into embeddings within a shared
vector space.

• Efficient batch processing with reuse of previously generated resources.
• A mindful data selection strategy that avoids redundant operations and reduces computational

load.

Unlike other approaches that integrate generative models, synthetic visual analysis, or additional
neural networks for classification or re-ranking, this system minimizes technical complexity and energy
consumption. It makes it particularly well-suited for resource-constrained environments or institutions
committed to digital sustainability.

Additionally, the strategy of reusing previously stored representations proved highly effective: after
the initial run, which required whole embedding generation, subsequent executions showed an energy
consumption reduction of over 85%, with average emissions as low as 0.00013 kg of CO2 per run.
This measurable difference highlights the positive impact of avoiding unnecessary recomputation. It
reinforces the importance of designing optimized pipelines that prioritize both computational efficiency
and environmental sustainability in resource-intensive AI tasks.

6. Future Work

Future directions for the system include:

• Integrating lightweight models for semantic stance classification, enabling the system not only to
assess image-argument relevance but also to determine whether an image supports or opposes a
given argument

• Evaluating low-impact visual question answering techniques for re-ranking previously retrieved
results. This includes exploring lightweight methods to approximate queries such as “Does this
image support the argument?” with minimal computational cost, aiming to improve the semantic
alignment of retrieved images.

• Exploring hybrid embeddings that combine efficiency with lightweight generative capabilities,
blending CLIP with small models that better capture argumentative context without adding
latency or complexity

Together, these enhancements position the UTB–CEDNAV System as a viable path toward more
sustainable multimodal artificial intelligence without compromising performance or coherence in the
task of argumentative retrieval.
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