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Abstract
In this paper, we present our participation in the CheckThat! 2025 Task 4b on scientific claim-source retrieval. Our
work systematically explores the impact of style transfer on performance in retrieving the scientific publication
referenced by a COVID-19-related tweet. We apply seven distinct style transfer methods, distributed across claims
and sources, to assess their impact on retrieval performance. These style transfer methods are evaluated across 15
retrieval systems, including 1 sparse, 7 dense, and 7 hybrid models, by testing each system with all combinations
of claim and source styles. To guide the style transfer process, we employ a modular zero-shot prompting template
with detailed instructions using a large language model (LLM). Our results show that GritLM-7B achieves the
best performance without style transfer, suggesting strong robustness to informal text. In contrast, the majority
of models, especially sparse and hybrid ones, benefit from applying a formal writing style to claims. We observe
that hybrid retrieval models tend to outperform their dense counterparts. This highlights the potential advantage
of integrating sparse and dense retrieval paradigms for scientific claim-source retrieval.
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1. Introduction

Nowadays, social media plays an increasingly important role in the communication and consumption of
scientific information. Researchers and public institutions increasingly rely on platforms such as Twitter
(now X), Bluesky, and Instagram to share findings, promote publications, and engage diverse audiences.
Twitter, in particular, had stood out as a key channel for rapid scientific dissemination, especially in
fast-moving fields like health and biomedicine [1, 2]. For instance, activity during academic conferences
shows how these platforms foster broader discussion and spotlight emerging public health topics [3].

Automated accounts like bots significantly contribute to the circulation of scientific information
on social media, complicating the identification of reliable sources [1]. Scientific claims shared online
are frequently paraphrased into colloquial or simplified language, often obscuring their connection to
original sources. These stylistic variations reduce the effectiveness of traditional information retrieval
systems, which typically rely on lexical or semantic similarity measures. Moreover, the brevity and
informal nature of social media posts, combined with their rapid spread, often strip these claims
of the nuance and supporting evidence found in peer-reviewed literature. A systematic review by
Suarez-Lledo and Alvarez-Galvez [4] found that health misinformation is highly prevalent on social
media, particularly regarding vaccines, opioids, and noncommunicable diseases. During the COVID-19
pandemic, misinformation surged dramatically, and studies such as Sharma et al. [5] highlighted the
urgent need for systems that can assess the credibility of claims shared online.

Given these challenges, there is an increasing need for automated fact verification systems that link
social media claims to relevant peer-reviewed literature. The CLEF CheckThat! 2025 Lab [6] supports
detecting and countering online disinformation across languages and platforms. In this work, we
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address Task 4b, Scientific Claim-Source Retrieval, which aims to retrieve the most relevant scientific
paper corresponding to a given social media claim [7]. To tackle the retrieval challenges posed by
stylistic divergence between claims and source texts, we implement a comprehensive suite of retrieval
systems, testing a total of 15 models: 1 sparse, 7 dense, and 7 hybrid approaches. These configurations
serve as baselines for evaluating the impact of style transfer on retrieval performance. Style transfer
refers to the process of altering the style of text while preserving its original semantic content [8].
Specifically, we apply style transfer to both the claim texts and the source documents, investigating
whether stylistic modifications help bridge the gap between informal, user-generated claims and the
formal language of scientific publications. Our experiments involve four style transfer methods applied
to claims and three to source documents, enabling a systematic evaluation of the interaction between
style transformation and retrieval effectiveness. The results provide insights into how different retrieval
architectures respond to stylistic adaptation and how these style transfer methods can support more
robust claim verification in social media contexts. Overall, we make the following contributions:

1. We provide a comprehensive evaluation of 15 retrieval systems, covering sparse, dense, and
hybrid models, for scientific claim-source retrieval in Task 4b of the CLEF CheckThat! 2025 Lab.

2. We present a systematic study of style transfer applied to both claims and source documents,
using four claim styles and three source styles to assess their effect on retrieval performance.

3. We offer empirical insights into how different retrieval models respond to stylistic adaptation
and identify effective combinations of style transfer methods that improve claim-source retrieval.

2. Related Work

Claim-Source Retrieval. The task has transitioned from simple ranking-based approaches to advanced
pipelines leveraging LLMs. Initial approaches relied on traditional retrieval and learning-to-rank tech-
niques, which for example have been applied to social media [9]. Soleimani et al. [10] employed BERT
models for evidence retrieval and claim verification. Transformer-based systems improved retrieval
and evidence selection. Some focused on dense representations and context-aware selection [11], while
others employed hybrid strategies combining sparse and dense ranking methods for domain-specific mis-
information detection [12]. To address retrieval across heterogeneous sources, Zuo et al. [13] proposed
a cross-genre framework that bridges scientific and journalistic text, enhancing evidence alignment
in COVID-19 misinformation scenarios. Beyond simple relevance, later systems modeled retrieval
utility by incorporating feedback from verifiers [14] and introduced multi-step reasoning frameworks
to capture evidence interdependency [15]. Generative retrieval models like GERE bypass document
indexing by directly producing evidence identifiers, reducing memory and computational overhead [16].
Generative retrieval refers to methods where models generate document titles or sentence identifiers
relevant to a claim, instead of retrieving documents from a static index, enabling more adaptive and
efficient retrieval [16]. Building on these foundations, recent work has leveraged LLMs to improve
retrieval performance and reasoning. Chen et al. [17] introduced a pipeline that incorporates question
decomposition, breaking down complex claims into sub-questions to guide evidence search more effec-
tively. Sriram et al. [18] proposed contrastive re-ranking with GPT-4 distillation, using multiple training
signals such as answer correctness and sub-question alignment to fine-tune retrieval. Additionally,
Churina et al. [19] developed techniques for generating enriched sub-questions with different reasoning
styles to retrieve more diverse and relevant evidence. Retrieval-Augmented Generation has further
enabled systems to evaluate both factual accuracy and relevance using LLM-generated summaries as
reference points, enhancing performance and explainability [20].
Text Style Transfer. Early efforts in text style transfer (TST) emerged from information retrieval,
where query rewriting through paraphrasing aimed to improve retrieval relevance. For example,
Zukerman et al. [21, 22] explored lexical paraphrases using WordNet and thesauri to enhance document
retrieval. Building on this, Apresjan et al. [23] developed rule-driven systems for synonymous and quasi-
synonymous paraphrasing, applying these techniques to search engine optimization and information
extraction. More broadly, these retrieval-focused methods treat paraphrase generation as a form of



style transfer to improve information access, setting the foundation for later work on style transfer.
The field then shifted toward neural approaches and LLMs. Fu et al. [24] proposed adversarial networks
to separate content and style representations using data that does not contain paired examples of
the same text in different styles (i.e., non-parallel data), and introduced key evaluation metrics for
transfer strength and content preservation. With the rise of LLMs, augmented zero-shot prompting was
introduced as a method to guide style transfer through natural language instructions alone, requiring no
training examples [25]. Gou et al. [26] bridged retrieval and generation by proposing RAST, a retrieval-
augmented reinforcement learning framework that models question formulation as stylistic variation,
balancing diversity and consistency. Subsequent studies expanded LLM-based TST in various directions.
Mukherjee et al. [27] analyzed multilingual transfer tasks such as sentiment and detoxification, showing
that fine-tuning outperforms zero- and few-shot prompting across English, Hindi, and Bengali. Zhang
et al. [28] introduced CoTeX, leveraging chain-of-thought prompting to distill complex rewriting and
reasoning into efficient style transfer models, particularly effective in low-resource settings. Lai et
al. [29] presented sNeuron-TST, a neuron-level control method that identifies and manipulates style-
specific neurons in LLMs to steer generation toward target styles, improving stylistic diversity while
maintaining fluency via enhanced contrastive decoding. Finally, Aarnes et al. [30] applied TST with an
LLM to adapt political debate texts into tweet-like formats for cross-domain claim detection, highlighting
that style transfer alone cannot fully overcome domain mismatch challenges. Overall, this progression
reflects a trajectory from early lexical paraphrasing in retrieval to sophisticated, LLM-driven methods
incorporating reasoning, neuron-level control, and multilingual adaptation.

3. Dataset

The dataset for the CheckThat! 2025 Subtask 4b is designed for the retrieval of scientific papers implicitly
referenced in social media posts. It comprises a query set of tweets and a collection set of candidate
papers drawn from the CORD-19 corpus [31]. The query set includes 14,399 tweets with implicit
references to scientific literature, partitioned into training, development (1,400 tweets), and test (1,446
tweets) subsets, each annotated with the unique identifier of the referenced paper. The collection set
consists of metadata for 7,718 CORD-19 papers. For this task, we use only the title and abstract fields
from each paper, which are concatenated into a single string to represent the paper. Our evaluation is
conducted solely on the development and test sets, requiring retrieval systems to return the top five
most likely referenced papers for each tweet.

4. Methodology

For scientific claim source retrieval, we have implemented a comprehensive suite of state-of-the-art
retrieval systems, comprising eight distinct models and seven hybrid ranking approaches. These config-
urations serve as baselines to assess the impact of style transfer on retrieval performance. Specifically,
we apply style transfer to both the claim texts and the source documents, thereby investigating the
effects of stylistic transformations on retrieval efficacy. Our experiments involve the application of four
style transfer methods to the claims and three style transfer methods to the source documents, enabling
a systematic examination of the interactions between style transfer and retrieval performance.

4.1. Retrieval Systems

We distinguish between sparse, dense, and hybrid retrieval systems and include at least one system per
category for comparison. Sparse retrieval systems utilize a high-dimensional vector representation of
textual data, where each dimension corresponds to a specific term or feature, and the vector values are
typically based on the frequency of words. This representation results in sparse vectors, characterized by
a majority of zero values, which emphasizes the importance of exact term matches in retrieving relevant
documents. The sparse nature of these vectors allows for efficient computation and storage, but may



limit the system’s ability to capture nuanced semantic relationships between queries and documents.
In contrast, dense retrieval systems use neural networks to convert text into low-dimensional, dense
vectors that capture semantic meaning. These systems measure similarity based on vector closeness
in this learned space, retrieving semantically similar documents even without word overlap. We also
consider hybrid ranking approaches that are designed to extend the benefits of sparse and dense retrieval
systems. All dense retrieval models have been implemented using a Faiss index, which enables a fast and
scalable similarity search, allowing efficient retrieval of relevant documents from a large corpus [32].
BM25. Okapi BM25 is a widely adopted sparse retrieval model that relies on exact term matching,
leveraging term frequency and inverse document frequency to rank documents based on their relevance
to a given query [33, 34]. We selected BM25 because of its ability to accurately retrieve documents
containing search terms, which allows style transfer methods to have a strong impact on retrieval
performance. Nevertheless, Lv and Zhai [35] identified limitations of BM25 for long documents, which
can negatively impact scientific claim-source retrieval, especially with very long source documents.
We tuned the BM25 parameters 𝑏 and 𝑘1 to 1.0 and 1.2, respectively, by performing a grid search on a
sample of the training dataset.
MiniLM. The all-MiniLM-L6-v2 model is employed as a retrieval system by leveraging a lightweight pre-
trained language model with 23M parameters to generate dense vector representations of queries and
documents. MiniLM follows the Sentence-BERT framework [36], operating as a sentence-level encoder
that captures semantic relationships between textual inputs, thereby enhancing retrieval effectiveness
through semantically meaningful embeddings.
MPNet. Likewise as MiniLM the all-mpnet-base-v2 model, is employed as a dense retrieval encoder,
differing from MiniLM primarily in scale and architectural design. MPNet is based on a pre-training
framework that combines masked language modeling with permuted language modeling [37], enabling
it to capture both bidirectional and dependency-aware representations. With 110M parameters, MPNet
is substantially larger than MiniLM.
SciNCL. The dense retrieval model malteos/scincl with 110M parameters is tailored for scientific
and academic domains [38]. Based on a transformer encoder architecture, SciNCL is trained using
a contrastive learning objective with hard negative sampling on a large corpus of scientific papers,
abstracts, and citation contexts. The neural contrastive learning methodology focuses on optimizing
representations to distinguish between semantically similar and dissimilar scientific texts, making it
effective for scientific information retrieval tasks.
Specter. Another scientific document embedding model with 125M parameters is allenai/specter,
designed for scholarly information retrieval and citation recommendation [39]. Built on the RoBERTa
transformer architecture, SPECTER is trained using a citation-informed contrastive learning objective.
This training paradigm enables it to capture semantic relationships between scientific texts. Unlike
general-purpose models, SPECTER is domain-specific and optimized for academic use cases.
E5-Large. The intfloat/e5-large-v2 model, with 335M parameters, serves as a dense retrieval encoder
grounded in a transformer architecture derived from BERT and RoBERTa. It is trained using a contrastive
objective on a large corpus of question–answer and passage triplets, following a retrieval-oriented
training methodology proposed by Wang et al. [40]. Unlike MiniLM and MPNet, which are general-
purpose language models adapted for sentence embeddings, E5 is explicitly optimized for retrieval tasks
through instruction tuning and large-scale dual-encoder training.
GritLM-7B. GritLM/GritLM-7B is a dense retrieval encoder built on a decoder-only transformer ar-
chitecture, comprising 7B parameters [41]. Developed with a focus on retrieval-centric applications,
GritLM-7B is instruction-tuned and trained on large-scale web and document corpora, enabling robust
performance in zero-shot and few-shot information retrieval scenarios. Unlike traditional encoder-based
models such as E5 or GTR-XL, GritLM-7B leverages a generative pretraining framework while main-
taining competitive retrieval capabilities through embedding extraction from decoder representations.
Ajith et al. [42] have outlined the strengths of GritLM-7B in scientific literature retrieval.
GTR-XL. The model gtr-t5-xl, introduced by Ni et al. [43] is a state-of-the-art dense retrieval encoder
based on the T5 architecture, specifically optimized for retrieval tasks. It is trained using a contrastive
learning objective on an extensive dataset of question-answer and passage triplets, employing a retrieval-



centric training approach similar to that of E5. However, GTR-XL distinguishes itself with its ability
to handle large-scale text-to-text transformations and is designed to achieve superior performance in
both retrieval and generative tasks. With 11B parameters, GTR-XL is the largest model used in our
comparison and might therefore be particularly adept at handling complex retrieval queries.
Hybrid. Hybrid retrieval systems, which integrate both sparse and dense retrieval paradigms, have
demonstrated superior retrieval effectiveness compared to systems relying solely on either approach [44,
45]. In our experimental setup for scientific claim-source retrieval, we employ BM25 as the sparse
retrieval component and pair it once with each previously mentioned dense retrieval model to generate
document relevance scores. To combine the strengths of both models, we compute a hybrid score for
each candidate document based on a weighted linear combination of the individual scores. Let 𝑑 denote
a candidate document and 𝑆sparse(𝑑), 𝑆dense(𝑑) represent the relevance scores assigned to 𝑑 by the
sparse and dense retrievers, respectively. The hybrid score 𝑆hybrid(𝑑) is computed as:

𝑆hybrid(𝑑) = 𝛼 · 𝑆sparse(𝑑) + (1− 𝛼) · 𝑆dense(𝑑) (1)

In our experiments, we fix the interpolation parameter to 𝛼 = 0.5, giving equal weight to both retrieval
components. All scores are min-max normalized before ranking to ensure comparability across models.

4.2. Style Transfer

We apply style transfer to align the linguistic style of user-generated tweets and scientific source
documents to improve their comparability for retrieval. This includes converting both claims and
sources into a consistent style, such as scientific language, and testing alternative styles to assess their
impact on retrieval performance. For all experiments, we use the LLaMA 3.3 70B Instruct model [46],
optimized for instruction-following and capable of controlled style adaptation across domains. We
designed a modular prompt template with four components: context, task, instructions, and output
specification. The context describes the retrieval objective and is adapted based on whether the input is
a claim or a source. The task defines the LLM’s role, such as generating a scientific question from a
tweet. The instructions guide the style transfer, including tone and structure. The output specification
ensures consistent formatting. All prompts are shown in Table 2 and Table 3 in the appendix.
Claim Formal (C1). The first style transfer focuses on converting informal tweets into a more formal
tone. This process involves removing informal elements such as hashtags and emojis, as well as
enhancing the readability of the text. The LLM is instructed to preserve the original terminology used
in the tweet and to maintain the core semantic content without alteration.
Claim Scientific (C2). C2 involves rewriting each tweet into a more formal scientific-claim format.
This process requires transforming informal or casual language into precise academic language with
domain-specific terminology, thereby creating clear, standalone scientific claims. Similar to C1 non-
essential elements such as hashtags, emojis, and informal symbols are removed. The original meaning
of the tweet must be preserved, and any existing scientific terminology should remain unchanged.
Claim Abstract (C3). This style transfer requires rewriting each tweet as a scientific abstract of
approximately 150 words, using domain-specific terminology while preserving existing scientific terms.
The abstract should present key aspects such as motivation, methodology, and findings in a coherent
narrative. Unlike C2, which transforms tweets into clear scientific claims, C3 involves more extensive
restructuring to produce a continuous scientific summary. The approach aims to improve comparability
by providing a uniform outline, as both claims and sources are expressed in similar language and
structure. Since the model has no access to the original paper and it might not be included in the LLM’s
training data, C3 risks generating hallucinated content. To reduce this risk, we explicitly prompt the
model not to introduce any information beyond what is present in the original tweet. This setup tests
whether strong stylistic alignment alone can bridge the domain gap and improve retrieval performance.
Claim Question (C4). This style transfer involves formulating a single, precise scientific question
for each tweet that ideally can be answered exclusively by the paper referenced in the tweet. The
question must be clearly stated as a unified inquiry, without being split into multiple sub-questions, and
must retain the original terminology used in the tweet without modification. The formulation should
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grade 12 (K-12) schools, regardless of vaccination status, 

to reduce transmission of SARS-CoV-2, the virus that 

causes COVID-19 (1). Schools in Maricopa and Pima 

Counties, which account for >75% of Arizona's population 

(2), resumed in-person learning for the 2021-22 academic 

year during late July through early August 2021. In mid-

July, county-wide 7-day case rates were 161 and 105 per 

100,000 persons in Maricopa and Pima Counties, 

respectively, and 47.6% of Maricopa County residents and 

59.2% of Pima County residents had received at least 1 

dose of a COVID-19 vaccine…
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schools. The evidence on this 
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study: outbreaks in schools 

with no mask requirement 
were 3.7 times more likely.

New study: K-12 schools 

with mask policies had fewer 

COVID-19 outbreaks in 

Arizona, July-Aug 2021. 

Universal indoor masking 

can reduce transmission! 

#COVID19 #MaskMandate 

#BackToSchool

Figure 1: Overview of the style transfer pipeline. The pipeline applies style transfer independently to
sources and claims. Source documents undergo style transfer with three distinct styles before indexing,
including a baseline without transformation. During inference, style transfer can be applied to claims
using one of four styles. This enables individual style transfer of sources and claims.

be carefully optimized to maximize retrieval performance by aligning with the input expectations
of retrieval systems designed for question-answering tasks, where a question serves as the query
for document retrieval. The motivation for generating well-structured scientific questions lies in the
potential for improved performance in modern question-centric retrieval models such as GTR or E5,
which are specifically optimized to handle question-based inputs more effectively.
Source Formal (S1). Analogous to the style transfer applied to claims, we perform a structured trans-
formation of the source texts. The objective of S1 is to improve clarity and readability through minimal,
targeted edits while rendering the abstract in a more formal, standardized tone. All key details and
factual content must be preserved, and original terminology and core meaning remain unchanged. The
transformation involves removing unnecessary filler and overly verbose academic phrasing, omitting
non-essential self-referential statements, and correcting unclear grammar or excessively long sentences.
This process follows the same formalization principles as the C1 transformation for claims, adapted to
the linguistic and structural characteristics of scientific source texts.
Source Summary (S2). The objective of S2 is to generate a more concise and retrieval-oriented summary
of each scientific abstract. While an abstract is itself a summary, it often includes broad motivation,
general background, or other information that is not directly relevant for retrieval or scientific claim
support. This style transfer focuses on extracting the core findings, relevant methodology, and key
contextual details while strictly preserving the original terminology and core meaning. Content that
does not directly contribute to understanding the scientific contribution or supporting document
retrieval is omitted, resulting in a shorter, more focused version of the abstract.
Source Tweet (S3). Analogous to the C3 style transfer, which generates scientific abstracts from tweets,
the S3 style transfer performs the inverse transformation by deriving a concise tweet from a scientific
abstract. The objective is to produce a brief, accurate, and engaging summary that emphasizes the key
research findings while maintaining fidelity to the original content. Each tweet is constrained to a
maximum of 280 characters and is formulated to be suitable for dissemination by the paper’s authors or
interested third parties on social media platforms. To enhance discoverability and outreach, relevant
hashtags are included. Although the format is informal and highly compressed, the transformation
preserves the core scientific message without introducing distortion or oversimplification.



5. Evaluation

In this section, we present a comprehensive evaluation. We assess the impact of the 7 distinct style
transfer methods, compared to a no-transfer baseline, across 15 retrieval models. We also report the
performance of our best-performing method on the CheckThat! 2025 Task 4b benchmark. Additionally,
we conducted a qualitative analysis, which can be found in the appendix in Table 4.

5.1. Evaluation of Style Transfer for Scientific Claim Source Retrieval

We evaluated all style transfer methods across each retrieval system using the 1,400 tweets from the
development dataset. To support style-specific retrieval, we constructed a separate Faiss index for each
source document style, resulting in four distinct indices. All experiments were evaluated using Mean
Reciprocal Rank@5 (MRR@5). The results for each configuration are reported in Table 1 and Table 2.

The evaluation results demonstrate that the highest retrieval performance is achieved using GritLM-
7B without style transfer, yielding an MRR@5 of 0.7115 and outperforming the BM25 baseline (0.5575)
by approximately 0.15. Among models without style transfer, only E5-Large and most hybrid models,
excluding H-Specter, surpass the BM25 baseline. Notably, scientific embedding models such as SciNCL
(0.3735) and Specter (0.0728) perform significantly worse, indicating limited effectiveness in this context.

Nevertheless, applying style transfer generally improves retrieval performance, particularly when
using a formal style for claims (C1) and no style transfer for source documents (S0). Under this
configuration, BM25, E5-Large, and most hybrid models including H-MiniLM, H-MPNet, H-Specter,
H-GritLM-7B, and H-GTR-XL show modest improvements around 0.01 in MRR@5, while H-SciNCL
achieves a slightly larger gain around 0.02. In contrast, H-E5-Large shows minimal improvement of
0.001. Additionally, MiniLM, MPNet, SciNCL, and Specter benefit more noticeably when scientific style
is applied to claims (C2), although optimal style for sources varies. MiniLM performs best with formal-
style source documents (S1), whereas Specter benefits most from tweet-like source documents (S3). The
largest relative improvement from style transfer is observed with Specter, where using summary-style
sources and scientific-style claims yields an increase of approximately 0.11 in MRR@5. However, its
absolute retrieval performance remains low (0.1870), substantially lagging behind all other models.

Table 1
Evaluation of style transfer for claim-source retrieval (S0–S1). This table reports MRR@5 for each retrieval model
described in Section 4.2. Hybrid retrieval models, denoted as “H-”, combine the sparse BM25 retriever with one
of the dense retrieval models. We evaluate retrieval performance across two source document styles: Original
(S0) and Formal (S1). Each is paired with five claim styles: Original (C0), Formal (C1), Scientific (C2), Abstract
(C3), and Question (C4). S0–S1 serves as the baseline for comparison across all style transfer configurations.

S0 S1
Model C0 C1 C2 C3 C4 C0 C1 C2 C3 C4
BM25 0.5575 0.5800 0.5549 0.4579 0.4934 0.5071 0.5337 0.5287 0.4587 0.4837
MiniLM 0.4897 0.4895 0.4947 0.4622 0.4794 0.4937 0.4988 0.5111 0.4733 0.4910
MPNet 0.5052 0.5146 0.5185 0.5151 0.5143 0.4939 0.5026 0.5178 0.5080 0.5030
SciNCL 0.3735 0.3766 0.3793 0.3640 0.3557 0.3525 0.3549 0.3769 0.3558 0.3455
Specter 0.0728 0.0795 0.0865 0.1272 0.0682 0.1134 0.1263 0.1455 0.1732 0.1190
E5-Large 0.6568 0.6578 0.6557 0.6112 0.6317 0.6045 0.6149 0.6295 0.5744 0.6012
GritLM-7B 0.7115 0.7090 0.7049 0.6649 0.6687 0.6859 0.6795 0.6760 0.6339 0.6598
GTR-XL 0.5322 0.5268 0.5113 0.4661 0.5089 0.5305 0.5296 0.5159 0.4669 0.4934
H-MiniLM 0.6248 0.6370 0.6238 0.5396 0.5724 0.5886 0.6055 0.6087 0.5423 0.5651
H-MPNet 0.6323 0.6457 0.6344 0.5601 0.5851 0.5935 0.6150 0.6218 0.5565 0.5760
H-SciNCL 0.6027 0.6182 0.6093 0.5101 0.5426 0.5632 0.5794 0.5814 0.5089 0.5371
H-Specter 0.5523 0.5645 0.5361 0.4052 0.4849 0.5217 0.5498 0.5410 0.4529 0.5005
H-E5-Large 0.6642 0.6727 0.6623 0.6119 0.6091 0.6207 0.6339 0.6378 0.5875 0.5930
H-GritLM-7B 0.6898 0.6982 0.6872 0.6381 0.6461 0.6537 0.6679 0.6732 0.6282 0.6379
H-GTR-XL 0.6370 0.6457 0.6257 0.5284 0.5770 0.6008 0.6084 0.6050 0.5340 0.5647



Table 2
Evaluation of style transfer for claim-source retrieval (S2–S3). This table reports MRR@5 for each retrieval model
described in Section 4.2. Hybrid retrieval models, denoted as “H-”, combine the sparse BM25 retriever with one
of the dense retrieval models. We evaluate retrieval performance across two source document styles: Summary
(S2) and Tweet (S3). Each is paired with five claim styles: Original (C0), Formal (C1), Scientific (C2), Abstract
(C3), and Question (C4).

S2 S3
Model C0 C1 C2 C3 C4 C0 C1 C2 C3 C4
BM25 0.4541 0.4799 0.4670 0.3785 0.4391 0.2489 0.2673 0.2369 0.1398 0.2125
MiniLM 0.4970 0.5007 0.5077 0.4788 0.4892 0.4427 0.4409 0.4420 0.4098 0.4284
MPNet 0.4878 0.4994 0.5131 0.4978 0.5068 0.4567 0.4550 0.4525 0.4176 0.4351
SciNCL 0.3576 0.3629 0.3757 0.3415 0.3577 0.3199 0.3161 0.3171 0.3053 0.3165
Specter 0.1224 0.1353 0.1461 0.1491 0.1320 0.1588 0.1689 0.1870 0.1612 0.1661
E5-Large 0.6169 0.6302 0.6304 0.5793 0.6135 0.5533 0.5583 0.5536 0.5363 0.5124
GritLM-7B 0.6744 0.6795 0.6760 0.6339 0.6598 0.5975 0.6795 0.6760 0.6339 0.6598
GTR-XL 0.4904 0.4843 0.4710 0.4305 0.4697 0.4854 0.4882 0.4696 0.4412 0.4503
H-MiniLM 0.5568 0.5657 0.5673 0.4957 0.5282 0.3732 0.3809 0.3719 0.3387 0.3520
H-MPNet 0.5595 0.5695 0.5700 0.5059 0.5338 0.3695 0.3793 0.3765 0.3281 0.3602
H-SciNCL 0.5237 0.5438 0.5280 0.4439 0.4949 0.3350 0.3450 0.3308 0.2794 0.3084
H-Specter 0.4822 0.5020 0.4864 0.3784 0.4564 0.3058 0.3239 0.3123 0.2588 0.2871
H-E5-Large 0.5828 0.5961 0.5895 0.5342 0.5578 0.3882 0.4041 0.3998 0.3750 0.3750
H-GritLM-7B 0.6270 0.6320 0.6354 0.5757 0.5919 0.4250 0.4747 0.4780 0.4552 0.4442
H-GTR-XL 0.5600 0.5641 0.5461 0.4668 0.5225 0.3873 0.3946 0.3812 0.3511 0.3578

5.2. Evaluation of ChecktThat! 2025 Task 4b

For the CheckThat! 2025 Lab, we submitted our best-performing model from the development phase
(Section 5.1): GritLM-7B, without applying style transfer to claims or sources. Participating systems
achieved MRR@5 scores ranging from 0.00 to 0.68. Our model obtained an MRR@5 of 0.59, ranking
12th out of 31 teams and outperforming the BM25 baseline (0.43) by +0.16. These results indicate that
the test set was substantially more challenging, as reflected by the performance drops for both BM25
(-0.13) and GritLM-7B (-0.12) compared to their scores on the development set.

Table 3
Comparison of the BM25 baseline model and our submitted model GritLM-7B without style transfer on the
development (Dev) and final test (Test) datasets of the CheckThat! 2025 Lab.

Model Dev Test

BM25 (Baseline) 0.56 0.43
GritLM-7B (Ours) 0.71 0.59

6. Discussion

We conducted a systematic comparison of 15 retrieval models and 7 style transfer methods. This section
discusses our key research questions (RQs).
RQ1: How do sparse, dense, and hybrid retrieval systems compare in their effectiveness for
retrieving scientific sources for social media claims?

Our evaluation reveals important findings regarding the effectiveness of sparse, dense, and hybrid
retrieval systems for scientific source retrieval supporting social media claims. The sparse retrieval
model BM25 establishes a strong baseline, demonstrating robust performance across the retrieval tasks.
Among dense retrieval models, only a few, notably E5-Large and GritLM-7B, were able to outperform
BM25. Regarding hybrid models, all evaluated hybrid models except H-GritLM-7B showed improved



performance compared to their dense-only counterparts, indicating that combining sparse and dense
retrieval signals generally enhances retrieval effectiveness. Nevertheless, GritLM-7B stands out as the
strongest retrieval model overall for claim-source retrieval, a finding consistent with results reported
by Ajith et al. [42]. These results suggest that while traditional sparse methods remain competitive,
state-of-the-art dense and hybrid approaches offer superior retrieval capabilities in this context.
RQ2: What is the impact of applying style transfer to claims, source documents, or both on
retrieval performance across different retrieval systems?

Our findings show that applying a formal style transfer to claims tends to improve retrieval perfor-
mance, particularly when source documents remain unaltered. Most retrieval systems benefit from this
transformation, except for GritLM-7B and GTR-XL, which appear robust to stylistic noise or sensitive to
content shifts. The improvements suggest informal tweet language hinders retrieval and that formaliza-
tion, such as removing hashtags and correcting grammar, better aligns claims with scientific abstracts.
In contrast, modifying source documents typically harms performance, likely due to loss of essential
content and added noise, though exceptions occur with models such as MiniLM and Specter. The sparse
retrieval model shows the strongest improvements from formalized claims, likely due to reliance on
lexical overlap. Dense and hybrid systems also benefit, though less consistently. Overall, formalizing
claims enhances compatibility with scientific language, especially in sparse retrieval settings.
RQ3: Which combinations of style transfer methods applied to claims and source documents
are most effective in improving scientific claim-source retrieval?

We evaluated all combinations of claim and source style transfer methods to identify the most
effective configuration. Across models, the combination of original source documents with a formalized
claim style (S0–C1) consistently yielded strong performance, achieving the best results for BM25,
E5-Large, and all hybrid retrieval systems. Applying a scientific style to claims (S0-C2) also led to
notable improvements, particularly for MPNet and SciNCL. These results suggest that formal and
scientific claim styles align more closely with the linguistic structure of source documents, enhancing
retrieval effectiveness. In contrast, source documents appear sufficiently formal by default, so applying
style transfer to them might introduce noise rather than improving retrieval. While the overall trend
favors keeping source documents in their original form, certain models perform better with alternative
configurations. For instance, MiniLM achieved its highest retrieval scores when claims were transferred
into scientific style and sources into formal style (S1–C2). Similarly, Specter performed best when
claims used scientific style and sources were transformed into tweet-like text (S3–C2). These exceptions
highlight that optimal style transfer combinations can vary depending on model architecture.

7. Conclusion

In this paper we have demonstrated that the submitted GritLM-7B model, without fine-tuning or style
transfer, achieves competitive retrieval performance with an MRR@5 of 0.59, ranking 12th out of
30 participants in the CheckThat! 2025 Task 4b on scientific claim-source retrieval. Although BM25
establishes a robust sparse baseline, certain dense models such as GritLM-7B and E5-Large surpass its
performance, while hybrid models typically demonstrate enhanced effectiveness by integrating both
sparse and dense retrieval architectures. Applying a formal writing style to claims improves retrieval
performance for most tested models by aligning informal social media language with the structured
style of scientific abstracts. In contrast, applying style transfer to source documents typically results
in decreased effectiveness, although a few exceptions were observed. These findings are limited by
evaluation on a single, comparatively challenging dataset focused solely on COVID-19 research, which
also exhibits strong performance variations between the development and test sets. The study also relies
on a single LLM for style transfer. Therefore, future research should validate the results across multiple
diverse datasets and models and further investigate style transfer methods to enhance robustness and
generalizability. By integrating style transfer through zero-shot prompting using LLMs, this study
provides valuable insights into effective strategies for scientific claim-source retrieval and emphasizes
potential pathways for advancing evidence discovery associated with social media claims.
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A. Style Transfer Prompting Template

Context: You are a language model specialized in text optimization for scientific claim-source retrieval. In this task informal social media posts like tweets (claim) have to be matched with the 

most relevant scientific abstract (source). To increase the retrieval performance, a style transfer of the given tweet must be performed.

Task: Pre-process the given tweet with minimal changes, according to the following instructions.

Instructions:

- Remove non-essential elements like hashtags, emojis, and informal symbols.

- Retain all key details, and all factual information.

- Do not alter the terminology or the core meaning of the tweet.

- Focus on improving readability without over-processing, ensuring the tweet remains suitable for matching with corresponding scientific papers.

Task: Rewrite each tweet into a more formal scientific-claim format, according to the following instructions.

Instructions:

- Transform the tweet into a clear, standalone scientific claim or set of claims.

- Remove non-essential elements like hashtags, emojis, and informal symbols.

- Do not alter the meaning of the tweet.

- Use precise academic language and domain-specific terminology. Do not alter the terminology of the tweet, if it is already scientific.

Task: For each tweet write a scientific abstract, according to the following instructions.

Instructions:

- Write a concise, formal scientific abstract (~150 words).

- Use precise academic language and domain-specific terminology. Do not alter the terminology of the tweet, if this is already scientific.

- Ensure coherence and logical flow, but do not include section headers.

- Present key aspects of the study, including context, methodology (if available), key findings, and significance, in a continuous and structured manner. Do not introduce information

  which is not present in the tweet.

- Maintain neutrality unless the tweet explicitly expresses a stance, in which case incorporate the sentiment appropriately.

Task: For each tweet write one scientific question, according to the following instructions.

Instructions:

- The question should only be answerable with the paper the tweet refers to.

- The question should be formulated precisely without being divided into several sub-questions.

- Do not alter the terminology used in the tweet.

- The question should be optimized for the best possible retrieval performance.

Output: Only return the pre-processed question without any explanations or step-by-step reasoning!

C1

C2

C3

C4

Figure 2: Prompt template for style transfer of claims (tweets) into four distinct styles: Formal (C1),
Scientific (C2), Abstract (C3), and Question (C4). The modular prompt includes four components:
Context, Task, Instructions, and Output Specification. Each component guides the LLM in transforming
tweets with stylistic and structural consistency.

Context: You are a language model specialized in text optimization for scientific claim-source retrieval. In this task informal social media posts like tweets (claim) have to be matched with the 

most relevant scientific abstract (source). To increase the retrieval performance, a style transfer of the given scientific abstract must be performed.

Task: For each abstract write a summary, according to the following instructions.

Instructions:

- Do not alter the terminology or the core meaning of the paper abstract.

- Summarize the core findings, relevant methodology and key contextual details.

- Focus on content that supports scientific claims and aids in source retrieval.

- Exclude general background, broad motivation, or unrelated information.

Task: Pre-process the given abstract with minimal changes, according to the following instructions.

Instructions:

- Retain all key details, and all factual information.

- Do not alter the terminology or the core meaning of the paper abstract.

- Remove unnecessary filler or verbose academic phrasing.

- Fix unclear grammar or overly long sentences for readability.

- Omit references to the paper itself, if not essential to meaning.

Task: For each abstract write a short tweet, according to the following instructions.

Instructions:

- Write a concise tweet that draws attention to the key research findings.

- The tweet should be written in such a way that either the author of the paper or interested third parties can post the tweet on social media.

- A tweet cannot be longer than 280 characters.

- Use relevant hashtags to increase discoverability.

Output: Only return the pre-processed text without any explanations or step-by-step reasoning!

S1

S2

S3

Figure 3: Prompt template for style transfer of source documents (abstracts) into three distinct styles:
Formal (S1), Summary (S2), Tweet (S3). The modular prompt includes four components: Context, Task,
Instructions, and Output Specification. Each component guides the LLM in transforming tweets with
stylistic and structural consistency.

B. Qualitative Analysis of Style Transfer



Table 4
Qualitative analysis of claim and source style transfer. The table presents one representative claim example
in its original form (C0) from the development dataset, alongside its transformed versions using four distinct
claim style transfer methods: Formal (C1), Scientific (C2), Abstract (C3), and Question (C4). Below the midrule, a
corresponding source example (S0) matching the claim is shown in its original form, along with its transformed
versions across three source style transfer methods: Formal (S1), Summary (S2), and Tweet (S3).

Style Text

C0 Myth: I sometimes see the downplaying of COVID deaths because those dying "are old" on average
and would have "died soon anyway". This study looked at the first 1,279,866 reported #covid19 deaths.
The estimated average years of life lost was 16 years.

C1 Myth: I sometimes see the downplaying of COVID deaths because those dying are old on average
and would have died soon anyway. This study looked at the first 1,279,866 reported covid19 deaths.
The estimated average years of life lost was 16 years.

C2 A common misconception surrounding COVID-19 is that the deaths are often downplayed due to
the advanced age of the individuals, with the implication that they would have died soon regardless.
However, a study examining the first 1,279,866 reported COVID-19 deaths found that the estimated
average years of life lost was 16 years.

C3 This study examined the first 1,279,866 reported COVID-19 deaths, aiming to contextualize the
impact of the pandemic on mortality. A common misconception downplays the significance of
COVID-19-related deaths, attributing them to the advanced age of the deceased and implying that
these individuals would have succumbed to other causes shortly thereafter. However, the findings of
this investigation reveal a substantial loss of life expectancy, with an estimated average of 16 years
of life lost per deceased individual. This metric underscores the considerable premature mortality
associated with COVID-19, highlighting the need to reevaluate the perceived insignificance of these
deaths. The results emphasize the profound consequences of the pandemic, particularly in terms
of the years of life forfeited, and underscore the importance of acknowledging the true extent of
COVID-19’s impact on human lifespan.

C4 What is the estimated average years of life lost among the first 1,279,866 reported COVID-19 deaths?

S0 Years of life lost to COVID-19 in 81 countries. Understanding the mortality impact of COVID-19
requires not only counting the dead, but analyzing how premature the deaths are. We calculate
years of life lost (YLL) across 81 countries due to COVID-19 attributable deaths, and also conduct
an analysis based on estimated excess deaths. We find that over 20.5 million years of life have been
lost to COVID-19 globally. As of January 6, 2021, YLL in heavily affected countries are 2–9 times
the average seasonal influenza; three quarters of the YLL result from deaths in ages below 75 and
almost a third from deaths below 55; and men have lost 45% more life years than women. The results
confirm the large mortality impact of COVID-19 among the elderly. They also call for heightened
awareness in devising policies that protect vulnerable demographics losing the largest number of
life-years.

S1 To understand the mortality impact of COVID-19, it’s essential to analyze the prematurity of deaths,
not just the number of deaths. We calculated years of life lost (YLL) due to COVID-19 in 81 countries
and found that over 20.5 million years of life have been lost globally. As of January 6, 2021, heavily
affected countries experienced 2-9 times more YLL than the average seasonal influenza. Notably,
three-quarters of YLL resulted from deaths in people under 75, and almost a third from deaths in
people under 55. Men lost 45% more life years than women. The results highlight the significant
mortality impact of COVID-19, particularly among the elderly and other vulnerable demographics,
emphasizing the need for policies that protect these groups.

S2 We calculated years of life lost (YLL) due to COVID-19 in 81 countries, finding over 20.5 million
years lost globally. Analysis revealed that YLL in heavily affected countries are 2-9 times higher than
average seasonal influenza, with 75% of YLL resulting from deaths under 75 years and 30% from
deaths under 55. Men lost 45% more life years than women, highlighting the significant mortality
impact of COVID-19, particularly among the elderly and younger demographics.

S3 "COVID-19 has claimed 20.5M+ years of life globally! 75% of years lost are from people under 75.
Men lost 45% more years than women. #COVID19 #GlobalHealth #MortalityRate"
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