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Abstract

This paper presents an approach for the clinical term Named Entity Recognition (NER) and Entity Linking (EL) in
Greek clinical texts. The approach was developed as part of the ELCardioCC shared task for clinical coding to the
International Classification of Diseases, 10th edition (ICD-10). For the NER task, we used different BERT-based
models, the monolingual Greek BERT and the multilingual XLM-RoBERTa. We adapted them to the biomedical
domain by additional pretraining on biomedical texts in Greek. We further fine-tuned the models for token
classification on the train set to determine the ICD-10 term mentions in the text. The best F1 score we achieved
was 0.7167 on the test set. For the EL, we used a hybrid approach that combined two stages. The first stage was
based on a gazetteer - exact match or statistical match to unambiguous terms in a gazetteer compiled from the
train set, ICD-10 specification, and other public resources. The second stage was a fine-tuned bi-encoder model
(BAAI/bge-m3), applied only to mentions that did not match anything in the first stage. Our best F1 score on this
task was 0.6693.
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1. Introduction

Coding medical diagnoses and procedures in patient medical records with the International Statistical
Classification of Diseases and Related Health Problems - 10th Revision (ICD-10) ! is of particular
importance, both for health management and reimbursement, as well as for medical insurance, and for
statistical analyses of mortality and disease prevalence. ICD-10 has established itself as an international
standard in this field and is used in over 100 countries, and has been translated into over 40 languages.

The development of Natural Language Processing (NLP) models for the ICD-10 coding task would
significantly help both in automating the process of coding information from patient records and in
scientific research to study complex processes and relationships described in medical documentation.

In this paper, we present our results of developing models for NER and EL to ICD-10 codes of
discharge summaries in Greek. The presented results are part of the ELCardioCC@CLEF 2025 shared
task? in the BioASQ 2025 Lab competition® [1, 2]. The ELCardioCC task aims to develop systems for
automatic recognition and coding of information from medical records with ICD-10. The organizers
of the competition provided a specialized corpus of Greek-language written discharge summaries
from a hospital cardiology department for this purpose. The named entities annotated with ICD-10
codes include chief complaint, diagnoses, past medical history, medications, and cardiac echo. The
ELCardioCC competition is organized into three subtasks: (1) Named Entity Recognition (NER) from
clinical records; (2) Entity Linking (EL) to ICD-10; and (3) Multi-Label Classification with Explainable
AI (MLC-X).
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We propose deep learning models including XLM-RoBERTa [3], Greek BERT [4], GreekDeBERTa *,
Greek-Reddit-BERT [5], BGE-M3 [6], umt5-x1 [7], CohereLabs/aya-101 [8] for NER task and BGE-M3,
SapBERT [9] and custom prepared dictionaries for EL to ICD-10 task.

This paper is organized as follows: Section 2 overviews NLP methods for NER and EL to ICD-10
of clinical documents; Section 3 describes the dataset provided by ELCardioCC challenge organizers
and briefs the process of collection and processing of additional biomedical data related to the task;
Section 4 presents in details the proposed methods and their modification and fine-tuning for language
adaptation and domain adaptation; Section 5 reports evaluation results, discusses the limitation of the
proposed approach and provides error analysis; Section 6 sketches further work and summarizes the
proposed solution. All code used for data preprocessing, model training, and evaluation is available at:
https://github.com/BorisVelichkov/enigma-elcardiocc.

2. Related Work

2.1. Greek Language Resources

NLP development for lesser-resourced languages faces a lot of challenges, mainly due to data scarcity
for general-purpose tasks or in specific domains like the biomedical domain. Greek can be classified as
a lesser-resourced language as it has fewer resources than the high-resource languages like English,
Chinese (Mandarin), and Spanish [10]. Different tools were developed for Greek NLP, for example, the
Greek NLP Toolkit®, which addresses common NLP tasks for Greek in the general domain like NER,
Part of Speech (PoS) tagging, dependency parsing, etc. In the biomedical domain, a parallel dataset
(English-Greek) with abstracts and public website data was collected °. More resources exist consisting
of term lists (Image, Sound, and Language Processing 7, and ICD-10 or GPC codes (Ketekny medical
codes 8, icd10-in-Greek’, Ketekny ICD-10 specification '°, ICD-10 guidelines in Greek!!, GPC/ETIP
codes'?).

2.2. Named Entity Recognition

NER is a critical task in processing biomedical and clinical texts [11]. Early NER systems predominantly
used rule-based approaches, relying on hand-crafted rules and linguistic patterns, and strict or fuzzy
dictionary lookups (gazetteers) to identify entities. While interpretable, these methods lacked gener-
alizability and required significant manual effort [12]. Statistical machine learning models made an
advancement, with Conditional Random Fields (CRFs) becoming a standard for sequence labeling due
to their ability to model label sequences effectively. Support Vector Machines (SVMs) were also often
applied [13]. Deep learning further transformed NER by automating feature learning. Thanks to sequen-
tial models like Recurrent Neural Networks (RNNs) and LSTMs[14], particularly Bidirectional LSTMs,
have addressed sequential data challenges. The Bi-LSTM-CRF architecture became highly successful,
reducing reliance on hand-engineered features [12]. The advent of transformer-based models, more
specifically BERT (Bidirectional Encoder Representations from Transformers)[15], made a significant
shift in the methodologies used. BERTs architecture, based on Transformer [16] encoders combined
with the masked language modeling [15], allowed for the creation of a base pretrained model that, with
small architectural changes like changing the top layer and a small amount of fine-tuning, outperformed
most of the existing at the time state-of-the-art methods [15] [12].

*https://huggingface.co/Al-team-UoA/GreekDeBERTa-base
Shttps://github.com/nlpaueb/gr-nlp-toolkit
Shttps://live.european-language-grid.eu/catalogue/corpus/12599/download/
"http://www.iatrolexi.gr/iatrolexi/paradotea.html
®https://medicalcodes.instdrg.gr/search/icd/alphabetic
*https://github.com/drmchris21/icd10-in-Greek/blob/main/icd10
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Multilingual models like mBERT [17] and XLM-RoBERTa (XLM-R) [3], pre-trained on extensive
multilingual corpora, allowing cross-lingual knowledge transfer, offer an effective strategy for tackling
low-resource languages (LRLs). XLM-R has shown strong performance, particularly for LRLs, on tasks
including NER [3].

Domain adaptation is another key strategy, involving further pre-training of general models on the
target language (e.g., GREEK-BERT [4] ). This helps the model learn specific vocabulary and contextual
patterns. For specific tasks like biomedical domain adaptations, domain adaptation is also a viable
strategy to allow the model to learn the contextual patterns found in the desired domain, even if the
model has already been trained extensively on the target language [18].

2.3. Entity Linking

Early methods for clinical EL, particularly for mapping text spans to standardized terminologies like
ICD-10, typically relied on rule-based or gazetteer-driven systems. These approaches used exact or
fuzzy string matching against curated code definitions and offered high precision but struggled with
lexical variability and semantic ambiguity [19].

More recent approaches incorporate neural models into EL pipelines. Models like BioBERT [20],
MedCAT [21], SapBERT [9], and BERT-XML [22] encode both mentions and ontology entries into
a shared embedding space for similarity-based retrieval or multi-label classification. These models
improve generalization and semantic robustness but typically require substantial annotated data and
domain-specific adaptation - challenges that are particularly pronounced for low-resource languages.

Hybrid and cascading methods have shown strong performance in ICD coding by combining lexical
filtering with transformer-based reranking or classification. For instance, Velichkov et al. [23] proposed
a hybrid pipeline for Bulgarian that uses the ICD-10 hierarchy to enhance multi-label classification.
Our approach adopts a similar strategy adapted to Greek, combining gazetteer-based filtering with
neural linking using a task-adapted BGE-M3 model [6].

Greek clinical NLP remains significantly under-resourced. The IATROLEXI project [24] represents
one of the earliest efforts to develop structured biomedical corpora in Greek, providing foundational
resources for tasks such as information extraction and semantic annotation. More recently, Chatzimina
et al. [25] demonstrated the effectiveness of transformer-based models (particularly BERT) in Greek
clinical sentiment analysis, highlighting the applicability of deep language models in capturing affective
dimensions of clinical discourse.

A recent survey by Papantoniou et al. [26] highlighted the limited progress in Greek biomedical NLP,
with substantial gaps in areas such as EL and NER. Meanwhile, lightweight models like DistilGREEK-
BERT [27] demonstrated strong performance on core tasks including NER, achieving results comparable
to larger models while offering faster inference, making them promising candidates for domain-specific
adaptation.

On the multilingual front, biomedical language models such as KBioXLM [28] and MMed-Llama [29]
have demonstrated promising cross-lingual transfer capabilities, leveraging knowledge-aligned training
and large-scale multilingual corpora. However, evaluation on Greek remains limited. These models
typically rely on structured biomedical knowledge and aligned multilingual data to bridge language
gaps - an issue we address through targeted domain pretraining on Greek biomedical texts.

Our work contributes to this emerging field by addressing the challenge of ICD-10 EL in Greek
through a hybrid system that combines curated lexical resources with cross-lingual dense retrieval
models adapted via domain-specific pretraining on Greek biomedical texts.

Recent research in the field of ICD-10 EL in clinical settings has explored the potential of using Large
Language Models (LLMs) to address this task.

Simmons et al. [30, 31] evaluated the performance of several LLMs in extracting ICD-10-CM codes
from discharge summaries and found that the results underperform the human coders; even with GPT-4,
the highest reported agreement was only 12.4% and for Claude 3 - 12.7%. The main reason is that
LLM:s propose more specific codes, and ICD-10 codes for signs and symptom, that are usually not the



expected billable codes provided by human coders. Another reported issue was LLM hallucinations. For
benchmark datasets like MIMIC-III ICD-10 coding the top achieved Micro-F1 is 0.589 with GPT-4 [32].

Apart from direct classification, another direction for using LLM is as an assistant that can suggest
candidates or improved textual representations. Boukhers et al. [33] have investigated Llama using
such an approach, and the results they obtained show increased recognition and accuracy in the shared
task BioCreative VIII SympTEMIST.

Despite numerous studies in this area, many challenges still remain in automating ICD-10 code NER
and EL. The studies highlight the potential of LLMs in medical informatics, while emphasizing the need
for further improvements to achieve precision and recall closer to human performance in specialized
tasks such as ICD-10 coding.

3. Data

3.1. ELCardioCC Dataset

The ELCardioCC dataset consists of 1,000 de-identified hospital discharge summaries written in Greek,
annotated for three subtasks:

« NER: identifying mentions of five clinical entity types - chief complaint, diagnosis, prior medical
history, drugs, and cardiac echo findings.

+ EL: mapping each identified mention to its corresponding ICD-10 code.

« MLC-X: predicting all ICD-10 codes relevant to a document, along with the textual evidence
supporting each prediction.

Each instance is provided in structured JSON format and includes the fields: text (the discharge
letter), and a list of annotations, each containing a mention, its ICD-10 code, and character offsets
(start, end) within the text.

We performed our own split of the dataset into 800 documents for training and 200 for validation
(dev) (80% / 20%), as no official split was provided by the ELCardioCC task organizers. For NER, this
corresponds directly to 800 and 200 annotated documents. For EL, where each mention is treated as a
separate instance, this results in 8,096 training and 2,072 validation examples (79.62% / 20.38%).

All preprocessing steps were carried out by us. This focused on structural segmentation: each
discharge summary was divided into sections based on visual layout (e.g., paragraph breaks), and
section titles were normalized and mapped to semantic types such as DIAGNOSIS, THERAPY_COURSE,
and DISCHARGE_ INSTRUCTIONS. Mentions were aligned with their corresponding section, and offsets
recalculated relative to the section text. Further, each section was split on every new line to ensure that
the sample length fits BERT-based models. No additional tokenization or linguistic normalization was
applied.

3.2. Additional Datasets

To complement the official ELCardioCC dataset, we collected several external resources relevant to
the Greek biomedical domain. These include structured code systems, medical abbreviations, and
open-domain clinical texts. All data were used solely for research purposes and to train domain-adapted
models. Due to licensing restrictions and unclear redistribution terms, these resources are not publicly
released.

3.2.1. Structured Medical Coding Systems

The two official portals'®>'* publish systematic catalogs of both the International Statistical Classifica-

tion of Diseases and Related Health Problems (ICD-10-GrM) and the Greek Procedure Classification

Bhttps://medicalcodes.instdrg.gr/home
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(GPC/ETIP). We used this information to prepare list of ICD-10 entities, which resulted 20,230 unique
pairs of ICD-10 codes and labels.

3.2.2. Medical Abbreviations

We compiled 305 medical abbreviations (239 English, 66 Greek) from multiple online sources'>>'*:17. We
used them to augment our dictionary with terms and their ICD-10 codes.

3.2.3. Open-Domain Clinical Texts

Using the MediaWiki API, we collected 514 Greek Wikipedia articles under the Iatpucr)” (Medicine)
category. Articles were segmented by section, yielding 2,281 text instances in JSONL format. These
texts were used for domain adaptation and representation learning.

3.3. Dictionaries

A dictionary that contains text phrases and associated with them ICD-10 codes was generated from the
following sources - mentions and their ICD-10 codes from the ELCardioCC dataset keeping their number
of occurences, ICD-10-GrM Alphabetic 18 ICD-10-GrM Systematic 19 list of medical abbreviations in
Greek and English labeled with ICD-10 codes. The dictionary is split in two parts: unique pairs and a
statistical dictionary.

The dictionary of Unique pairs comprises of all unambiguous labels from the dictionary for which
a single ICD-10 code is assigned for all their occurrences in the dictionary. The result dictionary of
unique pairs consists of 324 3-character ICD-10 codes and 11,552 labels in total. The distribution of
the codes and labels per categories is presented in Fig. 1. The top 5 category letters are I - 22.97%, C-
21.17%, R - 6.35%, E - 5.66% and Z - 5.57%. The minimum number of labels per ICD-10 code is 2, and the
maximum - 294, the mean is 35.65432099. The minimum label length is 2 and the maximum label length
is 384, and the mean label length is 44.01 (Fig. 2). For the experiments with the validation dataset, we
excluded from the dictionary all mentions from our validation split of the ELCardioCC dataset. This
dictionary is used for exact matches in our experiments.

The statistical dictionary was generated from the original dictionary in such a way that for labels
that are ambiguous, i.e. more than one ICD-10 code association exists, we select the ICD-10 code with
the highest frequency. The statistical dictionary contains also all pairs from the dictionary of unique
pairs. The resulting dictionary contains 21,720 pairs of labels and associated ICD-10 codes. The overall
percentage of labels by categories is comparable to the dictionary of unique labels. Similar to the case of
the dictionary of unique pairs, the mentions from our validation split of the ELCardioCC dataset were
excluded from the statistical dictionary for the experiments with the validation dataset. This dictionary
is used for statistical dictionary matches in our experiments.

4. Methods

4.1. Pretraining

We experimented with models supporting different context length - BERT-based models which support
a 512 token window, and BGE-M3 which supports longer context. We refer to the BERT-based models
as having short context, and BGE-M3 as a long context model.

Phttps://www.bcardio.gr/el/4etos2017/53- students/syntomografies

"https://peptiko.gr/pos-grafetai-i-exetasi-syntomografies-exetaseon/

https://www.vasiliadis-books.gr/Vasiliadis-books/wp-content/uploads/2015/10/1TTpIfIDI - TD1s-Tall ATZT L IGTIET T 318 30.
pdf
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Figure 2: The frequency of the length of labels in the dictionary of unique pairs

The pretraining is split into 2 phases. Short Context pretraining uses the standard MLM objective
and the data compiled from different sources. We use the standard hyperparameters when pretraining
and train the models for 10 epochs, 2e-5 learning rate, 0.01 weight decay, batch size 64, and 15%
probability of masking [15].

Long Context pretraining is pretraining using the full documents instead of splitting them into
smaller chunks. The long context pretraining consists of two parts: standard MLM pretraining objective
and task pretraining, consisting of pretraining on the NER objective using the full documents instead of
splitting them into smaller chunks.

4.1.1. Domain Adaptation - Short Context

We compile a corpus of biomedical and clinical texts in Greek by combining the train dataset and texts
crawled from public resources on the Internet (MediaWiki). The corpus consists of 3,281 documents
and 987,139 tokens. Using the compiled corpus, we perform domain adaptation on two BERT-based
models - Greek BERT [4] and XLM-RoBERTa [3]. We continuously pretrain these models on the masked



language modeling task for 10 epochs. We use the following hyperparameters: 2e-5 learning rate, 0.01
weight decay, batch size 64, and 15% probability of masking according to the standard configuration [15].
We used an L4 High-RAM GPU on Google Colab Pro for training the models. Due to time constraints,
we have not conducted an investigation into hyperparameter optimization.

4.1.2. Domain Adaptation - Long Context

To adapt some of the models to the specific documents, we used additional pertaining. We performed
Masked language modeling [15] pretraining on BGE-M3[6]. The parameters of the pretraining are listed
in Table 1

Table 1
Hyperparameters for masked language modeling.

Hyperparameter  Value

Batch size 32

# Epoch 5
learning rate 5e-5
max grad norm 1
weight decay 0.01
optimizer AdamW

We additionally performed task pretraining on the model by training the model on the NER task with
the full context. We split the texts so that they can fit into the model’s context length. But BGE-M3 has
a context length of 8000 while the documents on average are less than 3000 tokens long. We discuss
in the experiments section that classifying all of the entities at once seemed to be too difficult for the
model. However, it was an effective task pretraining method; i.e., we first train the model on the full
texts as a task pretraining step and then perform the final fine-tuning stage on smaller text chunks
split on paragraphs and new lines. The parameters for the task pretraining are the same as the ones for
MLM pretraining 1 with the exception that we found a benefit of training for a total of 20 epochs. The
parameters 1 we chose are based on values that we have found that are a good starting point when
fine-tuning a model.

4.2. Named Entity Recognition

We approach the task of detecting ICD-10 terms in the discharge summary as a NER task, and we
finetuned different BERT-based models on token classification. The ICD-10 terms are labeled using a
standard BIO tagging approach (beginning, inside, and outside of a term). We use the following models:

« Greek BERT Base [4] ?° - a Greek-specific model trained on Greek texts from Wikipedia, European
Parliament Proceedings Parallel Corpus, and the Greek portion of filtered CommonCrawl. It has
shown improved results on the general domain Greek NER task.

« XLM-RoBERTa Large [3] ?' - a multilingual model, trained on 2.5TB of filtered CommonCrawl
data.

We use the Huggingface Transformers library to finetune the models on token classification for 5 epochs
with the following hyperparameters - learning rate 2e-5, batch size 16. In order to fit in the 512-token
limit of the models, we preprocess the text by splitting paragraphs and new lines. We perform initial
experiments on a custom split of the train set - 80% used for training and 20% used for validation of
the methods. The train split consists of 35,867 samples, the validation - 8,751, and the test set - 22,504.
We train the final models used to generate predictions on the test set using the full training dataset
provided by the organizers.

®https://huggingface.co/Al-team-UoA/GreekDeBERTa-base
*'https://huggingface.co/Facebook Al/xlm-roberta-large
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4.3. Entity Linking

We implemented dictionary based approach as a baseline using exact and fuzzy matching. For the
purposes of this method, we collected and combined ICD-10 labels from different sources including: all
labels from the annotated train set provided by the organizers of ELCardioCC CLEF challenge; ICD-10
Greek version, including all 3-character and 4-character codes.

Following the dictionary-based baseline, we developed a bi-encoder EL approach using a multilingual
dense retrieval model. The task was framed as a mention-code semantic similarity problem, where
the model learns to embed mentions and ICD-10 codes into a shared vector space and match them via
cosine similarity.

We began with the publicly available multilingual dense encoder BGE-M3 [6], and conducted ex-
ploratory pretraining using domain-specific Greek biomedical texts gathered from MediaWiki. However,
simple fine-tuning on this corpus not only failed to improve performance but actually degraded it -
likely due to overfitting on the limited data. To avoid repeating this process, we directly evaluated
two task-adapted variants of the same model that had previously been fine-tuned for the NER subtask:
BGE-M3 + TP + FL(1) + DA + OP and BGE-M3 + TP + FL(1) + DA.Both outperformed the
base model on the EL task without additional pretraining, so we selected them for further fine-tuning
on the mention-to-code retrieval objective.

For fine-tuning, we used MultipleNegativesRankingLoss, with correct mention-code pairs as
positives. ICD-10 codes were represented as text strings. Models were trained for up to 50 epochs using
a batch size of 32, with early stopping triggered after five epochs without macro-F1 improvement on
the validation set. A default learning rate of 2e-5 was used, with linear warm-up over the first 100
steps to stabilize early training dynamics. Cosine similarity was used for inference, and top-1 and top-5
predictions were evaluated.

Finally, we experimented with a cross-encoder reranker (bge-reranker-base) [34], applied to
rerank the top-5 candidates returned by the bi-encoder. However, it underperformed relative to the
bi-encoder models and was not included in the final submission.

4.4. Multi Label Classification - eXplainable

Since BGE-M3 is capable of fitting the full documents in its context length, one of our approaches for
the MLC-X subtask was a simple multi-label classification approach. The parameters for the multi-label
classification fine-tuning are listed in Table 2.

Table 2
Hyperparameters for MLC-X with multi-label classification.

Hyperparameter  Value

Batch size 16

# Epoch 5
learning rate 2e-5
max grad norm 1
weight decay 0.01
optimizer AdamW

5. Experiments and Results

5.1. Named Entity Recognition

We perform experiments with several BERT-based models on token classification, including models with
short context and long context (BGE-M3). We also compare the performance of the models with and
without domain adaptation pretraining on the biomedical corpus we compiled. We measure token-level



micro precision, recall, and F1 for different fine-tuned models. For our experiments on the validation
set we use several different models in addition to the ones submitted in the challenge:

« GreekDeBERTaV3-base ** - a model pretrained specifically for Greek, based on the DeBERTaV3
architecture.

« GreekDeBERTa-base ** - a model based on DeBERTa architecture, pretrained for Greek.

« Greek-Reddit-BERT * [5] - a model pretrained on Greek topic classification dataset from Reddit.

« google/umt5-x1 % [7] - a multilingual model pretrained on mC4 dataset.

« CohereLabs/aya-101 “° [8] - a massively multilingual generative language model trained on 101
languages.

For the BGE-M3 model we experiment with different pretraining methods:

+ Domain Adaptation (DA) - pretraining on Greek biomedical texts using masked language modeling
objective before finetuning on the NER task.

+ Task Pretraining (TP) - pretraining before the finetuning on the NER task.

« Focal Loss [35] (FL (x)) - using focal loss during NER finetuning (gamma equals to x).

« Optuna®’ hyperparameter search (OP) - using Optuna to select the best hyperparameterms for
NER finetuning.

The results of our model predictions on the validation set are shown in Table 3.

Table 3

Model Performance Metrics on the validation set. The columns Dev Micro-P, Dev Micro-R, and Dev Micro-F1
correspond to token-level precision, recall, and F1-score, respectively.

DA - Domain Adaptation; TP - Task Pretraining; FL (x) - focal loss with gamma equal to x; OP - Optuna
hyperparameter search; full text - the model is trained using the full text instead of chunked

Model Dev Token Micro-P  Dev Token Micro-R Dev Token Micro-F1
XLM-RoBERTa 84.49% 83.68% 84.08%
XLM-RoBERTa + DA 82.99% 84.21% 83.59%
bert-base-greek-uncased-v1 83.08% 82.42% 82.75%
bert-base-greek-uncased-v1 + DA 83.18% 82.99% 83.08%
GreekDeBERTaV3-base 83.19% 78.85% 80.96%
GreekDeBERTa-base 82.10% 79.33% 80.69%
Greek-Reddit-BERT 82.83% 82.66% 82.75%

BGE-M3 + TP + FL(1) + DA + OP 87.33% 87.61% 87.47%

)
BGE-M3 + TP + FL(1) + DA 86.60% 86.55% 86.57%
BGE-M3 + TP + FL(2) + DA 86.13% 85.81% 85.97%
BGE-M3 + TP + FL(2) 86.29% 85.28% 85.78%
BGE-M3 + DA 86.66% 82.68% 84.62%
BGE-M3 + full text 61.10% 58.22% 59.63%
BGE-M3 85.27% 83.11% 84.18%
umt5-x| 83.70% 83.46% 83.58%
aya-101 83.79% 83.25% 83.52%

For the encoder-decoder models umt5-xl and aya-101, we didn’t have enough computational resources
to perform full fine-tuning. Therefore, those models were fine-tuned using LoRA [36] adapters applied
to the query, key, value, and output matrices of the attention mechanism [16] of rank 16.

*https://huggingface.co/Al-team-UoA/GreekDeBERTaV3-base
Bhttps://huggingface.co/Al-team-UoA/GreekDeBERTa-base
*https://huggingface.co/IMISLab/Greek-Reddit-BERT
Phttps://huggingface.co/google/umt5-x1
®https://huggingface.co/CohereLabs/aya-101
Thttps://optuna.org/
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Table 4
Results of evaluation of models for the NER task on the validation set using entity-level metrics.

Model Entity Precision Entity Recall Entity F1
XLM-RoBERTa Large 0.8027 0.8422 0.8220
XLM-RoBERTa Large + DA 0.8126 0.8393 0.8257
Greek BERT base 0.7793 0.8012 0.7901
Greek BERT base + DA 0.8440 0.8697 0.8567
GreekDeBERTaV3-base 0.0900 0.0912 0.0906
GreekDeBERTa-base 0.0890 0.0917 0.0903
BGE-M3 + TP + FL(1) + DA + OP 0.0723 0.1371 0.0931
BGE-M3 0.0529 0.1170 0.0728

We performed entity-level evaluation on a subset of the models and found that even if token-level
metrics are relatively high, some models show very low results on entity-level metrics. For example,
the Greek DeBERTa models score about 0.80 F1 on token-level, but below 0.10 on entity level. When
reviewing the predictions, we noticed that these models add extra punctuation to the predictions
which renders the predicted entity completely wrong when using strict evaluation. Based on the initial
experiments on the validation set using entity-level metric, we selected the models for final submission
- Greek BERT and XLM-RoBERTa with domain adaptation.

The results of our model predictions on the test set for the models we submitted in the competition
are shown in Table 5. Our models show slightly lower score than the Baseline provided by the organizers
which is based on mBERT 2.

Table 5
Results of the submitted models for the NER task on the test set and baseline provided from the organizers.

Model Precision Recall F1

Baseline (organizers) 0.6959 0.7460  0.7201

Greek BERT 0.7012 0.7328 0.7167
XLM-RoBERTa Large 0.7079 0.7222  0.7150

5.2. Entity Linking

We evaluated two language-adapted BGE-M3-based models for the EL subtask. These variants had
previously been fine-tuned on the NER task and were selected for EL based on their strong performance
during an initial exploratory phase:

« BGE-M3 + TP + FL(1) + DA
« BGE-M3 + TP + FL(1) + DA + OP

Both were subsequently fine-tuned for EL using mention—code training pairs and a contrastive
learning objective. Evaluation was based on micro-averaged precision, recall, and F1 on the validation
set.

While both models performed competitively, the first option (without Optuna search) was selected for
submission due to its higher micro-averaged F1 (0.8871 vs. 0.8620) and superior ranking performance
(MRR@5: 0.9157 vs. 0.9055). The Optuna-tuned model achieved marginally better results on several
secondary metrics, including Recall@5 (0.9633 vs. 0.9527) and macro precision (0.4845 vs. 0.4804), but
these gains did not outweigh the more consistent micro-level performance of the selected model.

The base BGE-M3 model without task-specific adaptation yielded substantially lower macro perfor-
mance (F1 =~ 0.44), emphasizing the importance of task-adaptive training for EL in this setting.

Bhttps://huggingface.co/google-bert/bert-base-multilingual-cased
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In addition to the BGE-M3 variants, we evaluated other approaches, including a dictionary-based
method, a statistical ranking method, and hybrid models combining these with neural encoders (BGE-M3
and SapBERT). As shown in Table 6, the dictionary-based approach achieved the highest precision
(0.9863), but its limited recall, due to missing exact matches for some codes, makes it unsuitable as
a standalone solution. A similar limitation applies to the statistical approach. To address this, both
methods were combined with neural models to improve coverage and robustness. The best overall
performance was achieved by hybrid configurations, particularly those using the statistical method in
combination with BGE-M3 or SapBERT, which motivated their selection for test set evaluation.

Table 6

EL performance on the validation set (micro-averaged precision, recall, and F1).
Model Precision Recall F1
Dictionary 0.9863 0.6588  0.7899
Statistical 0.9595 0.9595 0.9595
BGE-M3 + TP + FL(1) + DA 0.8871 0.8871 0.8871
BGE-M3 + TP + FL(1) + DA + OP 0.8620 0.8620 0.8620
SapBERT 0.8446 0.8446 0.8446

Dictionary + BGE-M3 + TP + FL(1) + DA 0.9001 0.9001  0.9001
Statistical + BGE-M3 + TP + FL(1) + DA 0.9595 0.9595 0.9595
Statistical + SapBERT 0.9595 0.9595 0.9595

The results of our model predictions on the test set for the models we submitted in the competition are
shown in Table 7. All of our submitted models outperformed the official baseline in terms of precision,
with the best overall F1 (0.6693) achieved by combining Greek BERT with either the Dictionary +
BGE-M3 or the Statistical + SapBERT approach.

Table 7

Results of the submitted models for the EL task on the test set and baseline provided from the organizers.
NER Model EL Model Precision Recall F1
Baseline (organizers) Baseline (organizers) 0.6476 0.6942  0.6701
Greek BERT Dictionary + BGE-M3 0.6548 0.6844 0.6693
Greek BERT Statistical + SapBERT 0.6548 0.6844 0.6693
Greek BERT Statistical + BGE-M3 0.6540 0.6835  0.6684
XLM-RoBERTa Statistical + BGE-M3 0.6594 0.67208  0.6660
XLM-RoBERTa Dictionary + BGE-M3 0.6585 0.6719  0.6651

5.3. Multi Label Classification - eXplainable

The multi-label classification task proved to be very difficult for BGE-M3 as both the number of labels
is quite large and they are very imbalanced. The model barely achieved an F1 score of 13% on the
validation set, which, combined with the time limitations, discouraged us from trying to improve
the multi-label classification pipeline. Despite the fact that the multi-label classification task is more
straightforward, the combination of NER followed by EL seems to be a better pipeline approach.

6. Discussion

6.1. Named Entity Recognition

Based on our experiments on the validation set, we observed that all of the models showed a high F1
score on token-level evaluation (higher than 0.80) and the best model was BGE-M3 with additional task
and domain pretraining, using focal loss and hyperparameter search with Optuna. However, when



we evaluated a subset of the models on entity-level, there was a drastic difference in the performance,
and the best models were BERT-based - XLM-RoBERTa and Greek BERT with domain adaptation. We
spent a significant time making experiments based on the token-level metric, only to realize that the
entity-level metric did not perform as well later on. This highlights the importance of using entity-level
metrics from the beginning to have a more realistic evaluation of the models. The errors in prediction
were mainly due to added punctuation, which did not impact the token-level significantly but reduced
the score on the strict entity-level metric. We also saw that task pretraining, domain adaptation, and
focal loss all bring significant improvements to the model’s performance. Training the model on the
full texts gave significantly lower results compared to splitting the texts, demonstrating that probably
predicting all of the entities at once is a more difficult task, despite the fact that the model can use the
full context. However, using the full document for model pretraining showed improved results. The
results on bigger models like aya-101 and umt5-x1 were not any better than on small models, either
suggesting that LoRA adapters are not as effective for encoder models or that bigger encoder models
need more data for pretraining to take advantage of the higher number of parameters.

6.2. Entity Linking
The error analysis of EL shows the following categories of errors:

« Misinterpretation of the mention of the Diabetes Mellitus (expected ICD-10 code E13) without
specification with Diabetes Mellitus type 2 (ICD-10 code E11). Of course this is prevalent for the
statistical dictionary matches.

« Low recall - not associated ICD-10 codes for entities - this is typical for the the dictionary of
unique pairs used for exact matches.

« capital letters only mentions - most of the methods present poor performance on such mentions.
One of the reasons is that they use functions for lower case transform of the text, that uses
conversion of capital letters to lower letter by letter. In Greek this can cause some issues for
example with letter X, that has two forms: uppercase ¥ and lowercase ¢ (or ¢ in word-final
position). The lower case transformation does not take into account the positions of the letters.

« Abbreviations - SapBERT can not resolve correctly most of the abbreviations. The dictionary
based approaches can cope with this issue, due to enrichment with abbreviations-rich sources.
This leads to many wrong ICD-10 code predictions for cardiac echo mentions. Another challenge
with abbreviations is that in the discharge summaries both abbreviations in English and in Greek
are used.

« Lack of capability to differentiate between specific cases with cases not classified elsewhere: for
example, instead of I33 (Acute and subacute endocarditis) is predicted 139 (Endocarditis and heart
valve disorders in diseases classified elsewhere).

« Predicting codes for signs and symptoms instead of assigning codes for disorders: for example,
the expected ICD-10 code is J81 (Pulmonary oedema) and the predicted one is R06 (Abnormalities
of breathing).

« Imprecise selection of ICD-10 for closely related conditions: for example, the expected ICD-10
code is R55 (Syncope and collapse) and the predicted code is R41 (Other symptoms and signs
involving cognitive functions and awareness).

The results of most of the models are comparable. The combination of dictionary-based approaches and
deep learning approaches manages to overcome some of the issues, but still some challenges remain as
the ICD-10 system is very complex and the hybrid approaches cannot cover all scenarios.

7. Conclusion

In this paper, we presented approaches for NER and EL to ICD-10 of discharge summaries in Greek as part
of ElcarioCC @ CLEF 2025 BioASQ challenge. We examined different solutions for NER mainly BERT-
family approaches like Greek BERT and multilingual XLM-RoBERTa. Both of them were additionally



pretrained and adapted for the NER task. The best achieved result was 0.7167 F1 score on the test
set. For the EL to ICD-10 codes task, we used a hybrid approach combining different dictionaries
with a fine-tuned bi-encoder model (BAAI/bge-m3), achieving F1 score of 0.6693. This demonstrates
that combinations between these two approaches can improve the performance of the EL. All of the
presented approaches show a huge potential for solving NER and EL to ICD-10 code tasks for Greek
discharge summaries.

As further work, we can experiment with LLMs to investigate their capabilities to provide solutions
for domain specific tasks for language other than English. Another direction for improvement is to
enrich the dictionaries and to try combinations with other transformers.
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