
EMBEDDED SYSTEMS

PROGRAMMING 2016-17
Multitasking

PARALLELISM

Bit-level parallelism: increasing the word size

Instruction-level parallelism: adding more functional

units that can operate in parallel

Task parallelism: adding multiple processors/cores

to execute multiple programs concurrently

“Law of diminishing returns” applies

PROCESSES AND THREADS

Process (aka task): an instance of computer program

currently being run by the operating system.

Different processes do not share resources

Thread: a unit of processing handled by the

operating system scheduler.

A process may contain multiple threads sharing the

resources of the process (memory address space, file

handlers, etc.)

MULTITASKING (1/3)

(More appropriately: multithreading)

It is the ability of handling multiple streams of
execution (SEs) concurrently.

The number of SEs may be higher than the number of

execution units (EUs)

Multiple EUs available: parallelism

Only one EU available: illusion of parallelism

CONCURRENT PROGRAMMING

Programming with multiple streams of execution

(processes, threads)

SEs can communicate with one another: this fact may

cause interference

Machine-level instructions in different SEs are

interleaved in an unpredictable, non-deterministic

way. If an order is required, it must be imposed

explicitly

CONCURRENCY ISSUES (1/2)

Thread interference: race condition
Multiple SEs manipulate common data (e.g.,

increment a common variable) assuming a particular

interleaving of operations which is not always true

Memory consistency errors
A SE reads data being concurrently manipulated by

another SE before the manipulation is over: retrieved

data are inconsistent

Solution: locking

LOCKING

Several forms, depending on circumstances

Access to the shared resource is serialized (mutual
exclusion) via a binary semaphore (aka mutex)

for both read and write operations

Read access is always allowed, only write access is

serialized

(Read and/or write) access for k≥2 streams is allowed

via a counting semaphore

CONCURRENCY ISSUES (2/2)

Mutual exclusion, locking, and synchronization in

general, introduce contention

Starvation
A SE is unable to gain regular access to the resources

it needs, therefore it cannot make progress.

Livelock: starvation caused by SEs being too busy

synchronizing with each other to perform actual work

Deadlock
Two SE are waiting for the other to finish,

hence neither ever does

THREAD SAFENESS

A piece of code is said to be thread safe if it can be

safely invoked by multiple, simultaneous threads

Thread-safe code is guaranteed to be free from race

conditions and memory consistency issues

Thread-safe code is usually — but not necessarily —

designed to limit contention

CONCURRENCY: JAVA

Concept of thread,

associated with an instance of the class Thread.

Every program has at least one thread

and can create more

Support for synchronization via the wait(),

notify() (Object class) and join() methods

(Thread class)

Support for mutually exclusive access to resources

with the synchronized keyword

THREAD CLASS

Implements the interface Runnable with the single

method run(), which contains the code to be run.

In the standard implementation, run() does nothing

Two strategies for creating a new thread

1. Instantiate a class derived from Thread

2. Create an instance of Thread, and pass to the

constructor an object implementing Runnable

CREATING A THREAD (1/2)

First strategy

Subclass Thread and override the run() method,

then create an instance of the subclass

C
o

d
e
:
d
o

cs
.o

ra
cl

e
.c

o
m

http://docs.oracle.com/

CREATING A THREAD (2/2)

Second strategy

Create an instance of Thread,

pass a Runnable object to the constructor

C
o

d
e
:
d
o

cs
.o

ra
cl

e
.c

o
m

http://docs.oracle.com/

THREAD CLASS: SOME METHODS

void start()

Causes the thread to begin execution

void setPriority(int newPriority)

Changes the priority of the thread

static void sleep(long millis, int nanos)

Causes the thread to pause execution for the specified number of milliseconds plus the

specified number of nanoseconds

public final void wait(long timeout) (inherited from Object)

Causes the thread to wait until either another thread invokes the notify() method or a

specified amount of time has elapsed

public final void notify() (inherited from Object)

Wakes up the thread

void join()

Causes the current thread to pause execution until the thread upon which join() has

been invoked terminates. Overloads of join() allow to specify a waiting period

SYNCHRONIZED METHODS

No two concurrent executions of synchronized

methods on the same object are possible

Mutual exclusion: invocations are serialized.

The object behaves like it has a global lock which all

its synchronized methods must acquire

(indeed, it is exactly so)

Constructors cannot be synchronized

(does not make sense anyway)

EXAMPLE

If an object is visible to more than one thread, all

reads or writes to that object’s variables can be done

through synchronized methods to avoid some

concurrency issues

C
o

d
e
:
d
o

cs
.o

ra
cl

e
.c

o
m

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

SYNCHRONIZED STATEMENTS

Any statement, or group of statements, can be

declared as synchronized by specifying the object

that provides the lock

All accesses to the statement(s) are serialized

Improves concurrency: only a portion of a method is

serialized

EXAMPLE

In the following code, there is no reason to prevent

interleaved updates of c1 and c2

C
o

d
e
:
d
o

cs
.o

ra
cl

e
.c

o
m

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

JAVA: MORE ON

CONCURRENCY

Look at the packages

java.util.concurrent

java.util.concurrent.atomic

java.util.concurrent.locks

CONCURRENCY: C++

Concept of thread,

associated with an instance of the class Thread.

Every program has at least one thread

and can create more

Support for synchronization via the join() and

detach() methods of the Thread class

Support for mutually exclusive access to resources

with atomic types and mutex classes

THREAD CLASS

A thread starts immediately when an object is
instantiated from the class Thread

The code to be run is passed inside a function

as a parameter to the constructor of Thread

Further arguments for the constructor

are passed as parameters to the function

EXAMPLE

THREAD CLASS: SOME

METHODS

bool joinable()

Returns true if the thread object is joinable, i.e., it actually
represents a thread of execution, and false otherwise

id get_id()

If the thread object is joinable, returns a value that uniquely
identifies the thread

void join()

Causes the current thread to pause execution until the thread
upon which join() has been invoked terminates

void detach()

Causes the current thread to be detached from the thread upon
which detach() has been invoked

ATOMIC TYPES

Atomic types are types that are guaranteed to be

accessible without causing race conditions

Some examples:

Atomic type Contains

atomic_bool bool

atomic_char char

atomic_int int

atomic_uint unsigned int

MUTEXES

Allow mutually-exclusive access to critical sections of the source code

mutex class

Implements a binary semaphore. Does not support recursion (i.e., a thread shall

not invoke the lock() or try_lock() methods on a mutex it already owns):

use the recursive_mutex class for that

timed_mutex class

A mutex that additionally supports timed “try to acquire lock” requests
(try_lock_for(…) method)

void lock(…) function

Locks all the objects passed as arguments, blocking the calling thread until all locks

have been acquired

bool try_lock(…) function

Nonblocking variant of lock(…). Returns true if the locks have been successfully

acquired, false otherwise

MULTITASKING (2/3)

Cooperative multitasking
SEs voluntarily release EUs.
If SEs do not cooperate, the system malfunctions.
Old versions of Mac OS and Windows worked this way

Preemptive multitasking
SEs are forcibly removed from EUs when the OS decides it is
time to do so.
SEs reliably receives a slice of execution time proportional to
their importance

MULTITASKING (3/3)

Android, iOS, Windows Phone: modern OSs

with full support for preemptive multitasking

Multiple SEs can execute concurrently...

...but, in general, multiple apps can not

LIMITATIONS

Android, iOS, Windows Phone:

the one app in the foreground executes without need

to ask permissions,

apps in the background must take explicit action

LIMITATIONS: WHY? (1/2)

Every application uses up resources (memory,

energy if the app is running) that are limited in
embedded systems

If resources are needed

the foreground app cannot be affected

because the user would immediately notice,

all other apps are expendable

LIMITATIONS: WHY? (2/2)

Windows Mobile introduced the idea of politely

ask background apps to close so as to reclaim

resources

Some apps needed more resources just to close

themselves, causing a complete system lock-up

Solution: “close” has been replaced by “kill”

HARD TIMES

FOR EMBEDDED DEVELOPERS

The user doesn’t care if apps in
the background have limitations

Recall the UI model

The user knows nothing about paused/stopped/killed...

He sees all apps as “running” (available)

It is the developer’s task to manually maintain the illusion
of multitasking if the application needs it
(e.g., to load a web page in the background, to play music...)

The platforms help the developer via suitable APIs

© Nokia

http://www.youtube.com/watch?v=RjWBOhdw4ro

ANDROID:

PROCESSES, THREADS

When the first component of an app starts, the

OS creates a new process (a Linux process) with

a single thread of execution: Java’s main thread

By default, all components of the app will run in this

very thread; execution requests are put in a queue

The main thread is also the user interface thread

(“UI thread”) in Android

MORE PROCESSES

Different components of an app can run in separate

processes

Components of different apps can run in the same

process, provided such apps are signed with the same

certificate

In the manifest, set the android:process and

android:multiprocess attributes of the app

components appropriately

MORE THREADS

Long operations in the main thread (e.g., retrieving

data from a database or a network server) will block

the whole UI

Do not block the main thread:

spawn additional threads (aka “worker threads”)

Use Java facilities (Thread class, etc.)

Use additional classes provided by Android

THREADS AND UI TOOLKIT

Do not access the Android UI toolkit
from outside the main thread (i.e., from worker threads):

the Android UI toolkit is not thread safe

Activity.runOnUiThread(Runnable)

Posts the Runnable to the event queue of the main thread

View.post(Runnable)

View.postDelayed(Runnable, long)

The Runnable is added to the message queue of the object,

and executed later (after at least the specified delay, in the

case of postDelayed(…)) in the main thread

UI TOOLKIT: EXAMPLE

When a button is tapped, the following code

downloads an image from a separate thread and

displays it in an ImageView

C
o

d
e
:
G

o
o
gl

e

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

HANDLER CLASS

Receives messages and runs code to handle the

messages (handleMessage() method)

An new instance of Handler can be connected to an

existing thread or can run in a new thread

Connect an instance of Handler to the main thread

to safely manage messages that imply changes to the UI

ASYNCTASK CLASS

Allows to perform background operations and publish
results on the main thread while hiding Threads and
Handlers

Must be subclassed to be used

Override the doInBackground(…) method to provide the
code to be executed (compulsory)

Override the onPostExecute(Result result)
method, which receives the results from the background
execution, to process them in the main thread

ASYNCTASK: EXAMPLE

Downloading an image with the AsyncTask class

C
o

d
e
:
G

o
o
gl

e

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

KILLING PROCESSES (1/2)

The OS tries to maintain processes for as long as

possible, but might be forced to shut some of them

down when resources are low

App components running in the process are

destroyed as well

When deciding which processes to kill, the OS

weighs their relative importance to the user.
Therefore, the choice depends on the state of the
components running in the process

KILLING PROCESSES (2/2)

The OS maintains a 5-level “importance hierarchy”
based on the components running in processes

Each process is assigned to the level of the most

“important” component that runs in it

A process’ level might be increased because other

processes are dependent on it

Less important processes are killed first

PROCESS HIERARCHY (1/3)

Foreground process (maximum importance)

A process that is required for what the user is currently doing

It hosts an activity that the user is interacting with

It hosts a service that is bound to the activity that the user is

interacting with

It hosts a service that has called startForeground()

It hosts a service that is executing one of its lifecycle callbacks

It hosts a broadcast receiver that is executing its

onReceive() method

PROCESS HIERARCHY (2/3)

Visible process
A process that does not have any foreground

components, but still can affect what the user sees on

screen

It hosts an activity that is not in the foreground,

but is still visible to the user (e.g., its onPause()

method has been called; it started a modal dialog)

It hosts a service that is bound to a visible activity

PROCESS HIERARCHY (3/3)

Service process
A process that is running a service that does not fall into either
of the two previous hierarchy levels

Background process
A process holding an activity that is not currently visible to the
user.
Processes in this hierarchy level are kept in an LRU list, so that
the process with the activity that was most recently seen by
the user is the last to be killed

Empty process (minimum importance)
A process that does not hold any active application
components

ANDROID: SUMMARY

Processes in the foreground (belonging to how many

apps?) are scheduled regularly

Other processes are scheduled too

but may be stopped or killed at any time
without further notice

Consequence: activities in the background cannot be

trusted to complete any job

KILLING THREADS

Runtime configuration changes (e.g., screen rotation)

kill worker threads even if they belong to a high-

priority process

Two possible solutions

1. properly shut down and restart threads

2. ask the OS not to kill the threads

by retaining the activity and/or its fragments

ACTIVITY LIFECYCLE

Im
ag

e
 f
ro

m
 d

e
ve

lo
p
e
r.

an
d
ro

id
.c

o
m

http://developer.android.com/reference/android/app/Activity.html

A NOTE ON IOS

Only one app in the foreground

Apps in the background

iOS≤3: simply not allowed
Apps are closed when they leave the foreground

iOS≥4: simply not scheduled
Apps still in RAM but suspended.
Can be killed at any time

Apps in the background cannot be trusted to complete
any job, but it is easier to determine when they are
scheduled

BACKGROUND EXECUTION

IN ANDROID (1/3)

Services
Allow an app to run in the background for an

unlimited period of time

A process running a service is ranked higher than a

process with background activities, hence an activity

that initiates a long-running operation might do well to

start a service for it, rather than creating a thread—

particularly if the operation will likely outlast the

activity

BACKGROUND EXECUTION

IN ANDROID (2/3)

Broadcast receivers
Allow an application to run in the background for a

brief amount of time as a result of an external event

The time limit for broadcast receivers is currently

10 seconds, so background receivers should consider

employing services as well

BACKGROUND EXECUTION

IN ANDROID (3/3)

Content Providers
Encapsulate structured sets of data, and provide

access to them

Content providers are the standard interface that

connects data in one process with code running in

another process.

Querying a content provider for data takes time.

If the query is run from an activity, the UI may slow

down and/or the activity may get blocked.

Consider initiating the query on a separate thread

TO LEARN MORE

Keeping Your App Responsive

Sending Operations to Multiple Threads

Best Practices for Background Jobs

SMP Primer for Android

http://developer.android.com/training/articles/perf-anr.html
http://developer.android.com/training/multiple-threads/index.html
http://developer.android.com/training/best-background.html
http://developer.android.com/training/articles/smp.html

LAST MODIFIED: MAY 2, 2017

COPYRIGHT HOLDER: CARLO FANTOZZI (FANTOZZI@DEI.UNIPD.IT)

COPYRIGHT ON SOME EXAMPLES, AS NOTED IN THE SLIDES: ORACLE AMERICA INC.

LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 4.0

ORACLE LICENSE: HTTP://WWW.ORACLE.COM/TECHNETWORK/LICENSES/BSD-LICENSE-1835287.HTML

