OpenFact at CheckThat! 2025: Application of
Self-Reflecting and Reasoning LLMs for Fact-Checking

Claim Normalization
Notebook for the CheckThat! Lab at CLEF 2025

Marcin Sawinski™*, Krzysztof Wecel! and Ewelina Ksiezniak’

"Department of Information Systems, Poznar University of Economics and Business, Al Niepodlegtosci 10, 61-875 Poznari, Poland

Abstract

This paper presents a system for the claim normalization task, developed for the CLEF 2025 CheckThat! Task
2 competition. We evaluated large language models of approximately 8B parameters, including LLaMA 3.1,
DeepSeek-R1, and GPT-4.1-mini, using the METEOR score as a primary metric. GPT-4.1-mini with supervised
fine-tuning emerged as the best-performing approach, ranking second or third on six out of seven languages
offered in zero-shot setting. Our study also explores self-reflection and multiple candidate selection techniques,
finding that while self-reflection did not improve METEOR scores, it helped reduce factual errors. These insights
highlight the need to balance metric-driven evaluation with qualitative analysis for effective claim normalization
in real-world scenarios.

Keywords

check-worthiness, fact-checking, fake news detection, language models, claim normalization, LLM,

1. Introduction

The task of claim normalization involves transforming unstructured textual content, such as social
media posts, into concise and factually accurate claims suitable for downstream fact-checking [1].

Large language models (LLMs) have demonstrated strong potential for generative and summarization
tasks, suggesting their suitability for claim normalization. However, evaluating claim normalization out-
puts is complex, as metrics such as METEOR often prioritize stylistic similarity over factual correctness.
This discrepancy is particularly important for fact-checking applications, where factual inaccuracies
can lead to misleading interpretations.

This paper presents a system for claim normalization developed for the CLEF 2025 CheckThat! Task
2 competition. We evaluated decoder-only LLMs, including LLaMA 3.1, DeepSeek-R1, and GPT-4.1-
mini, and explored techniques such as self-reflection, multiple candidate generation, and supervised
fine-tuning.

We posed the following research question to examine the application of LLMs to the claim normal-
ization task:

« RQ1: How well are different LLMs suited for the claim normalization task?

« RQ2: Do reasoning fine-tuned models outperform base chat models?

« RQ3: How does self-reflection impact the LLM performance on the claim normalization task?

« RQ4: How does multiple candidate generation and selection impact performance on the claim
normalization task?

CLEF 2025 Working Notes, 9 — 12 September 2025, Madrid, Spain
*Corresponding author.

"These authors contributed equally.
& marcin.sawinski@ue.poznan.pl (M. Sawinski); krzysztof. wecel@ue.poznan.pl (K. Wecel); ewelina ksiezniak@ue.poznan.pl
(E. Ksiezniak)

47 https://kie.ue.poznan.pl/en/ (M. Sawinski)
@ 0000-0002-1226-4850 (M. Sawinski); 0000-0001-5641-3160 (K. Wecel); 0000-0003-1953-8014 (E. Ksiezniak)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

mailto:marcin.sawinski@ue.poznan.pl
mailto:krzysztof.wecel@ue.poznan.pl
mailto:ewelina.ksiezniak@ue.poznan.pl
https://kie.ue.poznan.pl/en/
https://orcid.org/0000-0002-1226-4850
https://orcid.org/0000-0001-5641-3160
https://orcid.org/0000-0003-1953-8014
https://creativecommons.org/licenses/by/4.0/deed.en

+ RQ5: Can supervised fine-tuning of LLMs improve performance on the claim normalization task?

Our findings show that while self-reflection did not consistently improve METEOR scores, it helped
reduce factual errors in generated claims. Fine-tuning the GPT-4.1-mini model further improved
performance, demonstrating the importance of task-specific adaptation for robust claim normalization.

2. Related Work

Sundriyal et al. [1] proposed the Check-worthiness Aware Claim Normalization (CACN) approach,
which leverages chain-of-thought prompting and reverse check-worthiness. The goal of chain-of-
thought prompting is to decompose a complex task into a sequence of simpler subtasks, using examples
to encourage step-by-step reasoning. Reverse check-worthiness, on the other hand, prioritizes claims
that meet the criteria for check-worthiness.

Our study seeks to build upon the research of Sundriyal et al. [1] by leveraging newer, more
capable LLMs and examining the impact of increased test-time compute on system performance. While
advancements in foundational models remain a primary focus within the field, it is widely acknowledged
that comprehensive systems built around LLMs can yield even greater improvements. We investigated
the use of reasoning-tuned models and self-reflection as potential methods to enhance performance.

Reasoning-tuned models have gained significant attention by topping multiple leaderboards. However,
it has been observed that their performance varies depending on the complexity of the task, and in
some cases, tasks are better addressed by models without reasoning fine-tuning. A recent study [2]
highlights that reasoning models often struggle to adapt generation length to task complexity, with
both overly short and excessively long generations leading to degraded performance. We decided to
run a direct comparison of the same model architecture with and without reasoning-tuning.

Automated methods to auto-correct large language models (LLMs) aim to improve their output
without human intervention. These approaches include self-correction, where the LLM refines its
own outputs using self-generated feedback iteratively; generation-time correction, where LLMs adjust
outputs during generation guided by feedback from critic models or external knowledge sources; and
post-hoc correction, where outputs are refined after generation, leveraging external tools, knowledge
bases, or multi-agent debates. These strategies address errors like hallucinations, unfaithful reasoning,
and toxic content, offering flexible and scalable ways to enhance LLM performance autonomously [3].

Self-refine [4], an iterative refinement approach use the same LLM to generate an initial answer, then
provides feedback on its own answer, and finally refines the answer using that feedback[4]. Iterative,
self-correcting loop without external supervision, additional training, or reinforcement learning could
be applied across diverse tasks, especially with complex or nuanced quality criteria.

Self-correction approach has been also criticized indicating that LLMs often fail to correct their
responses without external feedback, and that self-correction can even degrade the performance. [5]

3. Datasets

The dataset provided by the organizers comprised three splits: train, dev, and test. The train and dev
splits covered 13 languages, while the test split included 20 languages (see Table 1). The train and dev
splits contained both post and normalized claim columns, whereas the test split included only the post
column.

An initial quality check of the train and dev splits revealed several issues that could negatively impact
training and evaluation:

« Language mismatch: the post and normalized claim were in different languages.

+ Referenced media: the post text referred to external media (e.g., images or videos) that were
not available but necessary to formulate the claim.

+ Content mismatch: the claim text referenced facts not present in the post text.

Table 1
Dataset split sizes per language before and after cleanup.

Language train dev test traincleaned dev cleaned
eng 11374 1171 1285 3311 376
spa 3458 439 439 1128 146
por 1735 223 225 592 66
fra 1174 147 148 414 53
hi 1081 50 100 351 17
msa 540 137 100 93 20
ara 470 118 100 233 61
pa 445 50 100 179 15
deu 386 101 100 104 32
tha 244 61 100 92 24
pol 163 41 100 39 12
mr 137 50 100 50 21
ta 102 50 100 51 25
bn 0 0 81 0 0
ces 0 0 123 0 0
ell 0 0 156 0 0
kor 0 0 274 0 0
nld 0 0 177 0 0
ron 0 0 141 0 0
te 0 0 116 0 0

+ Multiple claims: the post text contained multiple possible claims or detailed elements, while the
normalized claim arbitrarily selected only one relevant detail for fact-checking.

To address these issues, we first filtered out examples with language mismatches. We then used
gpt-4.1-mini to flag semantic mismatches between the post and normalized claim, identify external
media references, and detect if the normalized claim contained information that was absent in the post.

Examples flagged in this process or excluded due to content policy violations (e.g., hate speech,
jailbreak, self-harm, sexual or violent content) were removed from further processing.

Examples containing multiple or highly complex claims were retained. Overall, approximately one
third of the provided examples were used for training and evaluation, as shown in Table 1.

4. Data processing pipelines

We modeled the system as LLM-based self-reflection agent that iteratively improve outputs until no
further improvements are observed. We also introduced multiple initial candidate generations by
adjusting temperature or seed settings, depending on the model. This step was motivated by the
observation that in some cases, the initial claim phrasing anchored the model to specific details of the
post throughout subsequent iterations.

The complete claim normalization process consisted of three steps:

+ Initial claim extraction: generation of up to three claim candidates using a prompt with
guidelines for claim normalization.

« Improvement via self-reflection: iterative refinement of each claim candidate through multiple
self-reflection steps. The process was capped at a maximum number of steps but stopped earlier
if no changes were detected compared to the previous iteration.

+ Selection with LLM-as-a-judge: the model was presented with up to three improved claim
candidates and tasked with selecting the best one.

Results were collected at three pipeline steps to measure the impact of different techniques:

+ Initial claim extraction (Ini) — Baseline results obtained by generating a normalized claim
with a single call to the LLM for each post. This score reflects the basic output quality of the LLMs
without any additional techniques.

« Self-reflection (Ref) — Results achieved by applying the self-reflection technique to previously
generated outputs. In this step, the model received the post text, the normalized claim from
initial extraction or the previous iteration, and the claim normalization guidelines. The prompt
instructed the model to refine the normalized claim to best match the guidelines. This process
was repeated up to ten times for Llama and DeepSeek and up to five times for GPT and GPT FT, or
until no further changes were made. All iterations were run with temperature set to zero or the
same seed to ensure determinism.

« Candidate selection (Sel) — For Llama and DeepSeek, the initial claim extraction step was
repeated three times with different random seeds, resulting in varied claim formulations. The
second and third outputs were not reported in the previous steps. All three outputs were inde-
pendently refined using the self-reflection loop described above. Finally, the LLM was presented
with the three improved candidates and tasked to select the best one that matched the guidelines.
For GPT and GPT FT, the variability in initial outputs was very low with temperature set below 1,
and the self-reflection step with temperature zero consistently produced the same claim phrasing.
As a result, this step was omitted for the GPT models.

Figure 1 shows claim normalization pipeline.

Input

(-
S

Extraction Extraction Extraction
(Candiadate 1) (Candiadate 2) (Candiadate 3)

(Candidate 1) (Candidate 2) (Candidate 3)

~ | 7

LLM-as-a-Judge
(Select best candidate)

{Self—reflection Loop} {Self—reﬂection Loop} {Self—reflection Loop}

Normalized Claim Normalized Claim Normalized Claim
(Ini) (Ref) (Sel)

Outputs

Figure 1: Claim normalization pipeline with candidate generation, self-reflection, and final selection.

The LLMs were queried in chat mode, using message chains composed of a system and a user message.
Identical guidelines for claim normalization were used across all three processing steps.

We applied supervised fine-tuning using the train datasets for all languages, converting them into
message chains that included system and user parts, combined with the assistant part derived from the
normalized claim column.

5. Models

We limited our study to LLMs with approximately 8B parameters. Larger models were excluded due
to hardware constraints, longer inference times, and prohibitive costs, given the large-scale nature of
the claim normalization task. Smaller models were excluded because of low performance observed in
preliminary experiments.

The models selected for this study were: LLaMA 3.1 8B, DeepSeek-R1 8B (a reasoning fine-tuned
version of LLaMA 3.1 8B), and GPT-4.1-mini. While the specifications of GPT-4.1-mini are not publicly
available, we assumed its parameter count to be between 7B and 9B, making it a fair comparison to the
other models. LLaMA and DeepSeek models were run using 4-bit grouped quantization with the Ollama
backend. The hardware consisted of four NVIDIA GeForce RTX 2080 Ti GPUs, yielding a generation
speed of approximately 300 tokens per second.

GPT-4.1-mini was used in its default configuration and also fine-tuned for this task using Azure
OpenAl services with the following hyperparameters: number of epochs 3, batch size 4 and LR multiplier
2.

In the experiments section, we refer to the models as follows:

- LLaMA 3.1 8B — Llama

« DeepSeek-R1 8B — DeepSeek

o GPT-4.1-mini — GPT

o GPT-4.1-mini fine-tuned on the train dataset — GPT FT

6. Experimental Results

6.1. METEOR score results analysis

All models and techniques were evaluated using the METEOR score on dev dataset split. For readability,
all metrics in Table 2 are presented as percentages.
Results are reported per pipeline step to highlight the impact of different techniques.

6.1.1. Initial Claim Extraction

The Llama model achieved a METEOR score of 24 across all languages using only the initial claim
generation step. The DeepSeek model yielded a lower METEOR score of 16. In contrast, the GPT model
achieved a METEOR score of 42 with the same approach.

A language-wise breakdown showed the same trend: GPT consistently outperformed Llama, while
Llama outperformed DeepSeek in every language within the dev dataset.

Although the DeepSeek model produced promising “thinking” traces—iterating over most of the
guideline items to generate normalized claims—this was not reflected in the final scores. This discrepancy
may be partly attributed to DeepSeek’s lower adherence to instructions and the addition of extraneous
text to the final output (e.g., “The claim extracted from the post is: ...”).

6.1.2. Self-reflection

The METEOR scores for outputs processed through self-reflection loops were not consistently higher
than those of the initially generated outputs. While specific language-model intersections showed some
improvement, no clear overall trend or consistent gains were observed.

6.1.3. Candidate Selection Results

Generating multiple initial outputs and selecting the best candidate using the LLM as a judge did not
lead to improvements in METEOR scores.

Table 2
METEOR scores by model and language at each pipeline step for dev dataset split. Abbreviations: Ini = initial
claim extraction, Ref = self-reflection, Sel = candidate selection.

METEOR
Model Llama DeepSeek GPT GPTFT
Step Ini Ref Sel Ini Ref Sel Ini Ref Ini Ref
Language
ALL 24 24 25 17 16 16 42 41 58 58
ara 14 12 14 9 7 5 47 44 61 61
deu 20 20 23 14 14 14 28 28 38 38
eng 40 40 42 43 42 44 48 49 60 59
fra 30 34 32 22 22 26 49 47 54 54
hi 24 22 27 14 13 8 43 40 58 52
mr 47 48 45 26 20 20 68 67 86 86
msa 28 29 28 9 10 8 27 27 53 53
pa 14 18 22 9 10 13 45 43 90 90
pol 23 21 18 14 12 10 40 41 55 55
por 26 24 28 24 24 27 47 47 59 59
spa 26 25 27 20 21 20 46 47 50 50
ta 18 17 20 11 8 6 47 47 83 77
tha 5 5 4 3 3 2 6 7 14 14
ara deu eng fra
0.04 1 . 1 1
> 0.03 1 1 1 1
2 0.02 \ 4 4 4
[
a
0.01 A O< .
0.00 T T T S T T T]
hi mr
0.04 4 E
> 0.03 4 E
2 0.02 E
[
&
oot & 2
0.00 ' P — ; . . J
pol por spa ta
0.04 1 1 1 1
0.03 + 1 1 4\
oy
2 0.02 1 S .
o] .
Qa
0.00 T T T | T T T | T T T | T T T 1
0 25 50 75 100 O 25 50 75 100 O 25 50 75 100 O 25 50 75 100
METEOR score METEOR score Model METEOR score METEOR score
| [ama DeepSeek mmm== GPT === GPT FT

Figure 2: KDE plots of METEOR score calculated for initial claim extraction across languages and models for
dev datasets split.

6.1.4. Supervised Fine-tuning

Fine-tuning the GPT model on the train dataset improved the METEOR score by 16 across all languages.
This approach proved to be the most effective adaptation technique tested in the study.

Table 3
Illustration of impact of factual errors and phrasing on METEOR score.

Reference:

Dandelion root is able to kill 98% of cancer cells within 48 hours
Candidates: METEOR
1.Dandelion is able to grow 98% of cancer cells within 4 hours 84
2.Dandelion is able to kill 1% of cancer cells within 4 hours" 84
3.Dandelion kills 98% of cancer cells within 2 days 63
4.Dandelion kills nearly all cancer cells in 2 days 25

6.2. Additional manual analysis

Scoring claim normalization results presents several challenges. First, the METEOR score does not
adequately recognize semantically equivalent sentences and tends to prioritize stylistic features over
factual accuracy. As shown in Table 3, incorrect claims 1 and 2—which reverse the meaning or alter
numerical values—achieve high scores of 84, while correct claims 3 and 4, which use alternative
phrasings, score lower at 63 and 25, respectively.

Analysis of the results indicates that high METEOR scores (above 8) are only observed when the post is
short and contains a well-formulated claim that can be extracted verbatim. For more complex examples,
exact phrasing alignment with the annotator’s version is nearly impossible, leading to significantly
lower scores. In these cases, generated claims often contain substantial factual errors or omissions that
the METEOR metric fails to capture.

Second, there is no established gold standard for claim normalization. With multiple annotation
authors and styles, it is often impossible to determine whether the reference or the generated claim is
more appropriate when both are factually correct but differ in the level of detail. This situation results
in low METEOR scores, even though both reference and generated claims may be accurate. An example
from the dev dataset illustrating this challenge is provided below.

Example:

Post:

#AIUDF Pakistan Zindabad. #AntiNational ATUDF

"Pakistan Zindabad" Slogans Raised in Silchar Airport By AIUDF Members. #AIUDF supreme #Badrud-
dinAjmal should immediately resign as MP ! #Shame #Shame I request District administration should
take after the mtr immediately. DC Cachar #AIUDF_Pakistan_Zindabad. #AntiNational AITUDF
"Pakistan Zindabad" Slogans Raised in Silchar Airport By AIUDF Members. #AIUDF supreme #Badrud-
dinAjmal should immediately resign as MP ! #Shame #Shame I request District administration should
take after the mtr immediately. DC Cachar #AIUDF_Pakistan_Zindabad. #AntiNational ATUDF
"Pakistan Zindabad" Slogans Raised in Silchar Airport By AIUDF Members. #AIUDF supreme #Badrud-
dinAjmal should immediately resign as MP ! #Shame #Shame I request District administration should
take after the mtr immediately. DC Cachar None

Reference:

Pro-Pakistan slogans shouted outside an airport in India

Note that the reference claim includes additions such as “Pro-Pakistan”‘shouted”, and “outside”,
which were introduced by the annotator and are not present in the original post text. Conversely,
important details like WHO: “ATUDF Members” and WHERE: “Silchar” were omitted in the reference.

Llama output — initial extraction — attempt 1 — METEOR 17:
Slogans "Pakistan Zindabad" were raised in Silchar Airport by AIUDF Members.

The claim generated by Llama received a METEOR score of only 17, despite being factually accurate

and complete.

Llama output — self-reflection — attempt 1 — METEOR 11
AIUDF members allegedly raised pro-Pakistani slogans ("Pakistan Zindabad") at Silchar Airport.

It could be argued that the final claim generated by Llama after self-reflection was in fact improved:
it retained all relevant information and accompanied “Pakistan Zindabad” with the more general term
“pro-Pakistani slogans” as in reference. However, the METEOR score dropped further to 11. The addition
of the word “allegedly” was not consistent with the claim normalization strategy.

Llama output — initial extraction — attempt 2 — METEOR 13:
"Pakistan Zindabad" slogans were raised in Silchar Airport by AIUDF members.

Note: I've removed hashtags, emojis, and repeated text to extract the main claim, which is about the
slogan "Pakistan Zindabad" being raised at the airport.

On a second attempt, the Llama model included additional text while still retaining a METEOR score
of 13.

Llama output — self-reflection — attempt 2 — METEOR 12:
AIUDF members allegedly raised "Pakistan Zindabad" slogans at Silchar Airport.

Again, the self-reflection process objectively improved the output by removing extraneous text, but the
METEOR score further decreased to 12.

DeepSeek output — initial extraction — attempt 1 — METEOR 16:

"Pakistan Zindabad" Slogans Raised in Silchar Airport By AIUDF Members. #AIUDF supreme #Badrud-
dinAjmal should immediately resign as MP !

DeepSeek produced a meaningful output on the first attempt; however, it ignored the instruction to
remove hashtags and received a METEOR score of 16.

DeepSeek output — self-reflection — attempt 1 — METEOR 16:

"Pakistan Zindabad Slogans Were Raised by AIUDF Members at Silchar Airport, Calling for Badruddin
Ajmal’s Resignation as MP."

The self-reflection process in DeepSeek removed the hashtags and polished the phrasing of the claim,
but this improvement was not reflected in any change in the METEOR score. It is also worth noting

that DeepSeek attempted to generate a more complex claim by combining the “slogans raised” and
“Ajmal should resign” information pieces.

GPT output — initial extraction — attempt 1 — METEOR 22:

"Pakistan Zindabad" slogans were raised in Silchar Airport by All India United Democratic Front
members.

GPT received a METEOR score of 22 by generating a claim similar to that produced by Llama, likely

due to the expansion of an abbreviation and the addition of the word “India”, which overlapped with
the reference claim.

7. Conclusions

Our experiments indicate that claim normalization can be effectively handled by decoder-only LLMs,
such as GPT-4.1-mini, even without fine-tuning. While the METEOR metric provides a quantitative
measure of performance, it does not always align with factual correctness or task-specific nuances.
This limitation underscores the importance of qualitative review when evaluating claim normalization

outputs.

Subtle aspects of fact-checking practice are challenging to encode as prompting guidelines. This may
explain why fine-tuning—despite the GPT model already performing well with default weights—further
improved performance. Fine-tuning likely helps align the model more closely with task-specific details
that are hard to capture through prompting alone.

Interestingly, our results suggest that strict adherence to normalization guidelines may be particularly
useful for clustering posts, even when these clusters differ from claims extracted by professional fact-
checkers. In this sense, prioritizing guideline adherence could offer practical advantages beyond just
accuracy metrics.

The self-reflection approach did not yield improved METEOR scores. However, manual analysis of
the outputs revealed that self-reflection effectively removed many factual errors present in the initial
generations. This highlights the potential of iterative improvement to refine outputs, even if it is not
reflected in automated scoring.

A final observation concerns model-specific differences: DeepSeek’s “thinking” process, while thor-
ough, appears less efficient, as many tokens are devoted to reasoning rather than concise output
generation. In contrast, the more straightforward Llama outputs—despite scoring lower overall than
fine-tuned GPT—remain practically usable, especially in resource-constrained scenarios where process-
ing speed and scalability are critical.

The system based on the fine-tuned GPT-4.1-mini ranked second for Czech (METEOR on test dataset
split was reported 21.44), Bengali (29.59), and Marathi (30.48), and third for Greek (23.33), Telugu (45.59),
Romanian (23.50), Dutch (18.66), and Punjabi(26.96) out of 20 languages in the CLEF 2025 CheckThat!
Task 2 competition. It is important to note that the system ranked second or third in 6 out of 7 languages
for which only test data were available (the so-called zero-shot setting).

Overall, our findings emphasize that decoder-only LLMs can achieve strong results for claim nor-
malization, and that practical trade-offs (such as hardware limitations and processing time) should be
carefully considered when selecting models and techniques for real-world deployments.

8. Declaration on Generative Al

During the preparation of this work, the authors used ChatGPT to check grammar, spelling, and style.
The tool was applied to selected paragraphs, and all corrections were manually reviewed and approved.

Acknowledgments

The research is supported by the project “OpenFact — artificial intelligence tools for verification of
veracity of information sources and fake news detection” (INFOSTRATEG-1/0035/2021-00), granted
within the INFOSTRATEG I program of the National Center for Research and Development, under the
topic: Verifying information sources and detecting fake news.

References

[1] M. Sundriyal, T. Chakraborty, P. Nakov, From chaos to clarity: Claim normalization to empower
fact-checking, in: H. Bouamor, J. Pino, K. Bali (Eds.), Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, Association for Computational Linguistics, Singapore, 2023,
pp- 6594-6609. URL: https://aclanthology.org/2023.findings-emnlp.439/. doi:10. 18653 /v1/2023.
findings-emnlp.439.

[2] J. Su, J. Healey, P. Nakov, C. Cardie, Between underthinking and overthinking: An empirical
study of reasoning length and correctness in llms, 2025. URL: https://arxiv.org/abs/2505.00127.
arXiv:2505.00127.

[3] L.Pan, M. Saxon, W. Xu, D. Nathani, X. Wang, W. Y. Wang, Automatically correcting large language
models: Surveying the landscape of diverse automated correction strategies, Transactions of the

https://aclanthology.org/2023.findings-emnlp.439/
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.439
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.439
https://arxiv.org/abs/2505.00127
http://arxiv.org/abs/2505.00127

Association for Computational Linguistics 12 (2024) 484-506. URL: https://aclanthology.org/2024.
tacl-1.27/. doi:10.1162/tacl_a_00660.

[4] A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, U. Alon, N. Dziri, S. Prabhu-
moye, Y. Yang, S. Gupta, B. P. Majumder, K. Hermann, S. Welleck, A. Yazdanbakhsh, P. Clark,
Self-refine: Iterative refinement with self-feedback, 2023. URL: https://arxiv.org/abs/2303.17651.
arXiv:2303.17651.

(5] J.Huang, X. Chen, S. Mishra, H. S. Zheng, A. W. Yu, X. Song, D. Zhou, Large language models cannot
self-correct reasoning yet, 2024. URL: https://arxiv.org/abs/2310.01798. arxXiv:2310.01798.

https://aclanthology.org/2024.tacl-1.27/
https://aclanthology.org/2024.tacl-1.27/
http://dx.doi.org/10.1162/tacl_a_00660
https://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2310.01798
http://arxiv.org/abs/2310.01798

	1 Introduction
	2 Related Work
	3 Datasets
	4 Data processing pipelines
	5 Models
	6 Experimental Results
	6.1 METEOR score results analysis
	6.1.1 Initial Claim Extraction
	6.1.2 Self-reflection
	6.1.3 Candidate Selection Results
	6.1.4 Supervised Fine-tuning

	6.2 Additional manual analysis

	7 Conclusions
	8 Declaration on Generative AI

