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Abstract
The growing spread of misinformation, particularly on social media, has increased the demand for scalable and

accurate automated fact-checking systems. This paper presents our approach to Task 3 of the CheckThat! 2025

lab, which focuses on the verification of numerical claims. We propose a three-stage architecture comprising

(i) semantic evidence retrieval using dense bi-encoder representations stored in a FAISS index, (ii) contrastive

re-ranking with a fine-tuned cross-encoder leveraging weak supervision from gold evidences, and (iii) claim

classification using multi-instance learning (MIL) with various evidence pooling strategies. Experiments on

the QuanTemp dataset demonstrate that attention and LogSumExp pooling outperform standard concatenation

methods, with our best model achieving a macro-F1 score of 0.5213 on the test set. Additionally, ablation studies

confirm the effectiveness of contrastive re-ranking and the practical advantages of dense retrieval, which achieves

both higher accuracy and significantly faster retrieval than traditional BM25.
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1. Introduction

Misinformation is one of today’s greatest challenges in the digital world. Whether they are distributed

intentionally or not, they can have a large influence on our opinions and spread rapidly [1]. Since many

adults refer to social media platforms when consuming news [2], the risk of further dissemination of

disinformation is more present than ever. Conventional fact-checking organizations like PolitiFact1
or

Snopes2
struggle to keep up with the amount of information worth checking, as manual fact checking is

both time-consuming and tedious [3]. To address these concerns and automatically detect misinfor-

mation, Nakov et al. [4] presented the full claim verification pipeline for the CheckThat! 2022 lab.

The pipeline consists of four main tasks, namely check-worthiness estimation, verified claim retrieval,
evidence retrieval and claim verification.

The CheckThat! lab has been addressing different parts of the claim verification pipeline in multiple

iterations of its appearance, for instance in its releases in 2018 (check-worthiness detection and claim

verification), 2020 (all subtasks) and 2024 (check-worthiness detection) [5, 6, 7]. In the 2025 edition

of the CheckThat! lab, task 3 addresses the last step of the pipeline — claim verification — with a

focus on numerical claims [8]. Numerical claims are here defined as claims that require validation of

quantitative or temporal statements, e.g., a mention of a date or year, or a quantity of participants.
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Figure 1: Full verification pipeline including all subtasks as described by Nakov et al. [4].

In this paper, we present our approach to the third task, which follows a three-stage architecture: (i)

initial evidence candidate retrieval using dense vector similarity from a FAISS index, (ii) fine-grained

re-ranking through a contrastively trained cross-encoder, and (iii) final claim classification via a MIL

framework based on roberta-large-mnli. Our method emphasizes semantic retrieval over tradi-

tional surface-level approaches (e.g., BM25), leverages weakly supervised contrastive signals from gold

evidences, and avoids noisy input concatenation by aggregating evidence representations through

pooling mechanisms. This modular setup allows the system to flexibly combine retrieval and reasoning,

while remaining scalable for real-world application.

Our main contributions are as follows:

• We propose a modular pipeline for claim verification that integrates dense retrieval, contrastive

re-ranking, and multi-instance classification for numerical claims.

• We introduce a contrastive training setup using weak supervision from summarized gold evidences

to improve re-ranking quality without relying on manual annotation.

• We evaluate multiple evidence aggregation strategies (Max, LogSumExp, Attention), and show

that pooling-based MIL improves over standard concatenation approaches.

The paper is structured as follows: Section 2 gives an overview of the fake news detection pipeline

as presented in [4] and the problem of the specific task. Section 3 summarizes previously conducted

works in this field. In Section 4 we present our methodology, which we then evaluate and analyze in

Section 5. Finally, we provide a conclusion and future outlook to our approach in Section 6.

2. Background

This section provides an overview of the fake news detection pipeline (Subsection 2.1) and presents a

formal definition of the claim verification task (Subsection 2.2).

2.1. Fake News Detection Pipeline

The process of detecting and evaluating fake news was first formulated by Nakov et al. in 2018 [5] and

further refined in the following editions. Since 2020 the pipeline is presented in four distinct stages. We

will look at an adaption from the pipeline as shown in Figure 1.

The first task, check-worthiness estimation, assesses whether a statement needs further verification,

i.e., if it needs to be passed on to a verifying authority. The second task, verified claim retrieval, attempts

to determine whether the claim has already been fact-checked by searching a database of previously

verified claims. If a matching verified claim is found, its label can directly support the classification

of the new claim. The third step, evidence retrieval, involves gathering additional relevant evidence

from external sources, such as web documents or news outlets, which may help in verifying the claim.

Finally, the fourth task, claim verification, combines the original claim with the retrieved evidences to

assess its veracity. This is described in more detail in the following Subsection.



2.2. Problem Formulation

The task of claim verification involves determining the veracity of a claim by consulting a set of

evidences retrieved from a large corpus. Formally, given a query (claim) and relevant evidences, the

goal is to predict whether the claim is true, false, or in contradiction with the available information.

Mathematically, this can be described as follows:

1. Definitions

Let:

• 𝒬 = {𝑞1, 𝑞2, . . . , 𝑞𝑁} be the set of queries (claims).

• 𝒞 = {𝑒1, 𝑒2, . . . , 𝑒𝑀} be the corpus of evidences.
• 𝑓 : 𝒬×𝒞𝑘 → 𝒴 be the verification model, which maps a query and a set of 𝑘 evidences to a label.

• 𝒴 = {True, False,Contradiction} be the label space.

2. Evidence Retrieval Function

Let 𝑟 be the retrieval function, selecting the top-𝑘 relevant evidence passages from the corpus for a

given query 𝑞:

𝑟 : 𝒬 → 𝒞𝑘
(1)

This can be formalized as:

𝑟(𝑞) = arg max
𝐸⊂𝒞,|𝐸|=𝑘

∑︁
𝑒∈𝐸

rel(𝑞, 𝑒) (2)

where rel(𝑞, 𝑒) is a relevance scoring function.

3. Classification Objective

Given a query 𝑞 ∈ 𝒬 and its retrieved evidence set 𝐸 = 𝑟(𝑞), the classifier predicts:

𝑦 = 𝑓(𝑞, 𝐸) (3)

where 𝑦 ∈ 𝒴 is the predicted label.

4. Learning Objective

Given a training data set {(𝑞𝑖, 𝐸𝑖, 𝑦𝑖)}𝑁𝑖=1, where 𝑦𝑖 is the ground truth label for query 𝑞𝑖 with evidence

set 𝐸𝑖, the model parameters 𝜃 are optimized by minimizing the classification loss:

ℒ(𝜃) = 1

𝑁

𝑁∑︁
𝑖=1

ℓ(𝑓𝜃(𝑞𝑖, 𝐸𝑖), 𝑦𝑖) (4)

where ℓ is a loss function (cross-entropy).

2.3. Dataset

The relevant dataset for the claim verification task in english is QuanTemp [9], a multi-domain dataset

utilizing real-world data and focusing on numerical claims. While past iterations of the task comprised

of political (mainly PolitiFact) or social media data (from X, formerly Twitter) [5, 6], QuanTemp consists

of multiple domains as thus has more varied appliances. The detailed distribution of the dataset as

provided by the authors is given in Table 1.



Table 1
Distribution of claims in QuanTemp (adapted from Venktesh et al. [9]). Note: While the official test set size is
2,495, we were actually provided with 3,656 instances.

Split True False Conflicting Total
Train 1,824 5,770 2,341 9,935
Dev 617 1,795 672 3,084
Test 474 1,423 598 2,495

As can be seen, the dataset is imbalanced and consists mostly of false claims. It can be argued that

the sources of the data, which comes mostly from PolitiFact and Snopes, effects the false classifications,

as fact-checking organizations mainly deal with questionable or incorrect claims which need further

verification.

3. Related Work

Claim verification as a standalone task was first presented in 2018 and the next two editions. It

was then reintroduced in the 2023 CheckThat! lab. It has been held in both english and arabic

language, but it generally has not had as many participants as other tasks in the domain of the full

claim verification pipeline. In most cases, the participants retrieved external information to be able

to satisfactory classify the given claims [5]. Methods used for classification include more traditional

approaches like SVMs, random forest classifiers or logistic regression [10], but also neural architecures

like CNNs [11]. Ghanem et al. [12] proposed a three-stage verification approach, consisting of evidence

retrievel, evidence ranking and textual entailment. For the 2023 task, which was held in arabic, Touahri

and Mazroui [13] implemented linguistic features that focus on the alignment between claims and

externally extracted texts.

Apart from challenges in the CheckThat! lab, approaches utilized Transformer models like

BERT [14] or other language model ensembles [15] for claim verification. More recently, architectures

based on graph networks [16] and large language models (LLMs) [17] also showed promising results

and outperformed many traditional approaches.

Many of the presented approaches were evaluated using FEVER [18], a dataset consisting of over

185,000 generated claims used for claim verification. In 2024, Venktesh et al. [9] introduced a novel

real-world dataset, where all claims are sourced from real fact-checks. The data focuses on claims that

include numerical claims. Furthermore, they also experimented with claim decomposition to improve

claim verification, which showed promising results on the QuanTemp dataset.

4. Methodology

Our submitted pipeline (english only) follows a three-stage architecture: (i) evidence candidate retrieval

using dense vectors, (ii) re-ranking using a fine-tuned cross-encoder, and (iii) final claim classification

using a large NLI model. In the following, each step is described in detail.

Evidence Retrieval We first pre-computed document embeddings using sentence-
transformers/all-MiniLM-L6-v23

and stored them in a FAISS index for efficient inner-

product search. The embeddings were L2-normalized to enable cosine similarity retrieval. At inference

time, each claim was encoded into a query embedding, normalized, and used to retrieve the top-100

most similar evidence snippets from the index. The goal was to retrieve not only lexically similar

evidence snippets, but also semantically relevant ones that may be phrased differently.
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Re-ranking with Contrastive Fine-Tuning The initial candidates were re-ranked using

cross-encoder/ms-marco-MiniLM-L-6-v24
, fine-tuned in a contrastive setup. To improve re-

ranking beyond the vanilla MS MARCO model, we generated weak supervision signals from gold-

labeled evidence snippets in the training and validation sets. Further, these snippets were summarized

using LLaMA-3.1-8B5
to remove noise and produce cleaner positives. During training, the model

was optimized using margin ranking loss
6
, where each claim served as an anchor, its corresponding

summarized gold evidence as the positive, and the top-100 BM25-retrieved candidates as negatives. This

training strategy encouraged the model to assign higher relevance scores to gold summaries by pulling

them closer to the claim in the embedding space. Crucially, this step addressed the main bottleneck in

the task: retrieval quality.

Claim Classification with Multi Instance Learning The final decision was produced by

FacebookAI/roberta-large-mnli trained in a MIL setup. For every claim 𝑞 ∈ 𝒬, we took the

𝑘 = 10 re-ranked evidence passages 𝐸 = {𝑒1, . . . , 𝑒𝑘} ⊂ 𝒞, and forwarded each pair (𝑞, 𝑒𝑖) through

the encoder, obtaining a class-logit vector 𝑠𝑖 ∈ R𝐶
, with 𝐶 = 3 (True, False, Contradiction). The

𝑘 snippet-level logit vectors were then pooled into a single bag-level vector 𝑆(·)(𝑞, 𝐸) ∈ R𝐶
before

applying softmax. Each pooling operator produced a scalar score 𝑆
(·)
ℓ (𝑞, 𝐸) for class ℓ. The final

prediction was obtained by:

𝑦 = argmax
ℓ

𝑆
(·)
ℓ (𝑞, 𝐸) (5)

where (·) denotes the choice of pooling operator:

1. Max pooling (hard winner-take-all) picks the single most confident snippet per class:

𝑆max
ℓ (𝑞, 𝐸) = max

1≤𝑖≤𝑘
𝑠𝑖,ℓ, (6)

where 𝑠𝑖,ℓ is the logit of class ℓ.
2. LogSumExp pooling is a smooth approximation of the maximum:

𝑆lse
ℓ (𝑞, 𝐸) = log

(︁ 𝑘∑︁
𝑖=1

exp 𝑠𝑖,ℓ

)︁
. (7)

3. Attention pooling learns a soft relevance weight for every snippet:

𝛼𝑖 =
exp

(︀
𝑎⊤ℎ𝑖

)︀∑︀𝑘
𝑗=1 exp

(︀
𝑎⊤ℎ𝑗

)︀ , (8)

𝑆attn
ℓ (𝑞, 𝐸) =

𝑘∑︁
𝑖=1

𝛼𝑖 𝑠𝑖,ℓ, (9)

where ℎ𝑖∈R𝑑
is the CLS embedding of (𝑞, 𝑒𝑖) and 𝑎∈R𝑑

is a single learned parameter vector

(𝑑 = 1024 for roberta-large).

Max pooling simply takes the highest logit among all snippets for each class and ignores the rest. It is

noise-tolerant, but discards any partial support from other evidences. Moreover, it performs poorly

when all top-𝑘 evidence snippets are irrelevant, as no useful evidence contributes to the prediction.

LogSumExp pooling is a smooth approximation of max and amplifies strong evidence while still

giving weaker evidences some influence, which makes it more stable than hard max.

Attention-based pooling, used in our final submission, allows the model to focus on the most infor-

mative snippets while ignoring irrelevant ones, without requiring an arbitrary truncation or noisy

concatenation of top-k candidates. Furthermore, it is naturally robust to variable evidence quality across

claims. In essence, it performs an additional, internal ranking of evidence snippets during classification,

letting the model weigh each piece of evidence according to its usefulness for the final decision.
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Training Details To ensure comparability with Venktesh et al. [9], all models were trained using only

the official data splits provided in the task description/GitLab repository. We did not use any external

data sets or knowledge bases. The training and validation splits exactly followed those defined in the

official paper. While it might have been possible to significantly boost test performance by externally

scraping sources like Google Fact Check
7
, we deliberately avoided such shortcuts to stay within the

intended constraints of the task.

Training was conducted on an NVIDIA L4 GPU with 22.5 GB VRAM. The model was trained for up

to 10 epochs with early stopping (patience = 3), and best validation performance was reached between

epochs 5 and 6. We used a batch size of 3 with gradient accumulation steps of 8 (effective batch size

of 24). The learning rate was set to 2e-5, with a cosine scheduler and 10% linear warm-up. The model

was compiled using torch.compile for performance, and trained using bfloat16 precision via PyTorch

AMP. We used a class-weighted cross-entropy loss to handle class imbalance, which led to improved

macro-F1, albeit with a slight decrease in weighted-F1. For reproducibility, all experiments were run

with random seed 42.

5. Results & Analysis

In this section, we present the results of our main method, followed by ablation studies on the test set,

and a summary of additional experiments and insights.

Results onDevelopment Set We first evaluated our approach using three different pooling strategies:

attention-based, LogSumExp, and max pooling. All experiments used the same retriever (all-MiniLM-

L6-v2) and the contrastively fine-tuned cross-encoder described in Section 4. As shown in Table 2,

attention-based pooling achieved the best performance, with a macro-F1 of 0.5937 and a weighted-F1

of 0.6682. LogSumExp and max pooling performed comparably but slightly below attention pooling.

Based on these results, we selected the attention-based pooling model as our final submission.

Table 2
Performance comparison of different pooling strategies (Attention-based, LogSumExp, Max) on the development
set using the same retriever (all-MiniLM-L6-v2) and contrastively fine-tuned cross-encoder.

Pooling Method Macro-F1 Weighted-F1

Attention-based 0.5937 0.6682
LogSumExp 0.5839 0.6620
Max 0.5852 0.6619

Ablation Studies on Test Set To better understand the impact of individual components, we con-

ducted ablation studies on the test set (see Table 3). Specifically, we varied the retriever (all-MiniLM-L6-v2

vs. BM25) and the re-ranker (fine-tuned vs. vanilla) across the three pooling strategies. Several key

observations emerged:

• Retriever quality matters: The bi-encoder (MiniLM) consistently outperformed BM25 across

all pooling methods. Furthermore, retrieving the top-100 initial candidates using pre-computed

MiniLM embeddings with a FAISS index was approximately six times faster than BM25 retrieval,

making it significantly more practical for large-scale applications.

• Contrastive fine-tuning helps: In all configurations using MiniLM, the fine-tuned re-ranker

outperformed the vanilla version, confirming the effectiveness of our contrastive training strategy

with summarized gold evidences. At this point, it is worth noting that we used all top-100 retrieved

evidence snippets as negatives during training. This simplification is theoretically suboptimal,

since some of these snippets may actually be relevant, and treating them as negatives could

7
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push useful evidence away from the claim in the embedding space. Due to the absence of labels

(i.e., which specific snippets are truly supportive for a given claim), we adhered to this heuristic

approach.

• Pooling strategy robustness: LogSumExp pooling achieved the highest macro-F1 (0.5213),

suggesting that it generalized slightly better to the test set than attention or max pooling.

Interestingly, when using BM25 for retrieval, the vanilla re-ranker occasionally performed better

than its fine-tuned counterpart, likely due to BM25 returning noisier candidates that disrupted the

fine-tuned model’s learned ranking behavior. Overall, the results affirm the benefits of our modular

architecture, particularly the fine-tuned re-ranking step and the use of attention-based or LogSumExp

pooling in a MIL framework.

Table 3
Ablation results on the test set showing the effect of different retrievers (all-MiniLM-L6-v2 vs. BM25) and
re-rankers (fine-tuned vs. vanilla) across three pooling strategies. * indicates the submitted run.

Pooling method Retriever Re-ranker Macro-F1 Micro-F1 Weighted-F1 F1-True F1-False F1-Conflicting

Attention-based

all-MiniLM-L6-v2 Fine-tuned 0.5100* 0.6157 0.6198 0.4087 0.7625 0.3589
all-MiniLM-L6-v2 Vanilla 0.5009 0.5749 0.5972 0.4292 0.7217 0.3518
BM25 Fine-tuned 0.4906 0.6127 0.6089 0.3511 0.7636 0.3571
BM25 Vanilla 0.4966 0.5766 0.5959 0.4131 0.7248 0.3518

LogSumExp

all-MiniLM-L6-v2 Fine-tuned 0.5213 0.6275 0.6280 0.4489 0.7657 0.3495
all-MiniLM-L6-v2 Vanilla 0.5048 0.6089 0.6139 0.4246 0.7551 0.3348
BM25 Fine-tuned 0.5057 0.6294 0.6203 0.4081 0.7689 0.3402
BM25 Vanilla 0.5079 0.6182 0.6189 0.4089 0.7631 0.3517

Max

all-MiniLM-L6-v2 Fine-tuned 0.5116 0.6204 0.6210 0.3594 0.7649 0.4104
all-MiniLM-L6-v2 Vanilla 0.5112 0.6059 0.6159 0.3868 0.7530 0.3938
BM25 Fine-tuned 0.5038 0.6269 0.6208 0.3333 0.7750 0.4031
BM25 Vanilla 0.5037 0.6080 0.6128 0.3591 0.7559 0.3962

When inspecting the classwise F1 scores (Table 3) together with the confusion matrices in Figure 2,

three clear trends appear:

First, the False label is by far the easiest to recognize. All three pooling strategies achieve an F1

between 0.75 and 0.78, which is driven by the large number of correct False predictions (≈ 1,700

instances in every matrix) and relatively few confusions with the other classes. Because this class

accounts for roughly two-thirds of the test set, its high F1 score drives the micro- and weighted-F1

(macro-F1 only proportional).

Second, the True label benefits most from the smoother LogSumExp pooling. Compared with

attention pooling, LogSumExp leaves the number of True→False errors virtually unchanged (252 vs.

254) but substantially increases correct True→True hits (264 → 338) and cuts True→Conflicting

confusions (201 → 125), raising the class-wise F1 from 0.4087 to 0.4489. In contrast, Max pooling

sacrifices True accuracy (F1=0.3594) by sending many true claims to the Conflicting bucket (260

instances). This indicates that its hard selection amplifies noise in borderline evidence.

Third, the Conflicting label remains the hardest case overall. Even the best setting (Max pooling,

F1=0.4104) still misclassifies roughly half of the conflicting claims, mostly as False. This corroborates the

qualitative observation that distinguishing genuinely contradictory evidence from merely missing or

weak evidence is challenging. The models often fall back to the majority False decision when evidence

is ambiguous.

In general, LogSumExp offers the best balance between True and False, whereas Max pooling excels

at recognizing Conflicting cases, and attention pooling sits in-between. These findings highlight a

trade-off: improving minority classes (True, Conflicting) comes at a slight cost to the False performance,

and vice-versa.

Further Experiments and Findings We explored a number of additional modeling strategies:

• Claim decomposition: Incorporating decomposed claims (as proposed in Venktesh et al. [9])

did not improve performance. In fact, using the claim-only method yielded slightly better results.
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Figure 2: Confusion matrices for the three pooling methods on test set (all using all-MiniLM-L6-v2 as retriever
and fine-tuned cross-encoder as re-ranker).

• Loss functions: A class-weighted cross-entropy loss proved effective in addressing class imbal-

ance, boosting macro-F1 by 3–4% at the expense of a minor drop in weighted-F1 (approximately

2%). Focal loss was also tested but underperformed slightly in comparison.

• Evidence encoding strategies: Prior to adopting the MIL setup, we trained a classifier using

concatenated top-𝑘 evidence snippets as input. However, this approach performed worse than all

three MIL-based pooling strategies, with a best macro-F1 of 0.5850 and weighted-F1 of 0.6557.

• Alternative classifiers: We explored several alternative cross-encoder architectures from

the cross-encoder library
8
, including ms-marco-MiniLM-L-6-v2, stsb-roberta-base,

and nli-deberta-v3-base. However, none of these models surpassed the performance of

FacebookAI/roberta-large-mnli. Moreover, we experimented with using a Graph Atten-

tion Network (GAT) for the final classification step. While promising in theory, the GAT-based

model underperformed compared to the roberta-large-mnli classifier, achieving macro-F1

and weighted-F1 scores approximately 4% lower (best run: macro-F1 = 0.5394, weighted-F1 =

0.6329).

6. Conclusion and Future Work

This paper presented a three-stage architecture for numerical claim verification in the CheckThat!
2025 lab. We first retrieve evidence passages with a dense bi-encoder stored in a FAISS index, then refine

the candidate list with a contrastively fine-tuned cross-encoder, and finally classify each claim in a MIL

framework based on roberta-large-mnli that aggregates snippet-level logits through alternative

pooling operators. Evaluated on the QuanTemp dataset, the complete system reaches a macro-F1 of

0.5213 and a weighted-F1 of 0.6280 with LogSumExp pooling, which outperforms concatenation-based

baselines and demonstrates that pooling-based MIL offers a viable alternative to simplistic evidence

concatenation. Ablation studies confirm that dense retrieval offers both higher accuracy and a six-fold

speed-up over BM25, while the contrastive fine-tuning of the re-ranker consistently enhances ranking

quality.

Despite these gains, the overall macro-F1 is still capped by the recall of the retrieval stage, which

remains the main bottleneck of this task. Future work could therefore focus on retrieval-centric

improvements, including late-interaction models such as ColBERT that combine token-level matching

with efficient vector search. In addition, manually labeling the truly relevant evidence snippets for

each claim would allow us to avoid treating helpful passages as negatives during contrastive training,

providing much cleaner learning signals for the re-ranker.
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