EMBEDDED SYSTEMS
PROGRAMMING 2015-16

Android NDK

WHAT IS THE NDK?

¢ The Android NDK is a set of cross-compilers, scripts
and libraries that allows to embed native code into
Android applications

¢ Native code is compiled from C/C++ sources

s Requires Android |.5 (API level 3) or later

e Reason #I: you already have a native-code library,
and wish to make it accessible to Java code without
rewriting it

o= I:_" g harps: | developer. qualcomm. com | mob devdlopment | mobile-technalogied eamputer-vitian-Tastiey G 'I: =

'.I Sadeziona lngies 7

Mobile Platforms

Computer Vision (FastCV)

O & mobie davicd, & CAMMErd & rmofe Than jusl 8 Camera. Your apps

@re about 1o Tind oul how much more DOWMNLOAD
The FastCV SDK
aa Thar FastCh ™ library offars a mobile-optimized comipuler vision (CW) T
Wabile Tiéchnalonies ,
BOrary wWich InCiudes 1he Mo Irsguanlly wiad Villon procasing
funclions for use ACross A wide anray of mobike devices, &van Mmass-
DOWHN

miarie handsals !!

Computer Viskon (FasiCy) Middisware developeds Can ute FasiChy 1o Build the rameworks
maaded by developars of cOMpUAaT wiskon apps; QuBlcomm's
Augmentad Reality (AR) SDK i a good sxample. Devslopars of
advanced GV application can also use FastCy funclions dreclly in Q
Feir applcation

FasiCy will anable you 10 add niew USEr DEDATIENCOS N0 your camera-bassd apps lis

& paslung NSoOQRIDGA

& (B0 defpchon, [Facking and reoognilion
w (Rl reCognition and racking

« pugmanted roakty

NATIVE CODE: WHY? (2/2)

¢ Reason#2: native code might be faster than bytecode

1

Bytecode recompiled by a fast JIT compiler;
overheads in passing parameters

e From Google’s documentation:

...you should understand that the NDK will not benefit most apps. As a developer,
you need to balance its benefits against its drawbacks. Notably, using native code on
Android generally does not result in a noticeable performance improvement, but it

always increases your app complexity. In general, you should only use the NDK if it

IS essential to your app—never because you simply prefer to program in C/C++

NDK: WHAT IS INCLUDED

e Cross-compilers for ARM, x86 and MIPS architectures,
both 32- and 64-bits

e Native libraries (with corresponding header files) that
are “stable”, i.e., guaranteed to be supported in the

future.
Among the libraries: libc, libm, libz, OpenGL ES libs, ...

e A custom build system to ease the specification of how
your C/C++ code should be compiled & linked

& Documentation and examples (of course)

APPROACHES TO NATIVE

(¥ e oo e,) T (e ')

With the Android NDK there are currently two
approaches to native code development

e JNI: the application is mostly written in Java. The
(few) methods written in C/C++ are accessed via the
Java Native Interface

e Native activity: entire activities are implemented in
CiCt3.

Supported in Android 2.3 (APl Level 9) or later

INRUAS

¢ The Java Native Interface (JNI) is a standard Java
programming interface that allows to

¢ call native code from Java

¢ invoke Java methods from code written in other
languages (e.g., C/C++ or assembly)

e map Java data types to/from native data types

¢ Android adds some small extra conventions to JNI

oy Y TR AR T S Fe

INI (2/5)

Calling native code from Java

¢ Native methods are declared in Java by prepending
the native keyword

e Libraries providing the bytecode are loaded with the
System. loadLibrary method

class foo
native double bar(int i, String s); ;

static
{

System.loadLibrary("my lib");

}

INI (3/5)

Sadiarl e, a0 Gt T (A

Assigning names to C/C++ methods

e The C/C++ name of a native method is concatenated by
the following components:

s the prefix Java |,

& the mangled fully-qualified class name,

(14 ’»

e an underscore (**) separator,

& the mangled method name,

s for overloaded native methods, two underscores (*)
followed by the mangled argument signature

JNI (4/5)

g R L IRE AT Ry e,

Parameters of C/C++ methods

e C/C++ parameters to a native method are different from the
parameters declared in Java

e The first C/C++ parameter is a pointer to the |NI interface

e The second parameter is a reference to the object for nonstatic
methods, and a reference to the Java class for static methods

e [he remaining parameters correspond to regular Java
parameters

e The return value in C/C++ is the same as in Java, modulo the
mapping of C/C++ data types to Java data types

http://docs.oracle.com/javase/6/docs/technotes/guides/jni/spec/design.html

INI (5/5)

Mapping of data types
Java type C/C++ Type Description
boolean jboolean 8 bit, unsigned
char jchar |6 bit, unsigned
int jint 32 bit, signed
String jstring Different encodings

¢ JNI provides a rich set of functions, accessible via the
JNI interface, to manipulate strings and arrays

http://docs.oracle.com/javase/6/docs/technotes/guides/jni/spec/functions.html

NI:

EXAMPLE

package pkg;

class foo

{

native double bar(int i, String s);

static
{

System.loadLibrary("my lib");
}

jdouble Java pkg foo bar (JNIEnv *env,
jobject obj,
jint i,
jetring s)

. /* Method implementation */

Java:
declaration

// ptr to JNI interface I

[/ "this" pointer

ff first "real" parameter l (::°
// second "real" parameter 2

implementation
—

NDK: ANDROID.MK

e Purpose: making native sources known to the NDK
build system

e Syntax derived from GNU Make

e Easier to use than GNU Make: for instance, it is not
necessary to list header files since such dependencies
are resolved automatically

& Sources can be grouped into modules (i.e., libraries)

ANDROID.MK: EXAMPLE

e Android.mk from the hello-jni sample project

LOCAL PATH := $(call my-dir) |
include 5 (CLEAR VARS)

LOCAL MODULE

_ hello-jni
LDCRL_SRC_FILES .

hellc-jni.c

include 5 (BUILD SHARED LIBRARY) |

e

¢ LOCAL PATH: where source files are located
¢ LOCAL MODULE: name of the module

¢ LOCAL SRC FILES: source files needed to build the module

NDK: APPLICATION.MK

e Purpose #1: list the modules which are needed by an
application

& Purpose #2: describe how the application should be
compiled, e.g. by specifying the target hardware
architecture, options for the compiler and linker, etc.

s Optional

APPLICATION.MK: EXAMPLE

e Application.mk from the bitmap-plasma
sample project

The ARMv7 1s significantly faster {
due to the use of the hardware FPU l
i

APP ABI := armeabil armeabi-vTa
APP PLATFORM := android-§8
| . |

e APP ABI.: specifies one or more architectures to
compile for. The default is armeabi (ARMv5TE)

¢ APP PLATFORM: target AP| level

NDK: NDK-BUILD

¢ The ndk-build shell script parses .mk files and manages
required modules automatically

» <ndk>/ndk-build
Build required native-code modules. The generated modules
are automatically copied to the proper location in the
application’s project directory

s <ndk>/ndk-build NDK DEBUG=1
Build modules and include debug symbols

» <ndk>/ndk-build clean
Clean all generated modules

HOW TO USE THE TOOLS

|.Place native sources under <mod>/jni/. ..
2.Create <mod>/jni/Android.mk
3.Optional: create <mod>/jni/Application.mk

4.Build native code by running the ndk-build script

pcte: ~ cd <prj> a
4.

pcte: ~ <ndk>/ndk-build 5
-~ gttt ;

You can also use Android Studio instead

NDK: A FULL EXAMPLE

¢ Modify the “Hello World! (With Button) app

¢ When the button is pressed, the text still changes,
but the new text is provided by a C++ function

APPLICATION FILES

» HelloWithButton. java
Main activity, contains the Java code of the application

s jni/HelloWB JNI.cpp
Contains the C++ code of the application.

The “native function” returns a string that embodies a
random number

¢ jni/Android.mk

» AndroidManifest.xml, build.gradle

package it.unipd.dei.esplbl6.hellowithbuttonjni;

import android.os.Bundle;

import android.app.Activity;

import android.view.View;

import android.widget.Button;
import android.widget.TextView;
import android.widget.LinearLayout;

public class HelloWithButton extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

// Create the TextView

final TextView tv = new TextView (this);

tv.setText ("Press the button, please");

// Create the Button

Button bu = new Button (this);

bu.setText ("Press me") ;

// Set the action to be performed when the button is pressed

bu.setOnClicklListener (new View.OnClickListener () {

public void onClick (View v) {

// Perform action on click
tv.setText (stringFromJNI ()) ;

}) g

// Create the layout
LinearLayout mylayout = new LinearLayout (this);
// Add the UI elements to the layout
mylayout.addView (bu) ;

mylayout.addView (tv) ;

// Display the layout

setContentView (mylayout) ;

=

// Declaration of the native stringFromJNI () method.

// The method is implemented by the 'hello-jni' native library,
// which is packaged with this application

public native String stringFromdNI () ;

// Declaration of another native method that 1is not implemented
// anywhere; trying to call it will result in a

// java.lang.UnsatisfiedLinkError exception.

// This is simply to show that you can declare as many native
// methods in your Java code as you want: their implementation
// 1s searched in the currently loaded native libraries only

// the first time you call them

public native String unimplementedStringFromdNI () ;

// Loads the 'hello-jni' library on application startup.
// The library has already been unpacked into

// /data/data/com.example.hellojni/l1ib/libhello-jni.so at
// installation time by the package manager.

static

{
System. loadLibrary ("HelloWB JNI") ;

#include <jni.h>
#include <stdlib.h> // required for rand()
#include <stdio.h> // required for snprintf ()

// For JNI to locate your native functions automatically, they have to match

// the expected function signatures. C++ function names get mangled by the

// compiler (to support overloading and other things) unless extern "C" is specified
extern "C" {

/* This is a trivial native method that returns a new VM string
* containing a pseudorandom double.
*/
Jstring
Java it unipd dei espl516 hellowithbuttonjni HelloWithButton stringFromJNI (
JNIEnv* env,
Jobject thiz)

char buf[64]; // local buffer
double r;

// Produce a pseudorandom double and place it into a C++ string
r = (double)rand() / (double)RAND MAX;
snprintf (buf, 64, "Good: %f", r);

// Convert the C++ string into something that can be shared with Java
// This is C++: notice we use "env->..." instead of " (*env)->..."
return env->NewStringUTF (buf) ;

} // end extern

ANDROID.MK

LOCAL PATH := $(call my-dir) [
include 5 (CLEAR VARS)

LOCAL MODULE
LOCAL SRC FILES :

HelloWB JNI
HelloWB JNI.cpp

include $ (BUILD SHARED LIBRARY)

¢ The invocation of ndk-build produces a library
called (on *nix systems) HelloWB JNI.so

ANDROIDMANIFEST. XML

e Automatically generated from properties that the
programmer specifies via Android Studio

xml version="1.0" encoding="utf-8" >
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="it.unipd.dei.espl516.hellowithbuttonjni">

<application
android:allowBackup='"false"
android:icon="@mipmap/ic_launcher"
android:label="@string/app name"
android:supportsRtl="true"
android: theme="@style/AppTheme" >
<activity android:name=".HelloWithButton">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

PROJECT’S BUILD.GRADLE

/[Top-level build file where you can add config options common to all sub-projects/modules.

buildscript {
repositories {
jcenter()
}
dependencies {
/[New experimental plugin for NDK integration. See
/I http://tools.android.com/tech-docs/new-build-system/gradle-experimental/0-4-0

/ http://tools.android.com/tech-docs/new-build-system/gradle-experimental
spath '‘com.android.tools.build:gradle-experimental:0.4.0'

/[NOTE: Do not place your application dependencies here; they belong

// in the individual module build.gradle files

}
}

allprojects {
repositories {
jcenter()
}
}

task clean(type: Delete) {
delete rootProject.buildDir

}

apply plugin: 'com.android.model.application'

model {
android {
compileSdkVersion = 23
buildToolsVersion = "23.0.2"

defaultConfig.with {
applicationId = "it.unipd.dei.espl516.hellowithbuttonjni”
minSdkVersion.apilevel = 15
targetSdkVersion.apilevel = 23
versionCode = 1
versionName = "1.0"

buildConfigFields.with {

create () {
type = "int"
name = "VALUE"

value = "1"

APP’S BUILD.GRADLE (2/2)

android.buildTypes {
release {
minifyEnabled = false
proguardFiles.add(file ("proguard-rules.pro"))

android.ndk {
moduleName = "HelloWB_JNI"

dependencies {
complle fileTree(dir: 'libs', include: ['*.jar'])
testCompile 'junit:junit:4.12'
compile 'com.android.support:appcompat-v7:23.1.1"

FINAL RESULT

¢ When the button is pressed,
a random number appears

EMULATOR

& The SDK includes emulators
for non-ARM architectures

& Some architectures are supported
only in some API levels

¥ .zl Android 4.0.3 (APl 15)
SDK Platform
i Samples for SDK
» ARM EABI v7a System Image
» Intel x86 Atom System Image
» MIPS System Image
% Coogle APls
Sources for Android SDK
» =l Android 4.0 (APl 14)
» =l Android 3.2 (API 13)
» .zl Android 3.1 (API 12)
» =l Android 3.0 (APl 11)
¥ [zl Android 2.3.3 (API 10)
SDK Platform
i Samples for SDK
» Intel x86 Atom System Image
% Coogle APls
¥ =] Android 2.2 (APl 8)
SDK Platform
i Samples for SDK
% Coogle APls
» =l Android 2.1 (APl 7)
» =l Android 1.6 (APl 4)
» =l Android 1.5 (APl 3)

NATIVE ACTIVITIES

& In Android 2.3 (API level 9) and later it is possible to write
entire activities in C/C++

e Lifecycle callbacks (onCreate (), onPause (), ...) are
implemented in C/C++ as well

& Most of the features included in Android libraries still need
to be accessed through |NI

& For more info: read docs/NATIVE-ACTIVITY.html
included in the NDK documentation

CAVEATS

¢ The JNI does not check for programming errors such
as passing NULL pointers or illegal argument types

e Memory resources allocated by native code are not
managed by a garbage collector and should be
explicitly released

e The NDK only provides system headers for a very
limited subset set of native Android APIs and libraries

REFERENCES

s NDK page on developer.android.com

s JNI specification

¢ Android Tools Project site

e developerWorks tutorial: “Reuse existing C code
with the Android NDK”

http://developer.android.com/tools/sdk/ndk/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
http://tools.android.com/
http://www.ibm.com/developerworks/opensource/tutorials/os-androidndk/
http://www.ibm.com/developerworks/opensource/tutorials/os-androidndk/

LAST MODIFIED: MARCH 14, 2016

COPYRIGHT HOLDER: CARLO FANTOZZ| (FANTOZZI@DEI.UNIPD.IT)
LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 3.0

