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Abstract
This paper presents our system for Task 3 of the CLEF 2025 CheckThat! Lab, which focuses on verifying numerical
and temporal claims using retrieved evidence. We explore two complementary approaches: zero-shot prompting
with instruction-tuned large language models (LLMs) and supervised fine-tuning using parameter-efficient LoRA.
To enhance evidence quality, we investigate several selection strategies, including full-document input and
top-𝑘 sentence filtering using BM25 and MiniLM. Our best-performing model LLaMA fine-tuned with LoRA
achieves strong performance on the English validation set. However, a notable drop in the test set highlights a
generalization challenge. These findings underscore the importance of evidence granularity and model adaptation
for robust numerical fact verification.
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1. Introduction

As misinformation continues to spread across digital platforms, the ability to automatically verify factual
claims has become increasingly important [1]. Among the most challenging forms of misinformation
are those involving numerical or temporal elements, claims that reference statistics, quantities, dates,
or trends [2]. These claims are often persuasive and deceptively simple; yet, verifying them requires
not just factual knowledge but also precise reasoning over quantitative details.

To support the verification of numerical misinformation, Viswanathan et al. [3] proposed the Quan-
Temp dataset. This benchmark targets real-world quantitative and temporal claims, including multilin-
gual evidence retrieved from fact-checking sources. It serves as the foundation for CLEF 2025 Task 3
[4]. Task 3 of the CLEF 2025 CheckThat! Lab [5] focuses on verifying such claims by classifying them
as True, False, or Conflicting based on a small set of retrieved evidence. This task is especially
challenging because evidence is frequently noisy, partially relevant, or even contradictory, and claims
may rely on implicit or contextualized numerical reasoning.

Recent advancements in large language models (LLMs) have shown promising capabilities in un-
derstanding and generating human-like text [6, 7, 8]. However, their effectiveness in structured fact
verification, especially when reasoning over multiple retrieved evidence passages, remains an open
research problem. Additionally, aligning LLM outputs with factual correctness while managing compu-
tational efficiency is a key consideration.
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In this work, we explore two complementary strategies for numerical claim verification: zero-shot
prompting with instruction-tuned LLMs and supervised fine-tuning using parameter-efficient methods
(LoRA). We also experiment with various evidence selection techniques, including full-document input
and top-𝑘 sentence retrieval via BM25 and MiniLM, to assess the impact of evidence granularity on
model performance.

Our approach aims to evaluate the balance between generalization and supervision, and to investigate
how LLMs can be adapted for precise, scalable, and reliable numerical fact-checking.

2. Related Work

Recent years have seen growing interest in fact verification systems that integrate natural language
processing, information retrieval, and reasoning [9, 10]. A prominent line of work in this space is
retrieval-augmented generation (RAG), which combines document retrieval with large language models
(LLMs) to produce contextually grounded and factually accurate outputs [11, 12]. Yue et al. [13]
introduced RARG, a retrieval-augmented RAG framework that incorporates scientific literature to
generate polite, evidence-based counter-responses. Their use of reinforcement learning with document-
level supervision demonstrated the benefits of aligning generation with factual evidence. Expanding on
this, RAFTS [14] introduced a contrastive fact verification pipeline that generates both supporting and
refuting responses from retrieved passages. RAFTS emphasized interpretability and achieved strong
results using parameter-efficient models.

Systems such as FactGenius [15] improve zero-shot prompt-based fact-checking abilities of LLMs
by integrating them with external knowledge bases (DBPedia) and similarity measures (fuzzy text
matching). ClaimMatch [16] leverages LLMs in both zero-shot and few-shot settings (e.g., GPT-3.5-
turbo, Gemini, LLaMA) for claim matching (CM), utilizing natural language inference and paraphrase
detection. Tang et al. [17] developed MiniCheck, a sentence-level verifier that approaches GPT-4
performance using synthetic training data and smaller models. Their work shows that compact models
can perform competitively when fine-tuned appropriately.

Several researchers have employed Full-Context Retrieval and Verification frameworks to perform
LLM-based claim extraction in conjunction with Retrieval-Augmented Generation (RAG). RAG enhances
the detection process by constructing a comprehensive context for fact-checking [18, 19, 20].

Our approach builds on these insights by combining sentence-level retrieval (BM25 and MiniLM),
fine-tuned generation with LLaMA, and multilingual claim-evidence alignment. Unlike decomposition-
heavy pipelines, we show that strong performance can be achieved with simpler architectures and
focused supervision.

3. Task Description

3.1. Task Overview

We participate in Task 3: Fact-Checking Numerical Claims as part of the CLEF 2025 CheckThat!
Lab [21]. This task aims to verify the factual correctness of claims that include numerical quantities
or temporal expressions. Such claims require not only linguistic understanding but also the ability to
interpret quantities, dates, and time-based facts in context.

Participants are provided with a set of claims and corresponding evidence passages retrieved using
top-100 BM25 ranking. The goal is to classify each claim into one of three labels:

• True - the claim is fully supported by the evidence;
• False - the claim is clearly refuted by the evidence;
• Conflicting - the evidence is ambiguous, partially supportive, or contradictory.

The task challenges systems to handle ambiguous evidence, resolve conflicting numbers or dates, and
reason over concise or incomplete textual data. Participants are allowed to apply re-ranking, retrieval
filtering, and generation techniques to improve verification performance.



3.2. Dataset Summary

For Task 3, we use a dataset sourced from fact-checking reports gathered via the Google Fact Check
Explorer API. We filter claims to include only those with numerical or temporal expressions. Each claim
comes with a ranked set of evidence documents, retrieved using BM25 and claim decomposition.*

Though the dataset supports multiple languages, we limit our experiments to the English portion.

Table 1
CLEF 2025 Task 3 Dataset Overview (English Subset)

Attribute Value

Language English
Number of Claims 15,514
Evidence per Claim Top-100 BM25-ranked documents
Labels True, False, Conflicting
Task Format 3-class classification

4. Methodology

4.1. Problem Formulation

The goal of this task is to automatically verify the factual correctness of claims that contain numerical or
temporal expressions. Each instance in the dataset consists of a claim 𝐶 and a corresponding evidence
set 𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑘}, where each 𝑒𝑖 is a sentence or a document retrieved from a fact-checking
corpus. The task is to classify the claim into one of three categories: True, False, or Conflicting.

We treat this as a three-way classification problem, where the model learns a function:

𝑓(𝐶,𝐸) → 𝑦 ∈ {True, False, Conflicting}

Here, 𝑓 can be instantiated as either a generative language model prompted in zero-shot fashion, or a
fine-tuned discriminative classifier.

The evidence 𝐸 is varied across different experimental configurations. In some cases, 𝐸 includes
the full document retrieved via BM25, while in others, it consists of a ranked subset of top-𝑘 relevant
sentences, or a summary generated by a large language model. This flexible formulation allows us to
investigate the effect of evidence selection on both prompted and fine-tuned approaches.

4.2. Prompting with LLaMA

We employ LLaMA [22] to perform zero-shot claim verification using a prompting-based approach. In
this setup, we construct an instruction-style prompt that includes the task definition, the numerical
claim, and the selected evidence (either full document, top-𝑘 sentences, or a generated summary). The
model is then asked to classify the claim into one of the three predefined categories: True, False, or
Conflicting.

The prompt is designed to guide the model toward generating a concise classification rather than an
open-ended explanation. A typical example of the input prompt is as follows:



Fact-Checking Prompt

You are a helpful and concise fact-checking assistant. Given a claim
and supporting evidence, your task is to determine the truthfulness of
the claim.
Respond strictly with one of the following labels: True, False, or
Conflicting.

Claim: [CLAIM]
Evidence: [EVIDENCE]
Based on the evidence, what is the correct classification?

LLaMA’s output is processed with simple regex patterns to extract the first valid label found. We
also clean ambiguous responses such as ‘partially true’ or ‘half false’ by mapping them to the nearest
predefined label (typically Conflicting).

With prompted inference (no gradient updates), we efficiently test different evidence setups. This
lets us evaluate how well the model generalizes for fact-checking without task-specific fine-tuning.

4.3. Evidence Selection Strategies

Each claim in the dataset is accompanied by up to 100 retrieved evidence documents, obtained using the
BM25 ranking algorithm. However, these documents often contain irrelevant or redundant information,
which can negatively impact model performance, particularly for length-sensitive models or those
affected by context dilution. To address this, we evaluate several evidence selection strategies to enhance
the signal-to-noise ratio of the input.

Full Document. In the baseline approach, we use the complete top-ranked BM25-retrieved document
without filtering. While this preserves full context, it frequently includes off-topic or low-relevance
content.

Top-3 BM25 Sentences. We apply BM25 [23] at the sentence level, treating the claim as a query to
select the three highest-scoring sentences from top documents. This efficient method favors lexical
matches but may miss semantically relevant content.

Top-3 MiniLM Sentences. For improved semantic matching, we embed both claims and sentences
using all-MiniLM-L6-v21, then select the three sentences with highest cosine similarity to the claim.
This approach captures meaning beyond surface-level lexical overlap.

Each of these evidence types is paired with both prompting and fine-tuned models to study the effect
of evidence quality on downstream fact-checking performance.

4.4. Model Architectures

We evaluate three model variants for numerical claim verification: (1) a zero-shot prompted LLM, (2)
a fine-tuned RoBERTa classifier, and (3) a parameter-efficient fine-tuned LLaMA (using LoRA). Each
model takes a claim and selected evidence as input, outputting one of {True, False, Conflicting}.

Prompted LLaMA (Zero-Shot). Using LLaMA in zero-shot mode, we provide a natural language
prompt containing the claim and evidence, instructing the model to return a single label. The prompt
defines the task and response format. No model updates occur during training; we extract predictions
through simple post-processing of the generated output.

Fine-Tuned RoBERTa. We fine-tune roberta-base [24] via supervised learning. The concate-
nated claim-evidence pair serves as input, with the model outputting label probabilities. Trained for
three epochs on stratified data using cross-entropy loss, this provides a strong discriminative baseline.

1https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


Fine-Tuned LLaMA with LoRA. Using Low-Rank Adaptation (LoRA) [25], we fine-tune LLaMA-
3.1-8B with prompt-response pairs (claim+evidence as prompt, label as response). LoRA applies to
query, key, value, and output projections (𝑟 = 8, 𝛼 = 16, dropout=0.05). The Hugging Face Trainer
implements 3-epoch fine-tuning with mixed precision and gradient checkpointing, balancing task
alignment with computational efficiency.

4.5. Evaluation Metrics

We follow the official evaluation protocol defined by the CLEF 2025 CheckThat! Lab for Task 3. The
primary evaluation metric is the macro-averaged F1 score across the three classification labels: True,
False, and Conflicting.

In addition to macro-F1, we report class-wise F1 scores to better understand model behavior across
different types of claims. This is particularly important given the inherent class imbalance in the dataset
and the difficulty of predicting Conflicting cases.

All results are computed on the official English validation and test splits using a consistent prepro-
cessing and evaluation pipeline.

5. Experiments

5.1. Experimental Setup

We conduct experiments on the English subset of the CLEF 2025 Task 3 dataset, which contains 15,514
claims annotated with one of three labels: True, False, or Conflicting. Each claim is associated
with a list of up to 100 evidence documents retrieved using BM25 over a pooled web corpus.

For supervised learning, we split the dataset into 90% training and 10% validation sets using stratified
sampling to preserve label distribution. All evidence selection methods: full document, top-3 BM25 and
top-3 MiniLM are applied on both training and validation sets to evaluate their downstream impact.

We evaluate model performance using the macro-averaged F1 score, which is the official metric for
the shared task. Additionally, we report class-wise F1 scores to better understand how models handle
imbalanced or ambiguous labels, especially the Conflicting class. For qualitative analysis, we also
examine confusion matrices and sample errors.

To ensure comparability, all models are evaluated using the same preprocessing pipeline and evidence
configuration across prompting, fine-tuning, and hybrid setups.

5.2. Training and Inference Setup

We implement all models using the Hugging Face Transformers, PEFT, and SentenceTransformers
libraries. Experiments are conducted on a high-performance server equipped with dual Intel(R) Xeon(R)
Gold 6226R CPUs (64 threads), 125GB of RAM, and three NVIDIA Quadro RTX 8000 GPUs, each with
48GB of memory. Training jobs are executed using PyTorch with CUDA 12.6, and GPU utilization is
managed dynamically based on availability.

Prompted LLaMA (Zero-Shot). We use the meta-llama/Llama-3.1-8B-Instruct2 model
without fine-tuning for zero-shot generation. The model is prompted using an instruction-style format
that defines the task and presents the claim and evidence. We use nucleus sampling with temperature
0.3, top-𝑝 of 0.9, and a maximum of 30 new tokens. Model outputs are post-processed using regular
expressions to extract the first valid verdict label. Ambiguous generations (e.g., “somewhat true”) are
mapped to the closest predefined class, typically Conflicting.

RoBERTa Fine-Tuning. We fine-tune the roberta-base3 model using cross-entropy loss over the
three output labels. Claims and evidence are tokenized as a sequence pair and truncated to a maximum
length of 512 tokens. We use the AdamW optimizer with a learning rate of 2× 10−5, a batch size of 8,

2https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
3https://huggingface.co/FacebookAI/roberta-base



Table 2
F1 scores for each model and evidence configuration on the English validation set. Best macro-F1 scores
per row are bolded.

Model Evidence True-F1 False-F1 Conflicting-F1 Macro-F1

Prompted LLaMA Top-3 BM25 0.519 0.753 0.087 0.453
Prompted LLaMA Top-3 MiniLM 0.526 0.745 0.057 0.443
Prompted LLaMA Full Document 0.499 0.832 0.496 0.609

RoBERTa (Fine-Tuned) Top-3 BM25 0.541 0.835 0.394 0.590
RoBERTa (Fine-Tuned) Top-3 MiniLM 0.420 0.823 0.510 0.584

LLaMA \w LoRA Top-3 BM25 0.630 0.857 0.438 0.642
LLaMA \w LoRA Top-3 MiniLM 0.632 0.863 0.484 0.660
LLaMA \w LoRA (Ours) Full Document 0.899 0.930 0.823 0.945

and train for 3 epochs with early stopping based on macro-F1 score on the validation set. The model is
evaluated using softmax-based prediction.

LLaMA Fine-Tuning (LoRA). We fine-tune the same LLaMA-3.1-8B-Instruct model using
Low-Rank Adaptation (LoRA). LoRA is applied to the query, key, value, and output projection layers
with a rank of 𝑟 = 8, a scaling factor of 𝛼 = 16, and a dropout rate of 0.05. Each training instance is
formatted as a prompt-response pair, where the response corresponds to a single label. We use a batch
size of 2 with gradient accumulation over 4 steps. Training is performed in mixed-precision (FP16), and
gradient checkpointing is enabled to reduce memory usage. The model is trained for 3 epochs using the
Hugging Face Trainer API4.

All experimental runs are tracked using Weights & Biases5 for reproducibility, and each configuration
is evaluated using identical preprocessing and scoring scripts.

6. Results

6.1. Validation Results

Table 2 presents the F1 scores of various model configurations on the English validation set. We evaluate
performance across three model types: prompted LLaMA, fine-tuned RoBERTa, and fine-tuned LLaMA
with LoRA under different evidence selection strategies.

Among the prompted models, LLaMA achieves its best performance using full-document input,
reaching a macro-F1 of 0.609. However, it struggles significantly with the Conflicting class, indicating
limitations in handling ambiguous evidence without task-specific fine-tuning.

Fine-tuned models consistently outperform prompted ones. RoBERTa performs well across both
BM25 and MiniLM sentence-level evidence, with the best Conflicting class F1 (0.510) achieved using
MiniLM. This suggests that sentence-level semantic filtering benefits models lacking strong pretraining
on numerical reasoning.

The best overall performance is achieved by the fine-tuned LLaMA with LoRA using full-document
evidence. It reaches a macro-F1 of 0.945 and shows balanced performance across all three classes.
Sentence-level evidence (e.g., Top-3 MiniLM) also provides strong results, particularly improving
precision on harder examples while reducing irrelevant context.

These results confirm that combining large language models with parameter-efficient tuning and
retrieval-aware evidence selection leads to substantial improvements in numerical claim verification.

4https://huggingface.co/docs/transformers/en/main_classes/trainer
5https://wandb.ai/

https://huggingface.co/docs/transformers/en/main_classes/trainer


Table 3
F1 scores for each model and evidence configuration on the English test set. Best macro-F1 scores per row are
bolded.

Model Evidence True-F1 False-F1 Conflicting-F1 Macro-F1
Prompted LLaMA Top-3 BM25 0.40 0.71 0.11 0.41
Prompted LLaMA Top-3 MiniLM 0.42 0.71 0.08 0.40
Prompted LLaMA Full Document 0.43 0.73 0.03 0.40
RoBERTa (Fine-Tuned) Top-3 BM25 0.12 0.77 0.15 0.35
RoBERTa (Fine-Tuned) Top-3 MiniLM 0.11 0.65 0.25 0.34
LLaMA \w LoRA Top-3 BM25 0.42 0.76 0.11 0.43
LLaMA \w LoRA Top-3 MiniLM 0.40 0.75 0.15 0.43
LLaMA \w LoRA (Ours) Full Document 0.23 0.73 0.32 0.42

6.2. Test Set Performance

Table 3 summarizes the F1 scores for all model configurations on the English test set. We evaluated
prompted LLaMA, fine-tuned RoBERTa, and fine-tuned LLaMA with LoRA, each paired with different
evidence selection strategies.

Among the prompted models, LLaMA with full-document input achieved a macro-F1 of 0.40, while
Top-3 BM25 and Top-3 MiniLM sentence selection resulted in similar scores (0.41 and 0.40, respectively).
These results indicate that zero-shot prompting generalized better than fine-tuned RoBERTa, whose
macro-F1 dropped to 0.35 (Top-3 BM25) and 0.34 (Top-3 MiniLM).

Fine-tuned LLaMA with LoRA achieved the highest macro-F1 on the test set (0.43) with both Top-3
BM25 and Top-3 MiniLM evidence. Notably, fine-tuning with full-document evidence, despite yielding
the best validation macro-F1, led to a macro-F1 of 0.42 on the test set, with a modest improvement on
the Conflicting class (F1: 0.32).

Across all configurations, models consistently achieved higher F1 scores for False claims, while True
and Conflicting claims remained challenging. The Conflicting class in particular showed low F1 except
for the full-document fine-tuned LLaMA, suggesting that richer context helps resolve ambiguous or
contradictory evidence.

6.3. Discussion

Our results demonstrate that large language models, when fine-tuned with parameter-efficient tech-
niques and supported by retrieval-aware evidence selection, can achieve strong performance on numer-
ical claim verification. In particular, sentence-level evidence filtering using MiniLM embeddings helped
improve model precision for ambiguous cases, especially in the Conflicting class.

Table 4
Comparison of validation and test performance across classes.

Metric Validation Test

Macro-F1 0.945 0.424
True F1 0.899 0.232
Conflicting F1 0.823 0.315
False F1 0.930 0.726

However, as shown in Table 4, there remains a substantial performance gap between the validation
and test sets. While the model performed well on validation data, it struggled to maintain comparable
performance on the test set, particularly for the True and Conflicting categories. This suggests that
the model may have overfit to patterns in the validation data or faced difficulties adapting to shifts in
evidence structure and language style in the test set.

Preliminary review of errors indicates that failures were often related to numerical reasoning chal-
lenges, ambiguous or contradictory evidence, or missing key supporting facts. These patterns highlight



the complexity of verifying numerical claims in the presence of noisy or incomplete context.
Overall, our findings underscore the importance of both model architecture and evidence quality

in developing robust fact verification systems. Future work should explore domain-adaptive training,
reasoning-aware approaches, and improved evidence selection techniques to enhance model generaliza-
tion in real-world scenarios.

7. Conclusion

In this paper, we presented our approach for Task 3 of the CLEF 2025 CheckThat! Lab, which focuses
on verifying numerical claims using retrieved evidence. We explored both zero-shot prompting and
parameter-efficient fine-tuning of large language models, alongside multiple evidence selection strategies
including sentence-level filtering via BM25 and MiniLM.

Our experiments showed that fine-tuning LLaMA with LoRA on full-document evidence achieved the
best performance on the validation set. Sentence-level filtering improved performance for ambiguous
claims, especially in the Conflicting class. However, the performance drop on the test set highlighted
challenges in generalization, likely due to domain shift and the nuanced nature of real-world evidence.

Future work will focus on enhancing model robustness through domain-adaptive training, improved
retrieval filtering, and reasoning-aware modeling strategies. Our findings suggest that large language
models, when combined with structured evidence processing, are a promising foundation for building
scalable and accurate fact verification systems.

Declaration on Generative AI

During the preparation of this work, the author(s) used ChatGPT-4o and Grammarly for grammar
and clarity revision. These tools were employed to refine sentence structure, correct typographical
errors, and improve overall language quality. No generative content was used for analysis, figures,
or experimental sections. After using these tool(s)/service(s), the author(s) reviewed and edited the
content as needed and take(s) full responsibility for the publication’s content.
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