
EMBEDDED SYSTEMS 

PROGRAMMING 2016-17
OO Basics



CLASS, METHOD, OBJECT...

Class: abstract description of a “concept” 

Object: concrete realization of a “concept”.

An object is an instance of a class

Method: piece of executable code

Field: piece of memory containing data.

Fields store the results of the computationM
e
m

b
e
rs



CLASSES: DECLARATION VS. 

IMPLEMENTATION

Java: declaration always coincides with 

implementation

C++: declaration can be separate from 

implementation



EXPORTING DECLARATIONS

Header files

Java: no, declarations extracted automatically from 
implementations

C++: yes

Declarations can be read by many source files

(Java: no header files)

C++: “#include” directive



ACCESS MODIFIERS

In both Java and C++, methods and fields can be

public

private: accessible only by elements of the same 

class

protected: accessible only by elements in its class, 

and classes in the same package (Java) or friends of 

the class (C++)



ACCESS MODIFIERS: DEFAULT

Java: members are visible only within their own 

package (“package private”)

C++: members are public



CONSTRUCTOR AND 

DESTRUCTOR (1/2)

Constructor: special method called (often 

automatically) at the instantiation of an object.

It may accept parameters to initialize fields

Destructor: special method called (often 

automatically) when an object is destroyed

If present, constructors/destructors are invoked 

automatically. Multiple constructors can be defined 

with different parameters



CONSTRUCTOR AND 

DESTRUCTOR (2/2)

Java: the constructor must be named as the class.

The destructor must be called finalize()

C++: the constructor must have the same name as the 

class. The destructor has the same name as the class, 

but with a tilde (“~”) in front of it



THE POINT CLASS: JAVA



THE POINT CLASS: C++ (1/2)



Method declaration distinct from method definition

THE POINT CLASS: C++ (2/2)



Java: the following example shows how to

1. access a variable

2.call a method

3.call a constructor from another

all within the same class

ACCESSING VARIABLES

AND METHODS (1/2)



C++: the following example shows how to

1. access a variable

2. call a method

within the same class

Calling a constructor from another: no way

ACCESSING VARIABLES

AND METHODS (2/2)



ALLOCATING OBJECTS (1/2)

Instantiation = creation of an object from a class 

(i.e., an instance of the class)

Java: use the new keyword. new returns a reference 

(not a pointer!) to the newly allocated object



ALLOCATING OBJECTS (2/2)

Instantiation = creation of an object from a class 

(i.e., an instance of the class)

C++: simply define the object as if it were a variable.

As an alternative, the new keyword can be used to 

dynamically allocate the object on the heap



INVOKING

OBJECT METHODS

Java:

C++:



INHERITANCE

Inheritance: creation of new classes

that extend the behavior of previously-defined classes 

while retaining the original behavior for some aspects

Java: extends keyword

C++: colon “:” operator



INHERITANCE: EXAMPLES (1/3)

Java:

Redefinition of a method is called overriding



INHERITANCE: EXAMPLES (2/3)

Java (wrong code):

Does not work because x and y are private in 

point, hence inaccessible to subclasses.

It must not work, otherwise it would break 

encapsulation



ENCAPSULATION

Encapsulation: the internal status of a class/object is kept 
hidden to the maximum possible extent. When necessary, 
portion of the status can only be accessed via approved 
methods 

Encapsulation increases robustness
Hiding the internals of an object keeps it consistent by 
preventing developers from manipulating it in unexpected 
ways

Encapsulation helps in managing complexity
Enforcing a strict discipline for object manipulation limits 
nasty inter-dependencies between objects



INHERITANCE: EXAMPLES (3/3)

C++:

The base class constructor is called automatically

Again, trying to access x and y results in a compile-

time error



ON THE USE OF NEW

In C++ there is no garbage collector: memory 

allocated with new() must be deallocated explicitly!

This is mandatory to avoid memory leaks

In C++, memory is released with delete

(in the destructor, for instance)



POLYMORPHISM

From the Merriam-Webster dictionary: 

“the quality or state of existing in,
or assuming, different forms”

In OO languages: an object instantiated from a 

derived class is polymorphic because it behaves both
as an object of the subclass and as an object of the 

superclass



THE “STATIC” KEYWORD

Fields and methods can be associated with either

a class (static field/method)

an object (instance field/method)

If a field/method is marked with the static

keyword, only one copy of it exists



STATIC FIELDS (1/2)

Example: Java



STATIC FIELDS (2/2)

Example: C++



STATIC METHODS (1/2)

Example: Java



STATIC METHODS (2/2)

Example: C++



EXCEPTIONS

An exception is an event (usually due to an error 

condition) that occurs at run time and alters the 

normal flow of execution

Exceptions can be raised by library code or by the 

programmer itself

Exceptions must be managed!

Unmanaged exceptions lead to program termination



EXCEPTIONS: JAVA (1/2)

An exception is an object

Raise an exception: throw keyword

Exceptions thrown by a method must be declared in 

the method’s header 



EXCEPTIONS: JAVA (2/2)

Handle an exception: 
try...catch()...finally

Multiple catch blocks can be present



EXCEPTIONS: C++ (1/2)

An exception is not necessarily an object

Raise an exception: throw keyword

Thrown exceptions cannot be declared



EXCEPTIONS: C++ (2/2)

Handle an exception: try...catch()

Multiple catch blocks can be present.

catch(…) (with the 3 dots) catches all exceptions

No finally available



ASSERTIONS

An assertion is a statement to test an assumption
about the program that the programmer thinks must 

be true at a specific place.

If the assertion is not true, an error is generated

The test is performed at run-time,

hence the program is slowed down a tiny bit

Java: assert keyword, raises exceptions

C++: macro to simulate assertions



ASSERTIONS: EXAMPLE

Java:

C++:



LAST MODIFIED: MARCH 3, 2017

COPYRIGHT HOLDER: CARLO FANTOZZI (FANTOZZI@DEI.UNIPD.IT)

LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 3.0


