
EMBEDDED SYSTEMS
PROGRAMMING 2014-15

More About Languages

JAVA: ANNOTATIONS (1/2)

Structured comments to source code (=metadata).  
They provide data about the code, but 
they are not part of the code itself

Can be used
by the compiler to detect errors or suppress
warnings
by software tools to generate documentation, code, ...

Insert an annotation by prepending an “@”

Not available in C and C++

JAVA: ANNOTATIONS (2/2)

Sample annotations used by the Java compiler

@Deprecated: indicates that the annotated element
should no longer be used

@Override: informs the compiler that the element
is meant to override an element declared in a
superclass

@SuppressWarnings: tells the compiler to
suppress a set of specific warnings

COPY CONSTRUCTOR

Java, C++

The copy constructor is a special constructor used
when a newly-instantiated object is a copy of an
existing object

First argument of the CC: must be a reference to an
object of the same type as the one being constructed

COPY CONSTRUCTOR: C++

A default CC is automatically generated by the
compiler, but an user-provided CC is mandatory
when the class

allocates memory dynamically,

owns non-shareable references,  
such as references to files

COPY CONSTRUCTOR:
EXAMPLES (1/2)

 class Pixel extends Point
 {

 ...

 public Pixel(Pixel sourcepixel) // Copy constructor
 {
 // Coordinates are copied by invoking the appropriate
 // constructor of the superclass
 super(sourcepixel.GetX(), sourcepixel.GetY());

 color = new byte[3];
 color[0] = sourcepixel.color[0];
 color[1] = sourcepixel.color[1];
 color[2] = sourcepixel.color[2];
 }

 ...

 }

Java

COPY CONSTRUCTOR:
EXAMPLES (2/2)

 Pixel::Pixel(Pixel& sourcepixel)
 {
 // NOTE: the constructor of the base class cannot
 // be invoked: x and y must be copied explicitly
 SetX(sourcepixel.GetX());
 SetY(sourcepixel.GetY());

 color = new unsigned char [3];
 color[0] = sourcepixel.color[0];
 color[1] = sourcepixel.color[1];
 color[2] = sourcepixel.color[2];
 }

C++

JAVA: COPY CONSTRUCTOR
VS. CLONING

Java: an object can be copied by implementing  
either the copy constructor or the clone() method

 Pixel px = new Pixel();

 ...

 // If Pixel implements a copy constructor
 Pixel copy1 = new Pixel(px);

 // If Pixel implements the clone() method
 Pixel copy2 = px.clone();

However, cloning is less flexible.  
Example: clone() can’t initialize blank final
variables, while a constructor can

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html%23clone()

NESTED CLASS

Java, C++

A nested class is a class declared within the body of
another class or interface; no special syntax

A nested class is a member of its enclosing class

A nested class interacts with the instance members of
its outer class (and other classes) just like any other
top-level class

JAVA: INNER CLASS

A non-static nested class is called an inner class

Inner classes have access to members of the
enclosing class, even if they are declared private; 
fields must be final

Static nested classes are allowed access only through
an object reference

Inner classes cannot define static members

JAVA: EXAMPLES

Instantiation of a static nested class

Instantiation of an inner class: instantiate the outer
class first, then create the inner object within the
outer object

 OuterClass.StaticNestedClass nestedObject =
 new OuterClass.StaticNestedClass();

 OuterClass.InnerClass innerObject = outerObject.new InnerClass();

JAVA: ANONYMOUS CLASS

Inner class without a name

Declaration coincide with instantiation, hence it must
take place inside a method

An inner class declared inside a method (with or
without a name) is called a “local class”

 // Instantiation of an anonymous class
 // that implements the View.OnClickListener interface
 bu.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 // Perform action on click
 tv.setText("Good job!");
 }
 });

C++: NESTED CLASS

A nested class can directly use names, type names,
names of static members, and enumerators only from
the enclosing class

A nested class can be declared and then defined later

The declaration/definition of a nested class do not
cause any object to be instantiated: instantiation must
be explicit

structs and unions can be nested as well

C++: EXAMPLE

 class OuterClass
 {
 class NestedClass1; // forward declaration
 class NestedClass2; // forward declaration
 class NestedClass1 {}; // definition of nested class

 /* ... */

 NestedClass1 n; // instantiation of nested class
 };

 class OuterClass::NestedClass2 {}; // definition of nested class

C++: VIRTUAL FUNCTION

Member function (=method) of a class, whose
functionality can be overridden in its derived classes

Declared with the virtual keyword

Differently from plain overloading, calls are resolved
at run time (more on this later)

Mandatory when a base-class pointer is used to
access an overridden method of the derived class

VIRTUAL FUNCTION:
EXAMPLE

Were print() not declared virtual, the method
of the base class would be called in main()

 #include <iostream>

 class BaseClass
 {
 public: virtual void print() {std::cout << "Base\n";}
 };

 class DerivedClass: public BaseClass
 {
 // Override of the print() method
 public: void print() {std::cout << "Derived\n";}
 };

 int main(int argc, const char *argv[])
 {
 // A derived-class object is assigned to a base-class pointer
 BaseClass * C = new DerivedClass();

 C->print();

 delete C; return 0;
 }

ABSTRACT CLASS

A class whose definition is incomplete.  
It cannot be instantiated: it can only be subclassed

Java: abstract classes (and methods); interfaces

C++: abstract classes; pure virtual methods

JAVA: INTERFACE

Group of related methods with empty bodies 
(i.e., undefined methods)

To be used, an interface must be implemented 
by a class

 interface GeometricObject
 {
 double Distance(); // Distance from the origin;
 // implementation is not provided

 //... Further methods go here
 }

 public class Point implements GeometricObject
 {
 //... Implementation goes here
 }

JAVA:
ABSTRACT CLASS/METHOD

Abstract method: a method that is declared
(without braces and followed by a semicolon, as in a
C++ declaration) but not defined

Abstract class: a class that is declared abstract.  
It may or may not include abstract methods.  
It cannot be instantiated, but it can be subclassed

Unlike interfaces, abstract classes can contain
fields that are not static and final,
implemented methods

C++: ABSTRACT CLASS

Pure virtual function: a method that is declared
virtual, not defined, and followed by “=0;”

Abstract class: a class that contains at least one pure
virtual function

 class GeometricObject // Abstract class
 {
 public:
 virtual double Distance()=0;

 //... Further methods go here
 }

 public class Point:GeometricObject
 {
 //... Implementation goes here
 }

REFERENCES (1/3)

Java

Objects (including some data types, such as arrays) are
manipulated not directly, but by reference, i.e., via a “handle”
to the object

References are null when they do not reference any object

The use of references is so pervasive that imprecise
statements are often made, e.g., “Pass an object to the
method” (wrong) instead of “Pass an object reference to the
method” (correct)

Point p = new Point();

REFERENCES: QUIZ 1

Java

What is the value of p.y at the end of the code
fragment? Is it 1.0 or 2.0?

 Point p = new Point(0.0, 1.0); // First reference: p
 // p.y is now 1.0
 Point q = p; // Second reference

 ...

 q.y = 2.0;

REFERENCES: QUIZ 2

Java

Does (s == t) evaluate to true or false?

 String letter = "o";
 String s = "hello"; // These String objects
 String t = "hell" + letter; // contain the same text

 if(s == t)
 {
 ...
 }

Example from “Java in a Nutshell”

http://docstore.mik.ua/orelly/java-ent/jnut/ch02_10.htm

JAVA VS. C++ (1/3)

Java:  
 
 
p is a reference to a Point object

C++:  
 
 
p is an object of type Point, i.e., an instance of Point  

Point p;

Point p;

JAVA VS. C++ (2/3)

Java:  
 
 
p is a reference to a Point object

C++:  
 
 
p is a pointer to a Point object, i.e.,  
it contains the memory address of a Point object

Point p = new Point();

Point * p = new Point();

JAVA VS. C++ (3/3)

Java:  
 
 
When the member foo ends: p is destroyed and the Point
object is no longer referenced, so the garbage collector
destroys it as well

C++:  
 
 
When the member foo ends: p is destroyed, the Point object
is no longer referenced but nobody destroys it (memory leak)

 public foo() {
 Point p = new Point();
 ...
 }

 void foo() {
 Point * p = new Point();
 ...
 }

REFERENCES (2/3)

C++ (and C)

A reference to an entity is an alternate name  
for that entity

When you change a reference, you change the
content of the referent

 int i;
 int & ri = i; // definition of the reference
 ri++; // same as writing i++
 ri = 12; // same as writing i=12

POINTERS VS. REFERENCES

C++ (and C)

Pointer  
Distinct from the object it points to 
The “*” operator is required to dereference an address 
The value of the pointer can be changed 
Can be NULL

Reference  
Different name for the object it points to  
No operator required to dereference 
Once bound to an object, it cannot be changed 
Can’t be NULL

 int i;
 int & ri = i;
 ri = 12;

 int i;
 int * pi = &i;
 *pi = 12;
 pi++;

REFERENCES (3/3)

C++ (and C)

Parameters are frequently passed by reference,  
not by value

 void swap(int& i, int& j)
 {
 int tmp = i;
 i = j;
 j = tmp;
 }

& VS. & (NO KIDDING)

C++ (and C)

The symbol “&” is used

to define a reference

for the address-of operator

 int & ri = i;

 int * pi = &i;

REFERENCES IN C++

References are further used while redefining
operators

 enum day
 {
 Sun, Mon, Tue, Wed, Thu, Fri, Sat
 };

 // Redefine the ++ operator for day
 day &operator++(day &d)
 {
 d = (day)((d+1)%7);
 return d;
 }

 ...

 day n;

 ...

 // Increment n to the next day
 ++n;

NAME BINDING

The act of associating identifiers (of fields, of
members, ...) with the correct class/object/function/...

Static binding (aka early binding)  
“Binding as you know it”: the association is performed
at compile time

Dynamic binding (aka late binding)  
The association is performed at run time since at
compile time there is not enough information to
determine which object must be called

DYNAMIC BINDING: PROS

It increases flexibility:  
some decisions are not hardwired in the source code,
but they are taken only at run time

It allows for more extensible software:  
new classes can be added at run time without
recompiling, and without even knowing their source
code

DYNAMIC BINDING: CONS

It is slower:  
a search into a suitable data structure must be
performed at run time to determine which object/
method to use

BINDING: EXAMPLES (1/3)

Both examples are in Java

Example: static binding of an object

Another example: is this static or dynamic binding?

 Point ImaginaryUnit = new Point(0.0, 1.0);

 Point ImaginaryUnit;
 ImaginaryUnit = new Point(0.0, 1.0);

BINDING: EXAMPLES (2/3)

Example: dynamic binding of objects in Java

 class ClassA
 {
 public void print() {System.out.printf("A\n");}
 }

 class ClassA2 extends ClassA
 {
 // Override of the print() method
 public void print() {System.out.printf("A2\n");}
 }

 class latebinding
 {
 public static void main(String[] args)
 {
 ClassA C; // Recall that C is just a reference

 for(int i=0; i<4; i++)
 {
 // A reference to the base class can be used with
 // derived objects, but not vice versa
 if(i%2==0) C=new ClassA(); else C=new ClassA2();

 C.print(); // Which print() should be called?
 }
 }
 }

BINDING: EXAMPLES (3/3)

Example: dynamic binding of objects in C++

 #include <iostream>

 class ClassA
 {
 // Recall that the "virtual" keyword is necessary to indicate
 // that the method may be overridden in derived classes.
 public: virtual void print() {std::cout << "A\n";}
 };

 class ClassA2: public ClassA
 {
 // Override of the print() method
 public: void print() {std::cout << "A2\n";}
 };

 int main(int argc, const char *argv[])
 {
 ClassA * C;

 for(int i=0; i<4; i++)
 {
 // A pointer to the base class can be used with
 // derived objects, but not vice versa
 if(i%2==0) C=new ClassA(); else C=new ClassA2();
 C->print();

 // This is not Java! Objects must be deleted
 delete C;
 }
 return 0;
 }

RUN TIME
METHOD INVOCATION

Is it possible to invoke a method that is dynamically
chosen at run time?

Java: yes, use the Method class

C++: yes, use pointers to member functions

JAVA: THE METHOD CLASS

Part of the java.lang.reflect package (more on reflection
later)

Provides access to - and information about - a single method of a
class or interface.  
Both class and instance methods can be accessed

Object invoke(Object obj, Object... args)  
Invokes the method of obj represented by the instance of
Method

Method getMethod(String name, Class<?>...
parameterTypes)  
Part of class Class. Returns a reference to a method

http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/AccessibleObject.html
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Method.html%23invoke(java.lang.Object,%20java.lang.Object...)
http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html%23getMethod(java.lang.String,%20java.lang.Class...)
http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html

METHOD CLASS: EXAMPLE

Invoking different object methods in different
situations. The method is chosen at run time

 import java.lang.reflect.Method;
 import java.lang.reflect.InvocationTargetException;

 ...

 // definition of a reference to a method
 Method action;

 // definition of an instance of graphicObject
 graphicObject Hexagon = new graphicObject();

 // Decide whether action should indicate method draw()
 // or method repaint() of class graphicObject
 if(condition == true) action = graphicObject.class.getMethod("draw");
 else action = graphicObject.class.getMethod("repaint");;

 ...

 // Invokes either draw or repaint according to the decision
 // taken before
 action.invoke(Hexagon);

POINTERS TO FUNCTIONS

C++: as in C, it is possible to define a pointer to a
function

 // Declaration of function f
 double f(int a, short b);

 ...

 // Definition of a pointer to a function that (like f) receives
 // an int and a short as parameters, and returns a double.
 // The pointer is called pf, but - of course - any name is
 // as good as pf
 double (*pf)(int, short);

 // Now pf points to f
 pf = &f;

 ...

 // Calling f directly
 d = f(1,2);

 // Calling f via the pointer
 d = (*pf)(1,2);

POINTERS TO
MEMBER FUNCTIONS

C++: it is possible to define a pointer to a member
function, i.e., a pointer to a method

 // Definition of a pointer to a member function of class
 // graphicObject that (like draw and repaint) receives
 // nothing and returns nothing.
 void (graphicObject::*action)();

 // definition of an instance of graphicObject
 graphicObject * Hexagon = new graphicObject();

 ...

 // Decide whether action should indicate method draw()
 // or method repaint() of class graphicObject
 if(condition == true) action = &graphicObject::draw;
 else action = &graphicObject::repaint;

 ...

 // Invokes either draw or repaint according to the decision
 // taken before
 (Hexagon->*action)();

REFLECTION

Reflection: the process by which a computer
program can observe and modify its own structure
and behavior at run time

Data and code structures can be manipulated as well

For OO languages: classes and objects can be
observed and modified as well

TYPE INTROSPECTION

Type introspection: the process by which an OO
program can determine the type of an object at run
time

Supported by Java and C++

Key functionalities: determining whether an object...

...is an instance of a given class

...inherits from the specified class

INTROSPECTION: JAVA (1/2)

Introspection is natively supported in Java; 
some support is also provided by java.lang.Object

getClass() method 
Inherited from java.lang.Object.  
Returns a type token Class<T>, i.e., an instance of the  
class Class that represents the class of the calling object.  
Allows to check whether an object is an instance of a given class

instanceof operator 
Returns true if the expression on its left can be cast 
to the type on its right.  
Allows to check whether an object is an instance of  
(or inherits from) a specified class

http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html

INTROSPECTION: JAVA (2/2)

Example: invoking instanceof and getClass()

 public void someMethod(Pixel pix)
 {
 Point point;

 // Dynamically check whether pix is derived from Point
 if(pix instanceof Point)
 {
 // Dinamically cast to Point
 point = pix;

 // I can now manipulate the object as if it were a Point

 // However, I can always check whether the object is
 // indeed an instance of Pixel
 if(point.getClass().getName().equals("Pixel")) // Returns true!
 {
 System.out.printf("Pixel\n");
 }
 }
 else // Check failed
 {
 ...
 }
 }

INTROSPECTION: C++ (1/2)

Introspection is natively supported in C++

typeid(obj) operator 
Returns a reference to an object of type type_info that
describes the type of object obj.  
Allows to check whether obj is an instance of a given class

dynamic_cast<target-type>(pr) operator 
Succeeds if pr is a pointer (or reference) to either an
object of type target-type or an object derived from it.
If it succeeds, a valid pointer/reference is returned.  
Allows to check whether pr is derived from a given class

INTROSPECTION: C++ (2/2)

Example: using typeid and dynamic_cast

 void aClass::someMethod(Pixel * p_pix)
 {
 Point * p_point;

 // Dynamically cast to Point*
 if(p_point = dynamic_cast<Point *>(p_pix))
 {
 // I can now manipulate the object as if it were a Point

 // However, I can always check whether the object is
 // indeed an instance of Pixel
 if(typeid(*p_point) == typeid(Pixel)) // Returns true!
 {
 cout << "Pixel\n";
 }
 }
 else // Casting failed
 {
 ...
 }
 }

PARAMETERIZED TYPES (1/2)

Define a class without knowing what datatype(s)
will be handled by the operations of the class

The code must operate with any datatype(s) specified
at instantiation time (“generic programming”)

Less source code duplication, same object code

Example: a single, parametrized quicksort routine can
sort data of any type (provided data can be compared)

PARAMETERIZED TYPES (2/2)

Java: generic types (aka “generics”)

C++: template classes

WHY NOT OBJECT?

A “very base” class (e.g., Object in Java) can be used
instead, with the real object type inspected at runtime

Coherency inside the class (all methods passing the
same object type) manually handled

No error detection at compile time

 public class Box
 {
 private Object object;

 public void set(Object object) { this.object = object; }
 public Object get() { return object; }
 }

JAVA: GENERIC TYPE

Generic class or interface parameterized over types

Names of type parameters delimited by angle
brackets; names purely conventional

Names can be freely used inside the class/interface

 class ClassName<T1, T2, ..., Tn> { /* ... */ }

NAMING CONVENTIONS

Type parameter names are single, uppercase letters

E - Element

K - Key

N - Number

T - Type

V - Value

GENERIC TYPE: EXAMPLE

Definition

Instantiation: replace the generic type with some
concrete value

 public class Box<T>
 {
 // T stands for "Type"
 private T t;

 public void set(T newt) { t = newt; }
 public T get() { return t; }
 }

 Box<Integer> integerBox = new Box<Integer>();

C++: TEMPLATE

Template class: definition

Template function: definition

Template variable (C++14): not talking about it

 template <class T1, class T2, …> class ClassName { /* ... */ };

 template <typename T1, typename T2, …> FuncName(…) { /* ... */ }

TEMPLATE CLASS: EXAMPLE

Definition

Instantiation: replace the generic type with some
concrete value

 template<class T> class Box
 {
 // T stands for "Type"
 private T * t;

 public void set(T * newt) { t = newt; }
 public T * get() { return t; }
 };

 Box<int> * integerBox = new Box<int>();

TEMPLATE FUNCTION: EXAMPLE

A parametrized quicksort

 template<typename T> inline void swap(T& v1,T& v2)
 { T temp=v2; v2=v1; v1=temp; }

 template<class T> void quicksort(T *array,int hi,int lo=0)
 {
 while(hi>lo)
 {
 int i=lo; int j=hi;
 do
 {
 while(array[i]<array[lo]&&i<j) i++;
 while(array[--j]>array[lo]);
 if(i<j) swap(array[i],array[j]);
 }
 while(i<j);

 swap(array[lo],array[j]);

 if(j-lo>hi-(j+1)) {quicksort(array,j-1,lo); lo=j+1;}
 else {quicksort(array,hi,j+1); hi=j-1;}
 }
 }

C
od

e:
 ja

va
2s

.c
om

http://java2s.com

CONCURRENCY: JAVA

Concept of thread,  
associated with an instance of the class Thread.  
Every program has at least one thread 
and can create more

Support for synchronization via the wait(), notify()
(Object class) and join() methods (Thread class)

Support for mutually exclusive access to resources 
with the synchronized keyword

THREAD CLASS

Implements the interface Runnable with the single
method run(), which contains the code to be run.  
In the standard implementation, run() does nothing

Two strategies for creating a new thread

1. Instantiate a class derived from Thread

2. Create an instance of Thread, and pass to the
constructor an object implementing Runnable

CREATING A THREAD (1/2)

First strategy

Subclass Thread and override the run() method,  
then create an instance of the subclass

 public class HelloThread extends Thread
 {
 public void run()
 {
 System.out.println("Hello from a thread!");
 }

 public static void main(String args[])
 {
 (new HelloThread()).start();
 }
 }

C
od

e:
 d

oc
s.

or
ac

le
.c

om

http://docs.oracle.com

CREATING A THREAD (2/2)

Second strategy

Create an instance of Thread,  
pass a Runnable object to the constructor

 public class HelloRunnable implements Runnable
 {
 public void run()
 {
 System.out.println("Hello from a thread!");
 }

 public static void main(String args[])
 {
 (new Thread(new HelloRunnable())).start();
 }
 }

C
od

e:
 d

oc
s.

or
ac

le
.c

om

http://docs.oracle.com

THREAD CLASS: SOME METHODS

void start()  
Causes the thread to begin execution

void setPriority(int newPriority)  
Changes the priority of the thread

static void sleep(long millis, int nanos)  
Causes the thread to pause execution for the specified number of milliseconds plus the
specified number of nanoseconds

public final void wait(long timeout) (inherited from Object)  
Causes the thread to wait until either another thread invokes the notify() method or a
specified amount of time has elapsed

public final void notify() (inherited from Object)  
Wakes up the thread

void join()  
Causes the current thread to pause execution until the thread upon which join() has
been invoked terminates. Overloads of join() allow to specify a waiting period

SYNCHRONIZED METHODS

No two concurrent executions of synchronized
methods on the same object are possible

Mutual exclusion: invocations are serialized.  
The object behaves like it has a global lock which all
its synchronized methods must acquire 
(indeed, it is exactly so)

Constructors cannot be synchronized 
(does not make sense anyway)

EXAMPLE

If an object is visible to more than one thread, all
reads or writes to that object’s variables can be done
through synchronized methods to avoid some
concurrency issues

 public class SynchronizedCounter
 {
 private int c = 0;

 // Mutual exclusion: no race conditions
 public synchronized void increment() { c++; }
 public synchronized void decrement() { c—-; }

 // Mutual exclusion: no memory consistency errors
 public synchronized int value() { return c; }
 }

C
od

e:
 d

oc
s.

or
ac

le
.c

om

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

SYNCHRONIZED STATEMENTS

Any statement, or group of statements, can be
declared as synchronized by specifying the object
that provides the lock

All accesses to the statement(s) are serialized

Improves concurrency: only a portion of a method is
serialized

EXAMPLE

In the following code, there is no reason to prevent
interleaved updates of c1 and c2

 public class MsLunch
 {
 private long c1 = 0;
 private long c2 = 0;
 private Object lock1 = new Object();
 private Object lock2 = new Object();

 public void inc1()
 {
 synchronized(lock1) { c1++; }
 }

 public void inc2()
 {
 synchronized(lock2) { c2++; }
 }
 }

C
od

e:
 d

oc
s.

or
ac

le
.c

om

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

JAVA: MORE ON CONCURRENCY

Look at the packages

java.util.concurrent

java.util.concurrent.atomic

java.util.concurrent.locks

CONCURRENCY: C++

Concept of thread,  
associated with an instance of the class Thread.  
Every program has at least one thread 
and can create more

Support for synchronization via the join() and
detach() methods of the Thread class

Support for mutually exclusive access to resources 
with atomic types and mutex classes

THREAD CLASS

A thread starts immediately when an object is
instantiated from the class Thread

The code to be run is passed inside a function  
as a parameter to the constructor of Thread

Further arguments for the constructor 
are passed as parameters to the function

EXAMPLE

 #include <iostream>
 #include <thread>

 void f(int i)
 {
 std::cout << "Hello, here is an int: "
 << i << std::endl;
 }

 int main()
 {
 std::thread t1(f, 27);

 // If you omit this call, the result is undefined
 t1.join();

 return 0;
 }

THREAD CLASS: SOME METHODS

bool joinable()  
Returns true if the thread object is joinable, i.e., it actually
represents a thread of execution, and false otherwise

id get_id()  
If the thread object is joinable, returns a value that uniquely
identifies the thread

void join()  
Causes the current thread to pause execution until the thread
upon which join() has been invoked terminates

void detach()  
Causes the current thread to be detached from the thread upon
which detach() has been invoked

ATOMIC TYPES

Atomic types are types that are guaranteed to be
accessible without causing race conditions

Some examples:

Atomic type Contains

atomic_bool bool

atomic_char char

atomic_int int

atomic_uint unsigned int

MUTEXES

Allow mutually-exclusive access to critical sections of the source code

mutex class 
Implements a binary semaphore. Does not support recursion (i.e., a thread shall
not invoke the lock() or try_lock() methods on a mutex it already owns):  
use the recursive_mutex class for that

timed_mutex class 
A mutex that additionally supports timed “try to acquire lock” requests
(try_lock_for(…) method)

void lock(…) function  
Locks all the objects passed as arguments, blocking the calling thread until all locks
have been acquired

bool try_lock(…) function  
Nonblocking variant of lock(…). Returns true if the locks have been successfully
acquired, false otherwise

LAST MODIFIED: MAY 4, 2015

COPYRIGHT HOLDER: CARLO FANTOZZI (FANTOZZI@DEI.UNIPD.IT)
COPYRIGHT ON SOME EXAMPLES, AS NOTED IN THE SLIDES: ORACLE AMERICA INC.

LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 3.0
ORACLE LICENSE: HTTP://WWW.ORACLE.COM/TECHNETWORK/LICENSES/BSD-LICENSE-1835287.HTML

mailto:fantozzi@dei.unipd.it
http://creativecommons.org/licenses/by-sa/3.0/
http://www.oracle.com/technetwork/licenses/bsd-license-1835287.html

