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Abstract
This paper presents the proposed solution by our team, Gut-Instincts, for the GutBrainIE task, which introduces a
named-entity recognition (NER) subtask and three relation extraction (RE) subtasks on biomedical articles related
to the gut-brain axis. To address the domain-specific terminology involved in the tasks, we rely on biomedical
pretrained transformer-based models. For NER, we extend these with three different classification heads: (1) a
dense layer, (2) a dense layer followed by a conditional random field (CRF), or (3) a bidirectional long short-term
memory layer followed by a CRF. For RE, we introduce negative samples and experiment with different ratios
between positive and negative samples. For all subtasks, we use model ensembling to reduce variability and
improve robustness. Furthermore, since the provided dataset is of different quality levels, we use weighted
training that enables the models to utilize all available data, while ensuring that high-quality data has a stronger
influence during optimization. Our experimental results suggest that a large ratio of negative to positive samples,
model ensembling, and weighted training improve performance in the NER and RE subtasks. In the GutBrainIE
task, we placed second in the NER subtask (6.1) with an F1micro score of 0.8382, and first place in all three RE
subtasks 6.2.1, 6.2.2, and 6.2.3 with F1micro scores of 0.6864, 0.6866, and 0.4635, respectively.

Keywords
Ensemble of Transformer-Based Models, Weighted Training, Named Entity Recognition, Relation Extraction,
Biomedical Information Extraction, Gut-Brain Axis, Natural Language Processing

1. Introduction

In recent years, there has been a surge of research on the gut-brain axis, which refers to the intricate
relationship between the gut and the brain. Once thought to affect only digestion, the gut microbiome
is now recognized as a key component in neurological and mental health conditions [1]. Studies have
revealed that imbalances in gut bacteria are linked to a range of conditions, including Alzheimer’s
disease, Parkinson’s disease, anxiety, and depression [2].

As research in this domain intensifies, the volume of biomedical literature on the gut-brain axis has
grown rapidly, presenting new challenges for researchers to keep up with the latest developments [3].
A recent analysis [4] revealed that PubMed has surpassed 37 million citations, with 1.6 million added
in the past year alone. This makes it increasingly difficult to manually curate relevant findings. In
response, there is an increased focus on developing information extraction systems that can support
experts by automatically extracting and linking knowledge from scientific literature [3, 5, 6, 7, 8].

To support research on the gut-brain axis, the GutBrainIE task [9] is introduced, which is part of
the BioASQ workshop [10]. The goal of the workshop is to “improve state-of-the-art methods from
information retrieval, machine learning, natural language processing, and text mining”1 for biomedical
documents. In particular, the GutBrainIE task focuses on analyzing articles related to the gut-brain axis.
To achieve this, the task presents four subtasks:
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• Subtask 6.1 - Named-entity recognition (NER): Classify specific text spans, referred to as
entities, according to 13 predefined labels.

• Subtask 6.2 - Relation extraction (RE): Classify relations between entities through three
distinct subtasks:

– Subtask 6.2.1 - Binary tag-based RE (BT-RE): Identify which entity labels are related.
– Subtask 6.2.2 - Ternary tag-based RE (TT-RE): Identify which entity labels are related

and classify each relation according to 17 predefined labels.
– Subtask 6.2.3 - Ternary mention-based RE (TM-RE): Identify which of the entities are

involved in relations and classify each relation according to the 17 predefined labels.

When developing information extraction systems, a major cost is annotating the training dataset.
According to Lawson et al. [11], the average cost of annotating entities in email datasets ranges from
$0.08 to $0.22 per document using Amazon Mechanical Turk. However, this approach is not appropriate
when annotating biomedical documents, as annotators need specialized domain knowledge to accurately
perform the task.

Due to the high costs of annotating data and the expertise required to do so in the biomedical domain,
it is often necessary to balance annotation quality with scalability. As a result, datasets of varying
annotation quality are commonly created to support development. In this task, four datasets of different
quality levels are provided:

• Platinum dataset: 111 articles with expert-curated annotations reviewed by external biomedical
specialists.

• Gold dataset: 208 articles with expert-curated annotations.
• Silver dataset: 499 articles with annotations generated by trained students under expert super-
vision.

• Bronze dataset: 749 articles with automatically generated annotations, using fine-tuned models.

Additionally, the task also includes held-out development and test datasets, each consisting of 40 articles
of the gold and platinum qualities.

As a result, the GutBrainIE task presents a wide range of obstacles. Firstly, biomedical articles
are rich in specialized vocabulary, laden with ambiguous abbreviations, and often exhibit irregular
grammar [12, 5]. As a result, general-domain language models are ineffective in this domain. Secondly,
the training dataset has different quality annotations. Disregarding low-quality annotations reduces the
size of the training set, which might lead to overfitting and not covering all the relevant cases. However,
using the total amount of data without considering the quality could introduce too much noise in the
training process.

This paper presents the proposed solution by our team, Gut-Instincts, for addressing the tasks of the
GutBrainIE task. Our approach is an information extraction pipeline that uses ensembles of specialized
models, built by extending well-known language models that have been pretrained on biomedical
corpora [5, 6, 12]. We train each model using the provided datasets with a weighting scheme that
reflects their quality, allowing for greater emphasis on higher-quality samples while still leveraging
information from lower-quality samples. Our solution is available on GitHub2.

Our experiments show that the proposed solution performs well across all four tasks. This is further
supported by the official results in the GutBrainIE task, where our best NER ensemble resulted in second
place for the NER subtask (6.1) with an F1micro score of 0.8382 and our best RE ensembles achieved
first place in the RE subtasks 6.2.1, 6.2.2, and 6.2.3 with F1micro scores of 0.6864, 0.6866, and 0.4635,
respectively.

This paper is structured as follows: In Section 2, we introduce related work on NER and RE in the
biomedical domain. In Section 3, we explore and analyze the training datasets to uncover insights that
are key in the development of our approach. In Section 4, we describe our approach to ensembling
specialized models as well as the approach to training with a weighting scheme. In Section 5, we present

2https://github.com/P10-Natural-Language-Processing/Gut-Instincts
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the experimental evaluation and key results for the final selection of the configurations of the models.
Finally, in Section 6, we conclude the paper, presenting takeaways and open challenges.

2. Related Work

Since the introduction of BERT [13], transformer-based models have been the state-of-the-art technique
for natural language processing. However, applying these advancements directly to biomedical infor-
mation extraction yields unsatisfactory results due to a difference in vocabulary from general domain
corpora to biomedical corpora [14]. Therefore, methods for pretraining and fine-tuning transformer-
based models to perform specific tasks in the biomedical domain have been investigated [14, 5, 12, 6, 15].
One of the earliest models developed for this purpose is BioBERT [14], which extends BERT by further
pretraining it on biomedical corpora. BioBERT outperforms the original BERT on many biomedical
tasks.

After the success of BioBERT, the pretraining of transformer-based models on biomedical corpora
has been further explored [12, 6, 16, 17]. BioLinkBERT [5] advances the pretraining approach by
including information about links between documents, enabling the model to capture relationships
across documents. This technique leads to improved performance over BioBERT. BiomedBERT3 [6] is
a BERT-based model trained from scratch exclusively on biomedical corpora, in contrast to BioBERT,
which has initially been pretrained on general-domain corpora before being further pretrained on
biomedical corpora. Finally, BiomedELECTRA [12] is also a model exclusively pretrained on biomedical
corpora, but based on the ELECTRA pretraining strategy [18]. The ELECTRA pretraining strategy
involves using discriminators to detect replaced tokens, while BERT-basedmodels are trained to generate
masked tokens. In summary, these models have achieved widespread success, which is highlighted in a
recent survey [19] that identified over 30 publicly available variants. Therefore, we design our system
to exploit the wide range of pretrained models.

NER and RE are core tasks of biomedical information extraction [20, 21, 22, 23, 24], enabling the
conversion of unstructured biomedical text into structured knowledge. Despite the advancements
in the field, challenges persist due to the complexity of biomedical terminology and the scarcity of
annotated data, as annotation is time-consuming, costly, and requires domain expertise. However,
despite the challenges, NER and RE are so relevant in the biomedical domain that dedicated benchmarks
for evaluating biomedical language models have been introduced, such as the Biomedical Language
Understanding and Reasoning Benchmark (BLURB) [6].

In state-of-the-art language models, NER is treated as a token-level classification task, typically
accomplished by adding a classification layer on top of the output of the language model to map each
token to an entity type or non-entity class [13]. This is the approach of models such as BiomedBERT [14]
and BiomedELECTRA [12]. Prior to these models, it was common for NER to solely use a bidirectional
long short-term memory (BiLSTM) combined with a conditional random field (CRF) [25]. The idea of
using a CRF has been revived by either extending a language model with a dense layer followed by a
CRF [26, 27] or a BiLSTM followed by a CRF [28, 27]. We consider these approaches while building our
solution, experimenting with them to understand how they perform in the context of GutBrainIE.

Regarding the RE task, a simple approach is replacing the entities in a relation with special tokens
representing the entity label and inputting the concatenated embeddings of these tokens to a classifier
layer [6]. However, there is a risk of losing the specific information about the entities as they are
replaced by generic tokens. Therefore, a widely adopted strategy to mark the entities in a relation is
to insert special tokens around them [29, 30, 31, 32, 8, 33, 6]. Additionally, Baldini Soares et al. [29]
explore different techniques for detecting relations between entities, including using the classification
token of the model ([CLS]), pooling the embeddings of the tokens of the entities, and concatenating the
embeddings of special entity start tokens. The latter technique exhibits the best performance.

Beyond architectural improvements, there are also other techniques for improvingmodel performance.
Bölücü et al. [34] and Wang et al. [35] propose methods for distinguishing between clean and noisy

3Previously known as PubMedBERT: https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract
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samples and subsequently weighting the loss contribution of each sample based on its quality. Clean
samples are given a higher weight, while noisy samples contribute less to the overall loss, thereby
improving model robustness. We adopt a similar strategy to effectively leverage the data available in
the four datasets introduced in Section 1.

Another technique is to ensemble models to improve performance [36, 37]. Model ensembles are
effective in handling noisy or inconsistent data, as averaging predictions helps suppress errors from
individual models. Additionally, ensembles enhance model stability and generalization, making them
more reliable for real-world applications.

3. Exploratory Data Analysis

This section presents an exploratory data analysis that expands upon the initial analysis conducted
by the organizers of the GutBrainIE task [9]. Specifically, the analysis examines the article lengths,
entity and relation outliers, and annotation quality issues. These insights inform the development of
our information extraction pipeline.

3.1. Token Sequence Length Distributions

We analyze the article lengths across all dataset quality levels by tokenizing the combined title and
abstract of each article using WordPiece [13]. Figure 1 shows the token sequence length distributions.
Overall, the distributions across all qualities appear to be close to normally distributed. The overall
lengths are similar across the different qualities, as expected. Two articles are excluded from the figure:
PubMed ID 37368331 with a token count of 1176 from the platinum dataset and PubMed ID 39299582
with a token count of 2924 from the silver dataset.
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Figure 1: The token sequence length distributions across all dataset qualities of concatenated titles and abstracts,
tokenized using WordPiece.

3.2. Article Outliers

Figure 2 shows the number of entities and relations as a function of word count for all articles across all
dataset quality levels. As seen in Figure 2a, there is a general tendency towards more entities as the
word count increases, which is expected. In Figure 2b, the number of relations remains below 60 for
almost all articles, regardless of the word count. However, in the silver dataset, some articles exceed



this threshold, with a few reaching over 400 relations. Such outliers can introduce noisy patterns that
may negatively impact the ability of models to learn how entities relate to one another, potentially
reducing overall performance.
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(a) Number of entities vs. word count for all articles.
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(b) Number of relations vs. word count for all articles.

Figure 2: Entities and relations as a function of word count for all articles. The word count is determined by
concatenating the title and abstract and splitting on whitespace.

3.3. Annotation Issues

The bronze dataset differs from the other datasets since the annotations are generated by a model rather
than human annotators. As a result, it contains a higher level of noise. For example, the entity “,” is
labeled as Biomedical Technique, and the entity “, and progressive” is labeled as DDF. These examples
suggest that the model struggles with correctly annotating the articles. Furthermore, some articles
from the bronze dataset contain very few entities and relations, with 21 articles having no relations at
all. Including these in the training could introduce noise and negatively impact model performance.
Despite these issues, we want to exploit the bronze dataset, as it makes up a significant amount of the
total amount of data.

The silver dataset also includes some annotation issues besides the relation outliers previously
mentioned. It includes instances where entity text spans are incorrectly annotated in singular form
when the correct form should be plural. This does not adhere to the annotation guidelines and introduces
inconsistencies.

We also observe that in all four datasets, there are HTML tags in many of the articles, including in the
annotated text spans. We consider the HTML tags problematic because they can lead to an increased
amount of noise in the training data since they are not used consistently and do not provide relevant
context. During tokenization, the HTML tags will result in the generation of spurious tokens that do
not represent meaningful content, leading to the model learning irrelevant patterns, which ultimately
leads to a degradation in performance.

4. Methodology

This section presents our proposed solution to the GutBrainIE challenge, detailing the information
extraction pipeline we developed. An overview of the pipeline is illustrated in Figure 3. It takes as
input the titles and abstracts of biomedical articles about the gut-brain interplay. To address the NER



subtask (6.1), the pipeline processes these articles using an NER ensemble that combines the predictions
of multiple NER systems and outputs the final set of predicted entities. For the three RE subtasks (6.2.1,
6.2.2, and 6.2.3), the predicted entities along with the titles and abstracts of the original articles are
passed to an RE ensemble, which similarly combines the predictions of multiple RE systems to output
the final set of predicted relations. The information extraction pipeline outputs the predicted relations
in a format corresponding to the specific RE task being addressed.

NER system 1

Entities
NER system n

NER system 2

RE system 1

RE system n

RE system 2

NER ensemble RE ensemble
Entities

+
relations

Figure 3: Information extraction pipeline overview.

4.1. Selection of Pretrained Models

For both the NER and RE tasks, we use pretrained models. The benefits of using pretrained models
are the reduced computational cost from not training from scratch and the improved performance
through transfer learning. We considered two selection criteria. Firstly, we considered models that are
pretrained on biomedical corpora. This ensures that the models are better equipped to handle specific
terminology and patterns encountered in the GutBrainIE task. Secondly, all of the selected models are
uncased models, since the entities to be predicted in the NER task do not have a consistent casing, and
therefore, including casing in the input representation would not provide a significant benefit and could
introduce unnecessary variability.

Based on the criteria outlined above, we selected seven transformer-based language models:

• BioLinkBERT-base [5] and BioLinkBERT-large [5], which are pretrained on abstracts from
PubMed4. Specifically, they are pretrained by feeding both a single document and its linked
documents into the same language model context.

• BiomedBERT-base-uncased-abstract-fulltext [6], which is pretrained using abstracts from
PubMed and full-text articles from PubMedCentral5.

• BiomedBERT-base-uncased-abstract [6] and BiomedBERT-large-uncased-abstract [12],
which are pretrained solely on PubMed abstracts.

• BiomedELECTRA-base-uncased-abstract [12] and BiomedELECTRA-large-uncased-
abstract [12], which are also pretrained on abstracts from PubMed.

We also considered other pretrained models: BioM-ALBERT-xxlarge [15], BioM-ALBERT-xxlarge-
PMC [15], and BioBERT [14]. However, the ALBERT models were excluded due to their substantially
longer training times caused by their large size, and BioBERT was excluded because it consistently
performed worse compared to the seven selected models.

4.2. Named-Entity Recognition (Subtask 6.1)

The first task in the information extraction pipeline is NER, which we approach as a token classification
problem using the beginning-inside-outside (BIO) tagging scheme [7]. In this scheme, tokens that are
part of an entity are labeled with one of two prefixes: B-, indicating the beginning of an entity, or I-,
indicating a token inside an entity. Tokens that do not belong to any entity are labeled as O.

4https://pubmed.ncbi.nlm.nih.gov/
5https://pmc.ncbi.nlm.nih.gov/



In the NER ensemble shown in the information extraction pipeline overview in Figure 3, there are
multiple NER systems. Each NER system consists of multiple components, which is illustrated in
the NER system architecture in Figure 4. An NER system takes the titles and abstracts of biomedical
articles as input, which are first preprocessed to ensure compatibility with the classification model. The
classification model consists of a pretrained model extended with a classification head. The outputs of
the classification model undergo a post-processing step, which converts them to entities, constituting
the final output of the NER system. In the following, we detail the individual components of the NER
system architecture, and then we discuss how we combine NER systems to create an NER ensemble.

Preprocessing Post-processingPretrained model

BiLSTM + CRF

Dense + CRF

Dense

One of three
classification heads

Entities

Classification model

Figure 4: NER system architecture.

4.2.1. Preprocessing

The first component in the NER system architecture is the preprocessing of the input text. The input
text is tokenized using WordPiece [13], which is a subword tokenization algorithm that splits words
into smaller, frequent subword units based on a fixed vocabulary for the specific pretrained model. This
allows the model to handle out-of-vocabulary words by representing them as combinations of known
subwords. This capability is particularly important when performing NER on text from biomedical
articles since the terminology contains a wide range of domain-specific expressions, including technical
terms, abbreviations, and names of chemicals and genes.

The tokenization is performed with a maximum sequence length of 512 tokens. The resulting
sequence of tokens is either padded or truncated to the maximum length to maintain compatibility
with the architecture of the pretrained model. Given that only a small fraction of the dataset (77 out of
1567 samples) exceeds this limit, as shown in Section 3.1, this truncation minimally impacts the overall
performance while ensuring compatibility with the architecture.

4.2.2. Classification Model

The second component in the NER system architecture is the classification model, which consists of a
pretrained model (Section 4.1) extended with one of three classification heads:

• Dense: A single dense layer with size equal to the number of labels.
• Dense + CRF: A dense layer with size equal to the hidden size of the given pretrained model
with a GELU activation function. This is connected to another dense layer whose size matches
the number of labels, which feeds into a CRF.

• BiLSTM + CRF: A BiLSTM layer with hidden size set to half the hidden size of the given
pretrained model with a GELU activation function. This is connected to a dense layer whose size
matches the number of labels, which feeds into a CRF.

The output of the classification model consists of token-level predictions, each represented by a BIO
label. The BIO labels are composed of the entity labels each prefixed with B- or I-. Tokens that do not
belong to any entity are labeled as O.



4.2.3. Post-processing

The last component in the NER system architecture is the post-processing step, which transforms
sequences of token-level predictions into entities. This step merges tokens into entities based on their
predicted labels and their adjacency in the original input text. Two subsequent tokens 𝑡1 and 𝑡2, with
start and end indices (𝑠1, 𝑒1) and (𝑠2, 𝑒2) in the original input text, are considered adjacent if 𝑒1 = 𝑠2 or
𝑒1 = 𝑠2 − 1. The token-level predictions are processed sequentially and merged into entities based on
three rules:

1. A new span is initiated if the current token has a B- or I- prefix and there is no prior adjacent
token with a B- or I- prefix.

2. Once a span is initiated, subsequent tokens can be appended to it if they are adjacent and share
the same label, regardless of their prefix.

3. If there is no adjacent subsequent token or if it has a different label, then the current span is
merged into an entity, and a new span is initiated.

Furthermore, we employ a lookahead mechanism to resolve rare cases, where the first and last tokens
of a sequence of adjacent tokens share the same label, but the labels of the intervening tokens are
different. Every time a span is initiated with a token with a B- prefix, the mechanism considers multiple
subsequent tokens. If these are adjacent, have I- prefixes, and the last token has the same label as the
initial token, then the labels of the intervening tokens are changed to the label of the initial token,
allowing all considered tokens to be merged into a single entity.

When the token-level predictions are merged into entities, the casing of these entities is adjusted to
match the casing of the original input text.

4.2.4. NER Ensemble

We consider two different NER ensemble methods to leverage the capabilities of multiple NER systems,
to enhance the reliability of the model predictions. We name them entity-level ensemble and token-level
ensemble.

Entity-level Ensemble The first method is an entity-level ensemble, which combines the outputs of
individual NER systems at the entity-level, meaning this method is applied after the post-processing.
The method involves an exact matching of the location of entities. Only entities for which the majority
of participating NER systems agree are retained. Subsequently, the final label for each retained entity is
determined based on a majority vote across the entity-level predictions from the participating NER
systems.

Token-level Ensemble The second method is an token-level ensemble, which combines the outputs
of individual classification models at the token-level prior to the post-processing. A prerequisite for
this approach is to have consistent tokenization across all classification model outputs, ensuring that
token-level predictions correspond to the same underlying input tokens across models.

This method involves a two-step process. In the first step, it is decided which token-level predictions
are retained from the participating classification models. At each token position in the input sequence
where at least one model predicts a label other than O, the predictions from all participating models are
examined. The method adopts a token retainment strategy to determine whether the predictions at
that position should be retained for the subsequent step. Three different token retainment strategies
are proposed:

• Union: All token-level predictions from the participating models are retained regardless of
agreement.

• Majority: Token-level predictions are retained only if the majority of the participating models
have predicted a label other than O at the given position.



• Intersection Token-level predictions are retained only if all models assign a label other than O
at the given position.

In the second step, the method determines the final label for each token position. Two different
strategies are proposed for this purpose:

• Softmax sum: The softmax outputs of all the participating models are summed at the given
token position. Then, the label corresponding to the highest score is selected as the final label.

• Majority: The label predicted by the majority of the models at a given token position is selected
as the final label for the token at that position. In cases where labels receive an equal number of
votes, the label is decided with the softmax sum strategy.

4.3. Relation Extraction (Subtask 6.2)

We approach the RE task as a sequence classification problem. The approach is inspired by the method
proposed by Baldini Soares et al. [29], in which entity spans are explicitly marked in the input text
using special tokens to enhance relation representation. Specifically, the special tokens [E1] and [/E1]
are inserted around the subject entity, and [E2] and [/E2] around the object entity. The hidden states
at the positions of the [E1] and [E2] tokens are extracted and concatenated to form a fixed-length
vector, which is then passed through a dense classification head.

Each RE system in the RE ensemble shown in the information extraction pipeline overview in Figure 3
consists of multiple components. These are illustrated in the RE system architecture in Figure 5. An RE
system takes as input the titles and abstracts of the original articles together with the predicted entities
from the NER ensemble.

The structure of the RE system architecture is similar to that of the NER system architecture. The
input is preprocessed to ensure compatibility with the model. The classification model consists of a
pretrained model (Section 4.1) followed by a classification head. In contrast to the NER systems, which
classifies each token in a sequence, the RE systems assign a single label to an entire sequence. Therefore,
we exclusively use a dense classification head for the RE systems, as architectures with a CRF layer
are more suitable for structured prediction tasks like NER. The classification model outputs relation
predictions that are post-processed to produce the set of relations, which are the final output. In the
following, we first describe the preprocessing and the post-processing components, and then we detail
the RE ensemble method.

Preprocessing Post-processingPretrained model Dense head

Entities Entities
+

relations

Classification model

Figure 5: RE system architecture.

4.3.1. Preprocessing

The first component in the RE system architecture is the preprocessing of the input text. For each
pair of entities, a separate sample is generated by inserting the special entity markers around the
subject and object within the full input text. This ensures that each sample highlights exactly one
pair of entities. Each sample is tokenized using the tokenizer of the given pretrained model, with the
vocabulary extended with the four special tokens. The resulting sequence of tokens is either padded or
truncated to the maximum length of 512 tokens to maintain compatibility with the architecture of the
pretrained model.



4.3.2. Post-processing

The last component in the RE system architecture is the post-processing. After inference with the
classification model, three post-processing steps are applied. The first step is to filter out any predictions
where the classification model indicates that there is no relation between the subject and object, to
retain only the meaningful relationships. The second step involves transforming each prediction into
the format of the specific RE task. The third step identifies and removes duplicate predictions, ensuring
that each relation is represented only once in the final output.

4.3.3. RE Ensemble

We propose a relation-level ensemble method to improve the robustness of the RE predictions. This
method combines the outputs of multiple RE systems after post-processing and relies on exact matching
of relations. For BT-RE (6.2.1), this requires the labels of both the subject and object to match. For
TT-RE (6.2.2), the relation label is also included in the matching. For TM-RE (6.2.3), in addition to
the relation label, the method further requires the exact text spans of the subject and object to match.
Similarly to the entity-level ensemble strategy (Section 4.2.4), this method retains only those relations
for which a majority of the participating models produce identical predictions.

4.4. Classification Model Training

To enhance performance, we construct a more realistic training dataset distribution using a negative
sample multiplier for RE and incorporate weighted training to address differences in annotation quality
across datasets.

4.4.1. Negative Sample Multiplier

For the RE tasks, to create a more realistic training dataset, the dataset is not limited to only containing
the positive relations, which are the annotated relations from the datasets. We extend it with a
configurable number of negative samples, which are instances of relations with random entities that
are not related. We denote this configurable number as the negative sample multiplier. This parameter
determines how many negative samples are added relative to the number of positive samples. We
hypothesize that the negative sample multiplier influences model performance, and we study this effect
in the experiments.

4.4.2. Weighted Training

We train the classification models for NER (Section 4.2) and RE (Section 4.3) using different combina-
tions of the datasets of different qualities. We introduce a dataset weight vector, which is used as a
hyperparameter, to account for the varying annotation quality across datasets:

𝑤 =
⎡
⎢
⎢
⎢
⎣

𝑤𝑝
𝑤𝑔
𝑤𝑠
𝑤𝑏

⎤
⎥
⎥
⎥
⎦

,

where 𝑤𝑝, 𝑤𝑔, 𝑤𝑠, 𝑤𝑏 denote the weights for the platinum, gold, silver, and bronze datasets, respectively.
We associate each training sample to a weight based on its dataset quality. The weights are used during
training to scale the loss contributions from individual samples according to the dataset quality of their
source.

Let 𝓁𝑖 denote the loss for training sample 𝑖, and let 𝑤(𝑖) be the mapping from training sample 𝑖 to
its corresponding dataset weight. The weighted average training loss ℒ𝑤 over a batch of 𝑁 samples is
then computed as:

ℒ𝑤 = 1
𝑁

𝑁
∑
𝑖=1

𝑤(𝑖) ⋅ 𝓁𝑖.



This approach enables the model to utilize all available data, including noisier datasets, while ensuring
that higher-quality annotations have a stronger influence during optimization.

All models use the cross-entropy loss function, which is defined for training sample 𝑖 as:

𝓁𝑖 = −
𝐶
∑
𝑐=1

𝑦𝑖,𝑐 log( ̂𝑦𝑖,𝑐),

where 𝐶 is the number of classes, 𝑦𝑖,𝑐 is the true probability of class c, represented as 1 for the correct
class and 0 for all other classes, and ̂𝑦𝑖,𝑐 is the predicted probability of class 𝑐.

5. Experiments and Results

In this section, the setup, experiments, and results are presented. Section 5.1, Section 5.2, and Section 5.3
detail the setup, dataset preparation, and training configurations, respectively. In Section 5.4, we analyze
the experiments on the development dataset for the NER and RE subtasks. This includes exploring
dataset weights, model architectures, and ensemble methods. In Section 5.5, the classification models of
the best-performing systems are retrained. Then, the systems with the retrained models are evaluated
on the test dataset and the results are shown. Finally, the final GutBrainIE leaderboard results are
presented.

5.1. Setup

All training jobs are conducted on a high-performance computing cluster at Aalborg University, AI-
LAB6. It uses the SLURM workload manager7 to schedule and manage jobs, and leverages Singularity8

to allow for creating and running containers. Each training job is allocated access to an NVIDIA L4
GPU with 24 GB VRAM, a 32-core AMD EPYC 7543 CPU, and 24 GB of RAM.

5.2. Dataset Preparation

We use all dataset qualities for training in the NER and RE subtasks. As the silver and bronze datasets
contain some incorrect annotations, as described in Section 3.3, these are either corrected or removed.

Additionally, for all subtasks, we concatenate the title and abstract of each paper before tokenization
to maintain a consistent input length and to accommodate RE, as relations can span from an entity in
the title to an entity in the abstract.

In the bronze dataset, there are 21 articles with no relations at all, as detailed in Section 3.3. We
exclude these articles from the training dataset for the RE subtasks.

As detailed in Section 3.2, the vast majority of articles contain fewer than 100 annotated relations, with
only a small number of outliers in the silver dataset exhibiting more than 100 relations. We hypothesize
that excluding these outliers enhances model performance. Therefore, we conduct experiments with
and without the inclusion of these outliers.

5.3. Training Configurations

The training is performed using the AdamW optimizer [38] and a custom learning rate scheduler.
For the NER subtask, the models are trained for 20 epochs with a batch size of 16. The learning rate

scheduler applies a linear warmup from 2 ⋅ 10−5 at epoch 1 to 8 ⋅ 10−5 at epoch 4, as using a warmup is
proven to improve training stability and model performance [39]. From epoch 4 until epoch 13, the
learning rate is kept constant at 8 ⋅ 10−5. Then it decays with a factor of 0.8 every second epoch until
finished.

6https://hpc.aau.dk/ai-lab/
7https://slurm.schedmd.com/
8https://docs.sylabs.io/guides/3.5/user-guide/introduction.html



For the RE subtasks, the models are trained for 10 epochs with a batch size of 16 using a similar
scheduling strategy. A linear warmup is applied from 10−6 at epoch 1 to 4 ⋅ 10−6 at epoch 3. From epoch
3 until epoch 6, the learning rate is kept constant at 4 ⋅ 10−6. Then it decays with a factor of 0.5 every
second epoch until finished.

The development dataset is used to validate the performance of each model after every epoch. The
model state corresponding to the highest F1micro score is selected for each model. This metric is used
because it is the official evaluation metric of the GutBrainIE task.

5.4. Experiments on the Development Dataset

This section presents the experimental results for the NER and RE subtasks on the development dataset.

5.4.1. Named-Entity Recognition (Subtask 6.1)

Impact of Dataset Quality Weighting To assess the impact of dataset quality on NER performance,
the classification models are trained using various dataset weight combinations for the platinum, gold,
silver, and bronze datasets. To ensure a fair comparison, the BioLinkBERT-base model with a dense
classification head is used exclusively for this experiment. Table 1 presents the 18 dataset weight
combinations considered, along with their corresponding F1micro scores on the development dataset.
The best performance training with dataset weights achieves an F1micro score of 0.8314, whereas training
without weighting achieves an F1micro score of 0.8189. The two dataset weight combinations yielding
the highest F1micro scores are 𝑤 = [1.5 1.5 1 0.75]

⊤
and 𝑤 = [1.25 1.25 1 0.75]

⊤
.

Table 1
The F1micro, precisionmicro, and recallmicro scores on the development dataset for 18 dataset weight combinations
using BioLinkBERT-base with a dense classification head. The two dataset weight combinations resulting in
the highest F1micro scores are in bold.

wp wg ws wb Precisionmicro Recallmicro F1micro

1.5 1.5 1.5 0.75 0.7866 0.8380 0.8114
1.5 1.5 1.5 0.5 0.7918 0.8478 0.8188
1.5 1.5 1.5 0.25 0.7920 0.8317 0.8114
1.5 1.5 1 0.75 0.8157 0.8478 0.8314
1.5 1.5 1 0.5 0.7888 0.8523 0.8193
1.5 1.5 1 0.25 0.7949 0.8397 0.8167
1.25 1.25 1.25 0.75 0.7911 0.8478 0.8185
1.25 1.25 1.25 0.5 0.8001 0.8424 0.8211
1.25 1.25 1.25 0.25 0.7923 0.8505 0.8204
1.25 1.25 1 0.75 0.8003 0.8469 0.8230
1.25 1.25 1 0.5 0.8015 0.8317 0.8163
1.25 1.25 1 0.25 0.7892 0.8344 0.8111
1 1 1 0.75 0.7913 0.8451 0.8173
1 1 1 0.5 0.7852 0.8380 0.8107
1 1 1 0.25 0.7938 0.8514 0.8216
1 1 1 1 0.7935 0.8460 0.8189
1 1 1 - 0.8064 0.8317 0.8189
1 1 - - 0.7264 0.8228 0.8093

NER Classification Model Performance To investigate the performance across the three classifica-
tion heads described in Section 4.2 and the seven pretrained models described in Section 4.1, we study
three head variants of each of the seven pretrained models. This results in 21 classification models,
which we train using the two best dataset weight combinations identified in Table 1. Table 2 shows the
resulting F1micro scores.



The difference in F1micro scores across the three classification head categories is minimal. The
classification models with dense heads perform slightly worse on average. However, although there
are slight differences, the best-performing models are distributed across all three classification heads
and different pretrained models. Hence, we do not observe a pattern where one classification head
consistently outperforms the other two.

Moreover, the results do not reveal a pattern across dataset weight combinations or architectures,
and therefore, no single architecture or classification head can be conclusively identified as the best.

Table 2
The F1micro scores on the development dataset of all combinations of pretrained models and classification heads
under two dataset weight combinations. The two highest F1micro scores for each classification head are in bold.

Pretrained Model Dense Dense + CRF LSTM + CRF

𝑤 = [1.5 1.5 1 0.75]⊤

BioLinkBERT-base 0.8151 0.8213 0.8152
BioLinkBERT-large 0.8094 0.8185 0.8149

BiomedBERT-base-uncased-abstract 0.8103 0.8193 0.8092
BiomedBERT-base-uncased-abstract-fulltext 0.8118 0.8176 0.8268

BiomedBERT-large-uncased-abstract 0.8148 0.8170 0.8178
BiomedElectra-base-uncased-abstract 0.8050 0.8174 0.8123
BiomedElectra-large-uncased-abstract 0.8072 0.8201 0.8198

𝑤 = [1.25 1.25 1 0.75]⊤

BioLinkBERT-base 0.8217 0.8166 0.8158
BioLinkBERT-large 0.8097 0.8085 0.8202

BiomedBERT-base-uncased-abstract 0.8019 0.8109 0.8077
BiomedBERT-base-uncased-abstract-fulltext 0.8067 0.8174 0.8152

BiomedBERT-large-uncased-abstract 0.7831 0.8183 0.8176
BiomedElectra-base-uncased-abstract 0.8013 0.8156 0.8100
BiomedElectra-large-uncased-abstract 0.8211 0.8165 0.8162

Average 0.8085 0.8168 0.8156

NER Ensemble Performance Finally, we investigate how the NER ensemble methods described
in Section 4.2.4 perform. Token-level ensemble aggregates predictions for each token individually,
whereas entity-level ensemble retains complete entities based on majority voting across models. Both
strategies improve the performance, however, the entity-level ensemble approach consistently out-
performs the token-level approach. Consequently, only entity-level ensembles are considered in the
following experiment and for the submission.

To determine which number of NER systems yields the best performance for the entity-level ensemble
approach, we conduct experiments with different sizes, ranging from 3 to 17 NER systems. For each
𝑛-ensemble size, we select the top-𝑛 NER systems based on the results of the previous experiments,
ranked by their individual F1micro scores on the development dataset. As a result, each larger ensemble
includes all NER systems from the smaller ensembles. For example, the top-5 ensemble contains all
NER systems from the top-3 ensemble, including the next two highest-scoring NER systems. Table 3
shows the performance of each ensemble size on the development dataset.

The results indicate that ensemble strategies lead to a notable performance improvement compared
to individual models. The highest F1micro score is observed with an ensemble size of 9. However, as
performance remains consistently high across all ensemble sizes in Table 3, we consider all the ensemble
sizes for the submission of the NER subtask (6.1).



Table 3
The F1micro, precisionmicro, and recallmicro scores on the development dataset of ensembles of varying sizes. The
result with the highest F1micro is in bold.

Ensemble size Precisionmicro Recallmicro F1micro

3 0.8351 0.8612 0.8480
5 0.8376 0.8585 0.8479
7 0.8360 0.8532 0.8445
9 0.8436 0.8594 0.8514
11 0.8398 0.8585 0.8490
13 0.8406 0.8594 0.8499
15 0.8405 0.8585 0.8494
17 0.8393 0.8559 0.8475

5.4.2. Relation Extraction (Subtask 6.2)

We conduct all RE experiments presented in this section using BT-RE classification models. Due to time
constraints, the configurations yielding the best performance in the BT-RE subtask (6.2.1) are also used
in the TT-RE (6.2.2) and TM-RE (6.2.3) subtasks.

Impact of Dataset Hyperparameters To determine the best configurations, we conduct an experi-
ment to assess the impact of different combinations of dataset hyperparameters. These hyperparameters
encompass the dataset weights, negative sample multiplier, and exclusion of articles with relation
outliers. All RE classification models in this experiment are trained using BioLinkBERT-base as the
pretrained model, and we evaluate them on the development dataset. Table 4 presents the results.

Lower negative sample multiplier values produce high recall but low precision, indicating a tendency
to generate an excessive number of false positive relations. In contrast, higher negative sample multiplier
values provide a better balance between precision and recall, resulting in the best overall performance.

We also observe that removing articles with relation outliers often improves performance. Finally,
from the experiments, there does not emerge clear performance trends across different datasets and
dataset weight combinations.

Hence, for the subsequent experiments and the final classificationmodels, a negative sample multiplier
of 10 is used, the articles with relation outliers are excluded, and all dataset and weight combinations
are still considered.

REClassificationModel Performance We evaluate the performance of the seven pretrained models
that are described in Section 4.3 with dense classification heads. We train the classification models on
the platinum and gold datasets, with outlier articles excluded and a negative sample multiplier of 10.
Table 5 shows that the results are similar across the different pretrained models. BioLinkBERT-base
yields the best performance among the base models, while BiomedBERT-large-uncased-abstract
and BiomedElectra-large-uncased-abstract yield the highest scores among the large models.

RE Ensemble Performance Similar to the NER ensemble experiment, the top-𝑛 RE systems from
the previous RE experiments are used in a relation-level ensemble (Section 4.3.3). However, due to time
constraints, we only consider ensemble sizes of 3 and 5. Table 6 shows the performance of relation-level
ensembles of sizes 3 and 5 for each RE subtask. The level of performance is very similar, and it appears
that the two extra RE systems in the ensemble of size 5 do not lead to an advantage.

5.5. GutBrainIE Submission Results

When preparing for the submission to GutBrainIE, we retrained the classification models of the best-
performing systems from the previous experiments on a training dataset that included the development



Table 4
The F1micro scores on the development dataset of RE classification models using BioLinkBERT-base under
different experimental configurations with varying combinations of datasets, dataset weights, negative sample
multiplier (NSM), and removal of articles with relation outliers. The entries in the “With Outliers” column for
configurations using only platinum and gold datasets are omitted, as all outliers originate from the silver dataset.

wp wg ws wb NSM With Outliers Without Outliers

1 1 - - 1 - 0.7505
1 1 1 - 1 0.7208 0.7186
1.5 1.5 1 0.75 1 0.7125 0.7391
1.25 1.25 1 0.75 1 0.7171 0.7305

1 1 - - 3 - 0.7562
1 1 1 - 3 0.7345 0.7606
1.5 1.5 1 0.75 3 0.7612 0.7458
1.25 1.25 1 0.75 3 0.7603 0.7736

1 1 - - 5 - 0.7645
1 1 1 - 5 0.7543 0.7621
1.5 1.5 1 0.75 5 0.7612 0.7732
1.25 1.25 1 0.75 5 0.7680 0.7757

1 1 - - 10 - 0.7805
1 1 1 - 10 0.7642 0.7826
1.5 1.5 1 0.75 10 0.7708 0.7934
1.25 1.25 1 0.75 10 0.7711 0.7965

Table 5
The F1micro, precisionmicro, and recallmicro scores on the development dataset of RE classification models that are
trained on the platinum and gold datasets with a negative sample multiplier of 10 and the articles with relation
outliers excluded. The pretrained models yielding the highest F1micro scores are in bold.

Pretrained Model Precisionmicro Recallmicro F1micro

BioLinkBERT-base 0.7379 0.8318 0.7821
BioLinkBERT-large 0.7358 0.8227 0.7768
BiomedBERT-base-uncased-abstract 0.7438 0.8182 0.7792
BiomedBERT-base-uncased-abstract-fulltext 0.7094 0.8545 0.7753
BiomedBERT-large-uncased-abstract 0.7354 0.8591 0.7925
BiomedElectra-base-uncased-abstract 0.7059 0.8727 0.7804
BiomedElectra-large-uncased-abstract 0.7629 0.8045 0.7832

dataset to make use of all the available annotated data. When all available data is used for training, no
separate dataset remains for validation during training. Therefore, we train the classification models
both with and without the development dataset to account for this limitation, in case those trained
on the development dataset perform unexpectedly. When the development dataset is included in the
training, it is assigned the same dataset weight as the platinum and gold datasets.

5.5.1. Named-Entity Recognition (Subtask 6.1)

For the NER subtask, we use the configurations presented in Table 2. We select the top 17 NER systems
based on the results from all previous experiments. This selection is conducted separately for NER
systems with the classification models trained with and without the development dataset included in
the training data. Based on these selections, we create entity-level ensembles using the top-𝑛 NER
systems, where 𝑛 ∈ {3, 5, 7, 9, 11, 13, 15, 17}. This results in two sets of eight entity-level ensembles.

The test results for the NER subtask are shown in Table 7. As expected, including the development
dataset in the training dataset increases the performance. The best result is achieved with an entity-level



Table 6
The F1micro, precisionmicro, and recallmicro scores on the development dataset of relation-level ensembles of size 3
and 5 for each RE subtask.

Ensemble Size Precisionmicro Recallmicro F1micro

BT-RE (Subtask 6.2.1)

3 0.7530 0.8591 0.8025
5 0.7540 0.8500 0.7991

TT-RE (Subtask 6.2.2)

3 0.7090 0.8261 0.7631
5 0.7209 0.8087 0.7623

TM-RE (Subtask 6.2.3)

3 0.5489 0.6518 0.5959
5 0.5786 0.6375 0.6066

ensemble of the five NER systems with classification models trained with the development dataset
included.

Table 7
The F1micro, precisionmicro, and recallmicro scores on the test dataset for entity-level ensembles of varying sizes.
Results are shown for NER systems with classification models trained with and without the development dataset.
The result with the highest F1micro is in bold.

Ensemble Size Precisionmicro Recallmicro F1micro

Classification Models Trained with Development Dataset

3 0.8181 0.8367 0.8273
5 0.8286 0.8480 0.8382
7 0.8218 0.8424 0.8319
9 0.8219 0.8432 0.8324
11 0.8255 0.8416 0.8335
13 0.8251 0.8407 0.8333
15 0.8303 0.8424 0.8363
17 0.8266 0.8399 0.8332

Classification Models Trained without Development Dataset

3 0.8121 0.8351 0.8234
5 0.8191 0.8351 0.8271
7 0.8240 0.8367 0.8303
9 0.8288 0.8375 0.8331
11 0.8207 0.8327 0.8266
13 0.8243 0.8343 0.8292
15 0.8217 0.8310 0.8264
17 0.8225 0.8319 0.8272

5.5.2. Relation Extraction (Subtask 6.2)

Table 3 shows that the entity-level ensemble of size 9 achieves the best performance on the NER subtask
without including the development dataset in the training dataset. Since this ensemble yields the highest
score prior to evaluation on the test dataset, we select it as the best configuration. By extension, we also
select the entity-level ensemble size of 9 trained with the development dataset, assuming it may yield
the best performance. Hence, these two ensembles are used to generate the entities for the subsequent
RE subtasks.



Based on the results shown in Table 5, the three pretrained models resulting in the best perfor-
mance are BioLinkBERT-base, BiomedBERT-large-uncased-abstract, and BiomedElectra-large-
uncased-abstract. Hence, the RE systems in all three RE subtasks use these models. Due to time
constraints, the classification models with large pretrained models are trained only using the platinum
and gold datasets, while those with the base model are trained on all four datasets and dataset weight
combinations shown in Table 4.

For each RE subtask, we use the relation-level ensembles of size 3. This is due to time constraints,
as well as what we observed in Table 6, where there is no clear difference between the relation-level
ensembles of 3 or 5 RE systems.

Since all models for the submission are trained with and without the development dataset included,
there are two entity-level ensembles and for each RE subtask there are two relation-level ensembles.
Combined this results in four relation-level ensembles for each RE subtask.

Table 8 shows the test results for the RE subtasks. For each subtask, the best result is achieved by
using the entities from the entity-level ensemble that is trained with the development dataset and by
using the relation-level ensemble that is trained without the development dataset.

Table 8
The F1micro, precisionmicro, and recallmicro scores on the test dataset for relation-level ensembles of size 3. Results
are shown for classification models trained with and without the development (dev) dataset. The result for each
RE subtask with the highest F1micro is in bold.

RE Trained with Dev NER Trained with Dev Precisionmicro Recallmicro F1micro

BT-RE (Subtask 6.2.1)

- - 0.6450 0.7316 0.6856
3 - 0.6350 0.7229 0.6761
- 3 0.6304 0.7532 0.6864
3 3 0.6236 0.7316 0.6733

TT-RE (Subtask 6.2.2)

- - 0.6329 0.7449 0.6843
3 - 0.6178 0.7449 0.6754
- 3 0.6280 0.7572 0.6866
3 3 0.6087 0.7490 0.6716

TM-RE (Subtask 6.2.3)

- - 0.4137 0.5013 0.4533
3 - 0.3893 0.4477 0.4165
- 3 0.4215 0.5148 0.4635
3 3 0.3933 0.4598 0.4240

5.5.3. Final Leaderboards

Table 9 illustrates the final leaderboards for each of the subtasks of the top three teams in the GutBrainIE
task. Our proposed information extraction pipeline achieved second place in the NER subtask (6.1), and
first place in all three RE subtasks (6.2.1, 6.2.2, and 6.2.3).

In the NER subtask (6.1), the F1micro score difference between first place and our result is 0.0026,
corresponding to a difference of 0.0031%. In the RE tasks, our approach outperformed second place
by 0.0291, 0.0408, and 0.0906 for subtasks 6.2.1, 6.2.2, and 6.2.3, respectively. This corresponds to a
difference in performance of 4.43%, 6.32%, and 24.3%, respectively.



Table 9
The final leaderboards for each of the subtasks of the top three teams in the GutBrainIE task. Only F1micro is
presented, as it is the official evaluation metric of the GutBrainIE task.

Subtask 6.1 Subtask 6.2.1 Subtask 6.2.2 Subtask 6.2.3

Ranking Team F1micro Team F1micro Team F1micro Team F1micro

1 GutUZH 0.8408 Gut-Instincts 0.6864 Gut-Instincts 0.6866 Gut-Instincts 0.4635
2 Gut-Instincts 0.8382 ONTUG 0.6573 ataupd2425-pam 0.6458 Graphswise-1 0.3729
3 NLPatVCU 0.8370 Graphswise-1 0.6538 ONTUG 0.6443 ICUE 0.3651

6. Conclusion

In this paper, we proposed a biomedical information extraction pipeline, leveraging transformer-based
models pretrained on biomedical corpora for NER and RE, as part of the GutBrainIE task.

To address the domain-specific terminology involved in the tasks, we relied on biomedical pretrained
models, combined in ensembles. Specifically, for NER we selected and trained seven different pretrained
models combined with three different classification heads. Based on individual model performance, we
formed token-level and entity-level ensembles, ranging in size from 3 to 17. We discovered that both
methods and all ensemble sizes led to significant improvements in performance and that entity-level
ensembling consistently outperformed token-level ensembling. Performance across ensemble sizes was
comparable, with only minor variations. For RE, we applied the same set of pretrained models as in
NER and evaluated ensembles of sizes 3 and 5. Both ensemble sizes improved performance, with only
minor differences observed between them.

Moreover, to address the availability of datasets of varying quality, we introduced a weighted training
method, which improved performance for both NER and RE. Finally, for RE, we further improved the
performance by introducing negative samples. Our experiments suggested that a large amount of
negative samples (10 negative samples for each positive one) achieved the best performance.

The organizers of the GutBrainIE task conducted an external assessment of the performance of our
information extraction pipeline. Our pipeline achieved the second-best performance in the NER subtask
(6.1) and the best performance in the RE subtasks (6.2.1, 6.2.2, and 6.2.3).

For future work, we aim to improve the ability of the information extraction pipeline to distinguish
between Chemical and Gene entities, as it currently struggles with it. This could be addressed by
incorporating domain-specific gazetteers. For RE, we want to investigate the implementation of typed
entitymarkers, as theymay providemore contextual cues to improve relation classification. Furthermore,
we want to improve data preparation by addressing the presence of HTML tags in the input texts. These
could not be removed during the challenge, as the annotations of the test data were hidden. Removing
HTML tags prevents the introduction of spurious tokens during tokenization, reducing the risk of the
model learning irrelevant patterns and improving performance.
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