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Abstract
The recent surge in popularity of DeepSeek has attracted significant attention, yet its practical performance in
real-world applications remains largely unexplored. In this study, our team participated in BioASQ Task 13b, which
focuses on biomedical information retrieval and question answering (QA). We evaluated the DeepSeek model
using three different approaches: local deployment, API-based access, and supervised fine-tuning. Specifically,
we investigated the model’s performance in few-shot learning settings. Notably, in Phase A+, our system using
the deepseek-r1:671b model combined with retrieval-augmented generation techniques ranked first among all
67 submitted runs on yes/no questions in Batch 4. In Phase B, systems using both the deepseek-r1:32b and
deepseek-r1:671b models achieved top performance on yes/no questions in Batches 2 and 3. Additionally, the
system using the deepseek-r1:32b model ranked first on list questions in Batch 1. Our results demonstrate the
proposed method is effective in biomedical QA tasks and shows promising potential for future applications in the
domain. The code is available at https://github.com/wuren519/bioasq-2025.
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1. Introduction

Biomedical question answering (QA) is a challenging task due to the complexity and domain
specificity of medical terminology, concepts, and evidence retrieval[1]. The BioASQ challenge has
long served as a benchmark for developing robust biomedical QA systems[2]. In recent years, Large
Language Models (LLMs) have shown promise across a wide range of tasks, including open-domain QA
and information retrieval[3].

In this work, we explore the use of LLMs[4] to build a biomedical QA system for the BioASQ
Task 13b challenge[5]. We design an end-to-end pipeline that relies primarily on LLMs for query
understanding, document retrieval, reranking, and answer generation. We participated in BioASQ Task
13b and submitted system results for Phase A, Phase A+, and Phase B. We compared prompt-based
strategies with LLMs trained via supervised fine-tuning (SFT) on previous BioASQ data. Our system
demonstrates that LLMs, with or without SFT, can serve as core components for biomedical QA.

Following the introduction, we will focus on related work in Section 2, describe our method in
Section 3, report our results in Section 4, and provide conclusions and future outlook in Section 5.

CLEF 2025 Working Notes, 9–12 September 2025, Madrid, Spain
*Corresponding author.
$ 2024007005@zut.edu.cn (J. Tang); huayang@zut.edu.cn (H. Yang); xiongkai2024@163.com (K. Xiong);
2023107324@zut.edu.cn (H. Li); pq@uevora.pt (P. Quaresma); hongbinyu@zut.edu.cn (H. Yu); zwbyz262@outlook.com
(W. Zhang); mingzhou@zut.edu.cn (M. Song)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:2024007005@zut.edu.cn
mailto:huayang@zut.edu.cn
mailto:xiongkai2024@163.com
mailto:2023107324@zut.edu.cn
mailto:pq@uevora.pt
mailto:hongbinyu@zut.edu.cn
mailto:zwbyz262@outlook.com
mailto:mingzhou@zut.edu.cn
https://creativecommons.org/licenses/by/4.0/deed.en


2. Related Work

2.1. Biomedical QA

Biomedical QA systems aim to provide concise answers to specialized biomedical queries. The
BioASQ task includes expert-written English questions of four types: yes/no, factoid, list, and
summary[6]. In BioASQ Task 13b, systems retrieve relevant PubMed articles and snippets and produce
an “exact” answer and an “ideal” answer for each question. For yes/no questions, the exact answer is
“yes” or “no”; for factoid and list questions, it is the named entity or list of entities that answer the
question; for summary questions, no exact answer is given and only the ideal answer[7]. Importantly,
BioASQ provides all synonyms of the gold answers – e.g. a gene or disease may have multiple names –
so systems must handle these alternative forms. The ideal answers are paragraph-sized explanations,
intended to augment the exact answer. Therefore, the evaluation of the systems consists of two aspects:
first, the assessment of exact answers, including accuracy or F1 score for yes/no questions, MRR for
factoid questions, and F-Measure for list questions; second, the evaluation of summary quality, which is
typically conducted through manual assessment or using ROUGE metrics.

2.2. LLMs for biomedical/health QA

The emergence of LLMs such as GPT, PaLM, and LLaMA has significantly advanced the field of
QA, including biomedical and health domains[8]. These models, trained on vast corpora of general and
domain-specific text, exhibit strong capabilities in understanding natural language queries, retrieving
relevant information, and generating fluent, contextually appropriate answers. In the biomedical
domain, this is particularly valuable due to the dense and specialized nature of medical texts[9].

Recent studies have demonstrated the utility of LLMs for biomedical QA tasks[3]. Models such as
BioGPT[10] and PubMedGPT, pre-trained on biomedical literature, have shown improved performance
on tasks like document classification, named entity recognition, and QA. Other works have explored
prompt-based approaches, leveraging instruction-tuned LLMs to answer biomedical questions without
task-specific SFT[11]. Despite promising results, challenges remain, including handling domain-specific
terminology, ensuring factual correctness, and retrieving up-to-date evidence from sources like PubMed.

2.3. LLMs Supervised Fine-tuning

SFT has become a widely used strategy to adapt general-purpose LLMs to specific domains and
tasks[12]. By training on labeled examples, SFT enables LLMs to align better with target outputs, adhere
to domain-specific answer styles, and improve factuality. In biomedical QA, where precise terminology
and structured responses are often required, SFT is particularly valuable.

Recent work has shown that models such as BioMedLM[13], BioGPT, and domain-adapted versions
of T5[14] or BERT[15] benefit significantly from SFT on biomedical corpora or QA datasets. These
models outperform zero-shot LLMs in tasks requiring structured output, such as factoid or list-type
answers in BioASQ.

Given the promising results achieved by prior work using LLMs in biomedical QA tasks, and the
strong performance of the DeepSeek models across various benchmarks, we explore the application of
DeepSeek to biomedical QA and further fine-tune it for domain-specific adaptation.

3. Methodology

3.1. Phase A

Inspired by the work of Samy Ateia and Udo Kruschwitz[16], in Phase A, we built a query expansion-
driven multi-stage retrieval and reranking framework based on PubMed. The framework consists of
four components: query expansion, PubMed retrieval, document filtering, and snippet reranking. The
detailed process is illustrated in Figure 1.



Figure 1: Flowchart of Phase A

We first perform few-shot query expansion on the original question. Using the DeepSeek model
and a set of predefined examples, we generate a structured Boolean query expression. These predefined
examples were selected by evaluating our own results on historical BioASQ datasets using F1 scores
and choosing the highest-scoring entries, with the aim of enhancing the model’s ability to handle
current inputs by providing high-quality references. The output is then post-processed using regular
expressions to remove redundant tags and adapt the format for the PubMed API.

Then, we use the PubMed API to retrieve articles based on the expanded query. The retrieval
is limited to articles published between 2000 and 2025, in accordance with the BioASQ Task 13b
requirement to use the 2025 PubMed baseline version. To ensure coverage of contemporary biomedical
research, the year 2000 is selected as a reasonable starting point. If the initial query returns no results, a
query refinement module is triggered. In this step, the original keywords that failed to retrieve articles
are also included in the prompt, allowing LLMs to generate a broader query that retains the original
context and relevance.

Next, we retrieve titles and abstracts for each PMID returned. We then use a large language
model-based snippet extraction module to identify semantically relevant passages from the returned
articles. If no relevant snippets are found, the system will re-trigger the query refinement and retrieval
process, with a maximum of two iterations—a limit determined empirically: we tested 1, 2, and 3
iterations and found that two iterations yielded the best overall performance.

Finally, we rank the extracted snippets and reorder the original list of articles based on snippet
relevance. This ensures that the most relevant snippets appear at the top of the final system output,
enhancing answer usability and accuracy. The system ultimately selects the 10 most helpful snippets
from the retrieved results.

3.2. Phase A+ and Phase B

The methods used in Phase A+ and Phase B are identical; the only difference lies in the source of
the input documents and snippets. In Phase A+, the relevant articles and snippets are retrieved by our
own system during Phase A, whereas in Phase B, they are officially provided and selected by experts.
The detailed process is illustrated in Figure 2.

In both Phase A+ and Phase B, we adopt a question-type-specific prompting strategy to handle the
four types of questions: yes/no, factoid, list, and summary. Table 1 illustrates the prompt specifically
designed for list-type questions in Phase B, which resulted in the best performance of our model on the
corresponding task. For each type, a tailored prompt is constructed, incorporating the relevant text
snippets to help LLMs better answer the question. For yes/no, factoid, and list questions, the model is
required to generate both the ‘exact_answer‘ and the "ideal_answer". For summary questions, only the



Table 1
Prompt and English Translation

Original Prompt (Chinese) Prompt Translation (English)

[文献片段]
[问题]：{问题}
[要求]：
1.返回严格符合此格式的JSON：
{{"entities": ["实体1", "实体2"]}}
2.实体必须来自文献片段
3.按文献中出现频率排序（高频在前）
4.每个实体必须是名词短语（2-5个单词）
5.最多返回100个不同实体
6.不要任何解释性文字
[示例]：
问题：What are the common symptoms of
COVID-19?
响应：{{"entities": ["fever", "cough", "fatigue", "loss of
smell"]}}

{Snippets}
[Question]: {question}
[Instructions]:
1. Return a JSON strictly in this
format:
{"entities": ["entity1", "entity2"]}
2. Entities must be extracted from the
snippets
3. Sort entities by frequency of
occurrence (high to low)
4. Each entity must be a noun phrase
(2-5 words)
5. Return up to 100 unique entities
6. Do not include any explanatory text
[Example]:
Question: What are the common symptoms
of COVID-19?
Response: {{"entities": ["fever",
"cough", "fatigue", "loss of smell"]}}

Figure 2: Flowchart of Phase A+ and Phase B

"ideal_answer" is needed.
Moreover, in our system, we apply SFT to a general-purpose open-source LLMs using historical

BioASQ QA data. The model was trained to generate answers for all question types in Phase A+ and
Phase B of BioASQ. In Phase A+,compared to the prompt-only version of our system, the SFT model
shows improved consistency and factual accuracy, particularly for factoid and list questions.

4. Results and Analysis

4.1. Task 13 B Phase A

We participated in batches 1, 2, and 4 of Task 13b Phase A. Based on the work of Samy Ateia and
Udo Kruschwitz [16], we limited the number of few-shot examples to 10 in all our systems. We used
two models: deepseek-r1:32b, a 32-billion-parameter multimodal AI model developed by DeepSeek and



deployed locally, and deepseek-r1:671b, which was accessed via API.
Table 21 summarizes all the runs we submitted to the BioASQ 13b task, covering Phase A, A+, and

B. Each row corresponds to a specific run configuration. The System Name column indicates the group
of runs we designed, such as ZUT-IR-1 to ZUT-IR-3. Submit Name and Run denote the submission
identifier and the order of the run within the system. Model refers to the large language model used in
the run, while Original Name indicates the original name of the system. The last three columns (Phase
A, Phase A+, and Phase B) specify whether the run was submitted to the respective phases. For example,
ZUT-IR-2-b represents the second run under system ZUT-IR-2, which uses the DeepSeek-r1:8b-distill
model. This run was submitted to both Phase A+ and Phase B, and its original name is deepseek32b-full.

Table 2
Implemented Runs
System Name Submit Name Run Model Original Name Phase A Phase A+ Phase B

ZUT-IR-1 (a–e)

-a first run

deepseek-r1:32b

deepseek32b-me/deepseek32b-f ✓ ✓ ✓
-b second run deepseek32b-full/phaseB-4 ∘ ✓ ✓
-c third run deepseek32b-f ∘ ✓ ✓
-d fourth run phaseB-4 ∘ ∘ ✓
-e fifth run phaseB-5 ∘ ∘ ✓

ZUT-IR-2 (a–b)
-a first run

deepseek-r1:8b-distill
deepseek32b-me ∘ ✓ ✓

-b second run deepseek32b-full ∘ ✓ ✓

ZUT-IR-3 (a–b)
-a first run

deepseek-r1:671b
phaseB-4/deepseek32b-full ✓ ✓ ✓

-b second run phaseB-5 ∘ ✓ ✓

Tables 3 and 42 present the complete results of our participation in the three batches of Task 13b
Phase A, where MAP is the primary official evaluation metric.

Table 3
Task 13B Phase A, Document Retrieval

Batch Position System Precision Recall F-Measure MAP GMAP

1
1 of 51 Top Competitor 0.1047 0.5043 0.1605 0.4246 0.0104
35 of 51 ZUT-IR-3-a 0.1514 0.2298 0.1641 0.1712 0.0002
36 of 51 ZUT-IR-1-a 0.1378 0.1690 0.1425 0.1428 0.0001

2
1 of 41 Top Competitor 0.0976 0.5093 0.1546 0.4425 0.0096
33 of 41 ZUT-IR-3-a 0.1170 0.2131 0.1285 0.1738 0.0003
34 of 41 ZUT-IR-1-a 0.0611 0.2059 0.0863 0.1492 0.0002

4
1 of 79 Top Competitor 0.0600 0.2512 0.0927 0.1801 0.0008
23 of 79 ZUT-IR-1-a 0.0741 0.1595 0.0809 0.1014 0.0001
43 of 79 ZUT-IR-3-a 0.0513 0.1047 0.0565 0.0586 0.0001

We compared the performance of deepseek-r1:671b and deepseek-r1:32b on Task 13b Phase
A. In both batch 1 and batch 2, the system using deepseek-r1:671b outperformed the one using
deepseek-r1:32b in terms of MAP evaluation, in both document retrieval and snippet extraction. In
batch 4, the system using deepseek-r1:32b significantly outperformed the one using deepseek-r1:671b
in terms of MAP evaluation, both in document retrieval and snippet extraction. Among them, for
document retrieval, the MAP score of the deepseek-r1:32b-based system was 0.1014, whereas the
score of the deepseek-r1:671b-based system was only 0.0586. Similar observations have been reported
in previous studies. Srivastava et al. [17] found in the BIG-bench benchmark that different models
exhibit significant variation in performance across tasks, which may be due to the alignment between

1Only in Phase B, the Original Names of ZUT-IR-1-a and ZUT-IR-1-b are deepseek32b-f and phaseB-4, respectively. In all
other phases, their Original Names are deepseek32b-me and deepseek32b-full. Similarly, only in Phase A, the Original Name
of ZUT-IR-3-a is deepseek32b-full, while in other phases it corresponds to phaseB-4. In the fourth batch of Phase A+, the
Original Name of ZUT-IR-1-a is deepseek32b-f, while in the other batches, it is deepseek32b-me.

2“Top Competitor” refers to the highest-ranked system in that batch, which is not ours. When the top competitor is absent in
a reported batch, one of our systems is the best-performing one.



Table 4
Task 13B Phase A, Snippet Extraction

Batch Position System Precision Recall F-Measure MAP GMAP

1
1 of 51 Top Competitor 0.0803 0.3050 0.1186 0.4535 0.0014
25 of 51 ZUT-IR-3-a 0.0998 0.0575 0.0651 0.1131 0.0001
26 of 51 ZUT-IR-1-a 0.0955 0.0517 0.0603 0.1085 0.0001

2
1 of 41 Top Competitor 0.0941 0.3625 0.1421 0.5522 0.0035
23 of 41 ZUT-IR-3-a 0.0812 0.1200 0.0780 0.1883 0.0002
27 of 41 ZUT-IR-1-a 0.0884 0.0985 0.0690 0.1523 0.0002

4
1 of 79 Top Competitor 0.0411 0.1135 0.0560 0.1634 0.0001
15 of 79 ZUT-IR-1-a 0.0488 0.0939 0.0548 0.0682 0.0001
26 of 79 ZUT-IR-3-a 0.0428 0.0520 0.0368 0.0343 0.0000

task characteristics and model capabilities. Furthermore, Wei et al. [18] pointed out that in certain
reasoning tasks, smaller models may outperform larger ones due to their preference for specific
patterns. Therefore, our observation that deepseek-r1:32b outperforms larger models in Batch 4 may be
attributed to a distribution of questions that better aligns with its strengths.

4.2. Task 13B Phase A+

In Phase A+, we also used 10-shot learning across all systems. The specific system configurations
are shown in Table 2. The majority of our systems leveraged the deepseek-r1:32b model, with the
deepseek-r1:671b model used selectively in later-phase systems. In batches 3 and 4, we further conducted
SFT on the deepseek-r1:8b model as part of our experiments.

Table 5 presents the yes/no results for exact questions in Phase A+. In batch 1, for the exact
yes/no questions, we submitted two systems, both based on the deepseek-r1:32b model. In batch 2, we
submitted five systems. The results show that both systems using deepseek-r1:671b outperformed the
three systems based on deepseek-r1:32b. Among them, the best-performing system was the second
run based on the deepseek-r1:671b model, which ranked 10th out of all 49 submitted systems. In batch
3, we submitted two systems, both using the SFT deepseek-r1:8b model. The results indicated that
both systems performed poorly. In batch 4, we submitted five systems. Among them, the “-a” systems
utilized relevant snippets retrieved in Phase A by the deepseek-r1:32b model, while the “-b” systems
used snippets obtained in Phase A by the deepseek-r1:671b model. Among the two systems using the
deepseek-r1:671b model in Phase A+, ZUT-IR-3-a—whose snippets were retrieved by deepseek-r1:32b in
Phase A—ranked 1st out of all 67 submitted systems; in contrast, ZUT-IR-3-b—whose snippets came from
deepseek-r1:671b—ranked only 26th. A similar trend was observed between ZUT-IR-2-a and ZUT-IR-2-b,
where the only difference was the snippet retrieval model used. These observations underscore the
critical impact of snippet retrieval quality on answer generation performance in Phase A+. It is worth
noting that the systems based on the SFT deepseek-r1:8b model performed very poorly in batch 3, and
were also outperformed in batch 4 by systems using both deepseek-r1:671b and deepseek-r1:32b.

Table 6 presents the factoid results for exact questions in Phase A+. For the exact factoid questions,
the system configurations across batches were consistent with those described for the exact yes/no
questions. In batch 1, the two systems we submitted based on the deepseek-r1:32b model performed
poorly. In batch 2, we submitted five systems. Consistent with the results for the exact yes/no questions,
the two systems using deepseek-r1:671b outperformed the three systems based on deepseek-r1:32b. In
batch 3, the two systems (ZUT-IR-2-a and ZUT-IR-2-b) based on the supervised fine-tuned deepseek-
r1:8b model achieved competitive results, ranking 16th and 17th among the 58 submitted systems.
In batch 4, results showed that the two systems using the SFT deepseek-r1:8b model achieved the
best performance, followed by the systems based on deepseek-r1:32b, while the two systems using



Table 5
Task 13 B, Phase A+, exact questions Yes/No

Batch Position System Accuracy F1 Yes F1 No Macro F1

1
1 of 56 Top Competitor 1.0000 1.0000 1.0000 1.0000
51 of 56 ZUT-IR-1-a 0.2941 — 0.4545 0.9377
56 of 56 ZUT-IR-1-b 0.2941 — 0.4545 0.2273

2

1 of 49 Top Competitor 1.0000 1.0000 1.0000 1.0000
10 of 49 ZUT-IR-3-b 0.9412 0.9524 0.9231 0.9377
11 of 49 ZUT-IR-3-a 0.9412 0.9524 0.9231 0.9377
18 of 49 ZUT-IR-1-c 0.8824 0.9091 0.8333 0.8712
21 of 49 ZUT-IR-1-b 0.8824 0.9167 0.8000 0.7571
27 of 49 ZUT-IR-1-a 0.8235 0.8800 0.6667 0.7733

3
1 of 58 Top Competitor 0.9545 0.9697 0.9091 0.9394
45 of 58 ZUT-IR-2-a 0.7273 0.8000 0.5714 0.6857
46 of 58 ZUT-IR-2-b 0.7273 0.8000 0.5714 0.6857

4

1 of 67 ZUT-IR-3-a 0.9231 0.9474 0.8571 0.9023
26 of 67 ZUT-IR-3-b 0.8846 0.9189 0.8000 0.7658
39 of 67 ZUT-IR-1-a 0.8462 0.8889 0.7500 0.8194
41 of 67 ZUT-IR-2-a 0.8077 0.8718 0.6154 0.7436
52 of 67 ZUT-IR-2-b 0.7692 0.8421 0.5714 0.7068

deepseek-r1:671b performed the worst. Among the two systems based on the SFT deepseek-r1:8b model,
the one that utilized snippets retrieved by deepseek-r1:32b in Phase A outperformed the one that used
snippets retrieved by deepseek-r1:671b, further confirming the critical impact of snippet retrieval quality
on answer generation performance in Phase A+.

Table 6
Task 13 B, Phase A+, exact questions factoid

Batch Position System Strict Acc. Lenient Acc. MRR

1
1 of 56 Top Competitor 0.4231 0.4615 0.4423
42 of 56 ZUT-IR-1-a 0.0769 0.0769 0.0769
46 of 56 ZUT-IR-1-b 0.0769 0.0769 0.0769

2

1 of 49 Top Competitor 0.5926 0.5926 0.5926
24 of 49 ZUT-IR-3-b 0.3333 0.3333 0.3333
25 of 49 ZUT-IR-3-a 0.3333 0.3333 0.3333
30 of 49 ZUT-IR-1-a 0.2963 0.2963 0.2963
31 of 49 ZUT-IR-1-b 0.2963 0.2963 0.2963
33 of 49 ZUT-IR-1-c 0.2963 0.2963 0.2963

3
1 of 58 Top Competitor 0.3500 0.5926 0.5926
16 of 58 ZUT-IR-2-a 0.2500 0.2500 0.2500
17 of 58 ZUT-IR-2-b 0.2500 0.2500 0.2500

4

1 of 67 Top Competitor 0.5926 0.5926 0.5926
10 of 67 ZUT-IR-2-a 0.4545 0.4545 0.4545
24 of 67 ZUT-IR-2-b 0.4091 0.4091 0.4091
39 of 67 ZUT-IR-1-a 0.3636 0.3636 0.3636
40 of 67 ZUT-IR-3-b 0.3636 0.3636 0.3636
41 of 67 ZUT-IR-3-a 0.3636 0.3636 0.3636

Table 7 presents the list results for exact questions in Phase A+. For the exact list questions, the
system configurations across batches were also consistent with those described for the exact yes/no
questions. In batch 1, the two systems we submitted using the deepseek-r1:32b model performed well.
In batch 2, we submitted five systems. The results show that the three systems using deepseek-r1:32b
outperformed both systems based on deepseek-r1:671b. In batch 3, the results indicated that the two



systems using the SFT deepseek-r1:8b model did not perform well and ranked relatively low. In batch 4,
the system we submitted using the SFT deepseek-r1:8b model achieved the best result, ranking third
among all 67 submitted systems. This system also relied on snippets retrieved by deepseek-r1:32b in
Phase A.

Table 7
Task 13 B, Phase A+, exact questions list

Batch Position System Mean Prec. Recall F-Measure

1
1 of 56 Top Competitor 0.2362 0.2370 0.2330
10 of 56 ZUT-IR-1-a 0.2078 0.1751 0.1843
14 of 56 ZUT-IR-1-b 0.1977 0.1773 0.1801

2

1 of 49 Top Competitor 0.3785 0.4357 0.3880
9 of 49 ZUT-IR-1-b 0.3038 0.3072 0.2955
18 of 49 ZUT-IR-1-c 0.2458 0.3160 0.2675
19 of 49 ZUT-IR-3-b 0.2395 0.2984 0.2574
20 of 49 ZUT-IR-3-a 0.2395 0.2984 0.2574
22 of 49 ZUT-IR-1-a 0.2199 0.3116 0.2390

3
1 of 58 Top Competitor 0.4674 0.4446 0.4541
43 of 58 ZUT-IR-2-b 0.1504 0.1742 0.1580
46 of 58 ZUT-IR-2-a 0.0876 0.1250 0.1000

4

1 of 67 Top Competitor 0.3272 0.2573 0.2845
3 of 67 ZUT-IR-2-a 0.3217 0.2929 0.3014
8 of 67 ZUT-IR-2-b 0.2775 0.2673 0.2670
17 of 67 ZUT-IR-3-a 0.2549 0.2911 0.2652
28 of 67 ZUT-IR-3-b 0.2263 0.2244 0.2210
39 of 67 ZUT-IR-1-a 0.2095 0.2543 0.2165

Notably, in Phase A+, our SFT deepseek-r1:8b model performed well on both the exact factoid
and exact list questions, outperforming the locally deployed deepseek-r1:32b model and the API-based
deepseek-r1:671b model. However, its performance on the exact yes/no questions was suboptimal. This
performance pattern suggests that SFT may be particularly effective in guiding the model to produce
well-structured answers for factoid and list-type questions, which often follow predictable formats.
In contrast, yes/no questions typically require more nuanced semantic understanding and inferential
reasoning, which may benefit from the broader knowledge capacity and emergent reasoning abilities of
larger, non-fine-tuned models such as deepseek-r1:671b.

4.3. Task 13B Phase B

In Phase B, we also used 10-shot learning across all systems. The specific system configurations
are shown in Table 2. We submitted five systems in each of the four batches. We used three types of
models: a locally deployed deepseek-r1:32b model, an API-accessed deepseek-r1:671b model, and a SFT
deepseek-r1:8b model.

Table 8 presents the yes/no results for exact questions in Phase B. In batch 1, for the exact yes/no
questions, all five systems using the deepseek-r1:32b model performed poorly. In batch 2, the results
showed that the two systems using the deepseek-r1:671b model outperformed the three systems based
on deepseek-r1:32b. Moreover, these two deepseek-r1:671b systems tied for first place among all 72
submitted systems, achieving an accuracy of 1. In batch 3, our submitted system ZUT-IR-1-b and system
ZUT-IR-3-a tied for first place among all 66 submitted systems. In batch 4, the best-performing system
was ZUT-IR-3-b, which ranked 9th out of 79 submitted systems. The other four systems achieved exactly
the same accuracy. It is worth noting that the deepseek-r1:671b model consistently outperformed its
smaller counterparts in handling yes/no questions across multiple batches in Phase B. This observation
suggests that larger models may possess stronger generalization and inferential reasoning capabilities,
which are particularly beneficial for binary classification tasks. In contrast, the SFT deepseek-r1:8b
model exhibited relatively poor and inconsistent performance, possibly due to limited coverage or



distributional bias in the fine-tuning data, which may hinder its ability to handle semantically diverse
or ambiguous yes/no questions.

Table 8
Task 13 B, Phase B, exact questions Yes/No

Batch Position System Accuracy F1 Yes F1 No Macro F1

1

1 of 72 Top Competitor 1.0000 1.0000 1.0000 1.0000
68 of 72 ZUT-IR-1-a 0.2941 0.0000 0.4545 0.2273
69 of 72 ZUT-IR-1-b 0.2941 0.0000 0.4545 0.2273
70 of 72 ZUT-IR-1-c 0.2941 0.0000 0.4545 0.2273
71 of 72 ZUT-IR-1-d 0.2941 0.0000 0.4545 0.2273
72 of 72 ZUT-IR-1-e 0.2941 0.0000 0.4545 0.2273

2

1 of 72 ZUT-IR-3-a 1.0000 1.0000 1.0000 1.0000
1 of 72 ZUT-IR-3-b 1.0000 1.0000 1.0000 1.0000
37 of 72 ZUT-IR-1-b 0.9412 0.9524 0.9231 0.9377
38 of 72 ZUT-IR-1-c 0.9412 0.9524 0.9231 0.9377
53 of 72 ZUT-IR-1-a 0.8824 0.9000 0.8571 0.8786

3

1 of 66 ZUT-IR-1-b 0.9545 0.9697 0.9091 0.9394
1 of 66 ZUT-IR-3-a 0.9545 0.9697 0.9091 0.9394
36 of 66 ZUT-IR-2-a 0.9091 0.9375 0.8333 0.8854
37 of 66 ZUT-IR-2-b 0.9091 0.9375 0.8333 0.8854
38 of 66 ZUT-IR-1-a 0.9091 0.9412 0.8000 0.8706

4

1 of 79 Top Competitor 1.0000 1.0000 1.0000 1.0000
9 of 79 ZUT-IR-3-b 0.9615 0.9744 0.9231 0.9487
32 of 79 ZUT-IR-2-a 0.9231 0.9474 0.8571 0.9023
33 of 79 ZUT-IR-2-b 0.9231 0.9474 0.8571 0.9023
34 of 79 ZUT-IR-1-a 0.9231 0.9474 0.8571 0.9023
35 of 79 ZUT-IR-3-a 0.9231 0.9474 0.8571 0.9023

Table 9 presents the factoid results for exact questions in Phase B. In batch 1, for the exact
factoid questions, all five of our systems used the deepseek-r1:32b model. The results indicated poor
performance. In batch 2, the results showed that the three systems using the deepseek-r1:32b model
outperformed the two systems based on deepseek-r1:671b. Our best result came from the second run
using the deepseek-r1:32b model, which ranked 5th among all 72 submitted systems. In batch 3, our
best-performing system also used the deepseek-r1:32b model, ranking 10th among all 66 systems —
outperforming the systems that used the SFT deepseek-r1:8b model and the deepseek-r1:671b model. In
batch 4, the best performance was achieved by the two systems that employed the deepseek-r1:671b
model.

Table 10 presents the list results for exact questions in Phase B.In batch 1, the system run with the
deepseek-r1:32b model for the fourth time achieved the best performance across the entire competition,
ranking first among all 72 submitted systems. Additionally, the systems run with the deepseek-r1:32b
model during the first and second runs ranked fourth and sixth, respectively. In batch 2, two systems
utilizing the deepseek-r1:671b model outperformed three systems based on the deepseek-r1:32b model.
The best-performing system in this batch was ZUT-IR-3-b, which ranked eighth among all 72 systems.
In batch 3, our system ZUT-IR-1-b achieved the highest ranking, placing fifth among 66 systems. The
results indicated that systems employing the SFT deepseek-r1:8b model exhibited the poorest overall
performance. In batch 4, consistent with previous observations, systems using the deepseek-r1:671b
model achieved the best results, whereas those based on the SFT deepseek-r1:8b model performed
comparatively poorly.

5. Conclusion and Future Work

We demonstrated the advanced performance of the emerging DeepSeek models in biomedical
retrieval scenarios when combined with 10-shot learning. In BioASQ Task 13b, we utilized three different
configurations of DeepSeek models: the locally deployed deepseek-r1:32b, the SFT deepseek-r1:8b, and



Table 9
Task 13 B, Phase B, exact questions factoid

Batch Position System Strict Acc. Lenient Acc. MRR

1

1 of 72 Top Competitor 0.5385 0.6538 0.5962
46 of 72 ZUT-IR-1-a 0.3846 0.3846 0.3846
48 of 72 ZUT-IR-1-b 0.3846 0.3846 0.3846
49 of 72 ZUT-IR-1-c 0.2273 0.3846 0.3846
50 of 72 ZUT-IR-1-e 0.2273 0.3846 0.3846
55 of 72 ZUT-IR-1-d 0.3462 0.3462 0.3462

2

1 of 72 Top Competitor 0.7037 0.7037 0.7037
5 of 72 ZUT-IR-1-b 0.6667 0.6667 0.6667
9 of 72 ZUT-IR-1-c 0.5926 0.5926 0.5926
18 of 72 ZUT-IR-1-a 0.5556 0.5556 0.5556
29 of 72 ZUT-IR-3-a 0.5185 0.5185 0.5185
51 of 72 ZUT-IR-3-b 0.4074 0.4074 0.4074

3

1 of 66 Top Competitor 0.4500 0.600 0.5042
10 of 66 ZUT-IR-1-a 0.4000 0.4000 0.4000
12 of 66 ZUT-IR-1-b 0.4000 0.4000 0.4000
24 of 66 ZUT-IR-2-a 0.3500 0.3500 0.3500
25 of 66 ZUT-IR-2-b 0.3500 0.3500 0.3500
36 of 66 ZUT-IR-3-a 0.3000 0.3000 0.3000

4

1 of 72 Top Competitor 0.6364 0.6364 0.6364
30 of 72 ZUT-IR-3-a 0.5000 0.5000 0.5000
31 of 72 ZUT-IR-3-b 0.5000 0.5000 0.5000
40 of 72 ZUT-IR-2-a 0.4545 0.4545 0.4545
41 of 72 ZUT-IR-2-b 0.4545 0.4545 0.4545
42 of 72 ZUT-IR-1-a 0.4545 0.4545 0.4545

Table 10
Task 13 B, Phase B, exact questions list

Batch Position System Mean Prec. Recall F-Measure

1

1 of 72 ZUT-IR-1-d 0.6226 0.5588 0.5808
4 of 72 ZUT-IR-1-a 0.6022 0.6022 0.5769
6 of 72 ZUT-IR-1-b 0.5826 0.5639 0.5659
19 of 72 ZUT-IR-1-e 0.5493 0.5047 0.5158
37 of 72 ZUT-IR-1-c 0.4770 0.4385 0.4507

2

1 of 72 Top Competitor 0.6842 0.2308 0.3329
8 of 72 ZUT-IR-3-b 0.5705 0.5748 0.5412
19 of 72 ZUT-IR-3-a 0.5410 0.6296 0.5408
28 of 72 ZUT-IR-1-a 0.5079 0.5770 0.5182
38 of 72 ZUT-IR-1-c 0.4744 0.5336 0.4846
39 of 72 ZUT-IR-1-b 0.4718 0.5073 0.4723

3

1 of 66 Top Competitor 0.6659 0.6530 0.6331
5 of 66 ZUT-IR-1-b 0.6417 0.5999 0.6102
13 of 66 ZUT-IR-1-a 0.6247 0.6050 0.5976
24 of 66 ZUT-IR-3-a 0.5770 0.5494 0.5502
29 of 66 ZUT-IR-2-a 0.5433 0.5631 0.5473
30 of 66 ZUT-IR-2-b 0.5433 0.5631 0.5473

4

1 of 79 Top Competitor 0.7491 0.5980 0.6492
23 of 79 ZUT-IR-3-b 0.5558 0.6055 0.5648
32 of 79 ZUT-IR-1-a 0.5098 0.5156 0.5043
37 of 79 ZUT-IR-3-a 0.4921 0.4985 0.4871
53 of 79 ZUT-IR-2-a 0.3994 0.4293 0.3987
54 of 79 ZUT-IR-2-b 0.3994 0.4293 0.3987

the API-based deepseek-r1:671b. Notably, in Phase A+, our system using the deepseek-r1:671b model
combined with retrieval-augmented generation techniques ranked first among all 67 submitted runs on
yes/no questions in Batch 4. In Phase B, systems using both the deepseek-r1:32b and deepseek-r1:671b



models achieved top performance on yes/no questions in Batches 2 and 3. Additionally, the system
using the deepseek-r1:32b model ranked first on list questions in Batch 1. Our SFT deepseek-r1:8b
model performed well only on the exact factoid and exact list questions in Phase A+, but showed poor
performance in other phases.

Our findings suggest that SFT may be particularly effective in guiding the model to produce
well-structured answers for factoid and list-type questions, which often follow predictable formats.
In contrast, yes/no questions typically require more nuanced semantic understanding and inferential
reasoning, which may benefit more from the broader knowledge capacity and emergent reasoning
abilities of larger, non-fine-tuned models such as deepseek-r1:671b.

In the future, we will conduct in-depth research on the application of fine-tuned models in Task
13b, aiming to further explore their capabilities and limitations across different question types and
retrieval settings.
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