EMBEDDED SYSTEMS
PROGRAMMING 2017-18

Android Broadcast Receivers

APP COMPONENTS

e Activity: a single screen with a user interface

¢ Broadcast receiver: responds to system-wide
broadcast events. No user interface

e Service: performs (in the background) long-running
operations (e.g., music playback). No user interface

e Content provider

BROADCAST RECEIVERS (1/3)

e Respond to system-wide broadcast announcements

s Handled via the BroadcastReceiver abstract class, plus the
Intent class (used to send/receive broadcasts)

e A broadcast receiver can be registered either

e statically, through the <receiver> tag in
AndroidManifest.xml, or

e dynamically, by invoking the
registerReceiver (BroadcastReceiver receiver,

IntentFilter filter) method of the Context class

http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/R.styleable.html#AndroidManifestReceiver
http://developer.android.com/reference/android/content/Context.htmlregisterReceiver(android.content.BroadcastReceiver,%20android.content.IntentFilter)

BROADCAST RECEIVERS (2/3)

e Many broadcasts originate from the system —
for example, a broadcast announcing that the screen

has turned off, the battery is low, or a picture was
captured

e Apps can also broadcast intents to other
components or other apps —
for example, to let such parties know that some data
has been downloaded and is available for them to use

SOME SYSTEM ACTIONS (1/3)

¢ Intent . ACTION AIRPLANE MODE CHANGED
The user has switched the phone into or out of “airplane mode”

¢ Intent.ACTION CONFIGURATION CHANGED
Device configuration (orientation, locale, etc) has changed

¢ Intent . ACTION DATE CHANGED, Intent.ACTION TIME CHANGED
The date/time has changed

s Intent.ACTION INPUT METHOD CHANGED
An input method has been changed

¢ Intent.ACTION LOCALE CHANGED
The current device’s locale has changed

s Intent.ACTION PACKAGE CHANGED
An existing application package has been changed
(e.g. a component has been enabled or disabled)

SOME SYSTEM ACTIONS (2/3)

o Intent.ACTION BOOT COMPLETED
Broadcast once after the system has finished booting

o Intent.ACTION CAMERA BUTTON
The camera button was pressed

¢ Intent . ACTION DEVICE STORAGE LOW
Intent.ACTION . DEVICE STORAGE OK
Indicates low memory condition on the device begins / no longer exists

¢ Intent.ACTION SCREEN OFF
Intent. ACTION SCREEN ON
The device has gone to / exits from non-interactive mode

e Battery-related and power-related actions defined in the Intent class
(already discussed)

SOME SYSTEM ACTIONS (3/3)

¢ Camera. ACTION NEW PICTURE
Camera. ACTION NEW VIDEO

A new plcture/wdeo has been taken by the camera,
and it has been added to the media store

s AudioManager .ACTION AUDIO BECOMING NOISY
Audio is about to become “noisy”’ due to a change in audio
outputs (e.g., a wired headset has been unplugged)

o ConnectivityManager.CONNECTIVITY ACTION
A change in network connectivity has occurred:
a default connection has either been established or lost

USING A BROADCAST RECEIVER .

|.Implement the receiver as a subclass of
BroadcastRecelver

2.Register the receiver

3.When a matching intent is broadcast, the
onReceive (Context context, Intent

intent) method of the receiver is invoked even if
the receiver is contained in a stopped process

4.When onReceive () returns, the receiver object is
no longer active, and the process may be stopped

http://developer.android.com/reference/android/content/BroadcastReceiver.htmlonReceive(android.content.Context, android.content.Intent)

BROADCAST RECEIVERS (3/3)

e A BroadcastReceiver object is only valid for the
duration of the call to onReceive ()

e onReceive () is given 10 seconds to complete
execution: after that, the receiver is considered
“blocked” and it may be killed

e Consequently, a broadcast receiver cannot perform
asynchronous or long-running operations, even binding to
a service. However, it can invoke startService ()

e A broadcast receiver cannot display a user interface.
However, it may create a status bar notification

http://developer.android.com/reference/android/content/BroadcastReceiver.htmlonReceive(android.content.Context,%20android.content.Intent)

EXAMPLE (1/3)

e Implementing a broadcast receiver

public class MyReceiver extends BroadcastReceilver

{

@0verride
public voild onReceive (Context context, Intent intent)

{

String acticn = intent.getActicn();
Log.1 (TAG, "Received broadcast acticn: "™ + action);

// Perform some useful work here

// (after having further examined the intent, if necessary)

e Registering MyReceiver in the manifest: the app
receives all intents since the device is started

<?xml version="1.0" encoding="utf-8"7>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="1t.unipd.dei.eslll]l.brtest”
android:versionCode="1"
android:versionName="1.0">
<application andreoid:icon="@drawable/icon" andreoid:label="@string/app name">
<receiver android:name="_.MyReceiver" android:enabled="true">
<intent-filter> |
<action android:name="android.intent.action.PHONE STATE"></action> j
</intent-filter>
</receiver>

</application>
<uses-sdk android:minSdkVersion="8" />

<uses-permission android:name="android.permission.READ PHONE STATE"></uses-permission>
</manifest>

e — : T ——

e Registering MyReceiver at runtime from within an

activity: the app receives intents only when the
activity is in the foreground

private receilverlInstance = new MyReceiver():

d0verride
public wvolid onResume ()
{

super.onResume () ;

// Register the instance of MyReceiver

this.registerBReceiver (receiverInstance,

new IntentFilter (TelephonyManager.ACTION FPHONE STATE CHANGED) ;

} [|

d0verride

protected wolid onPause()

{
// Unregister since the activity is not wvisible.
// Do not unregister in onSavelnstanceState()!
this.unregisterReceiver (receiverInstance);
super.onPause () ;

BROADCAST LIMITATIONS

e APl Level 226 (Android 8.0+)

e An app cannot use its manifest to register for implicit
broadcasts (i.e., broadcasts that do not target the app
specifically)

e Apps can still use Context.registerReceiver ()
to register a receiver at runtime without limitations

SENDING BROADCAST INTENTS

e Broadcast intents can be sent by invoking the
Context.sendBroadcast (Intent intent) method

e Call returns immediately while the intent is distributed to
all interested (i.e., previously registered) broadcast
receivers

e No results are propagated from receivers

e Both system-defined and custom actions can be sent.
However, remember that some system-defined actions
are protected and can be sent only by the system itself

" LOCALBROADCASTMANAGER
CLASS

e Helper class to broadcast intents only to local objects within your
process

e Obtain an instance by invoking the static method
LocalBroadcastManager.getInstance (Context context)

e No IPC: more efficient than sending a global broadcast

e Broadcast data do not leave the app:
no need to worry about leaking private data

e Other apps cannot send broadcasts to locally-registered objects:
no need to worry about security holes that such apps can exploit

e Dynamically registering MyReceiver with
LocalBroadcastManager: only local broadcasts
will be received

private receilverlInstance = new MyReceiver():

@0verride
public wvolid onResume ()

{

super.onResume () ;
// Register the instance of MyReceiver
LocalBroadcastManager.getInstance (this) .registerReceiver (receiverInstance,

new IntentFilter (TelephonyManager.ACTION FPHONE STATE CHANGED) ;

}

@0verride
protected wolid onPause()

{

// Unregister since the activity is not wvisible.
// Do not unregister in onSavelnstanceState()!

LocalBroadcastManager.getInstance (this) .unregisterReceliver (receiverInstance);
super.onPause () ;

EXAMPLE (2/2)

e Sending a broadcast intent with
LocalBroadcastManager: the broadcast will be

limited to registered, local objects

private wvold sendAction ()

{

Intent intent = new Intent ("foo-event"):;

// BAdd some extra data
intent.putExtra ("message", "data");

» LocalBreoadcastManager.getInstance (this) .sendBroadcast (intent) ;
}

e — S e ———————

LAST MODIFIED: APRIL 23,2018

COPYRIGHT HOLDER: CARLO FANTOZZI (CARLO.FANTOZZI@UNIPD.IT)
LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 4.0

