
EMBEDDED SYSTEMS

PROGRAMMING 2017-18
Android Services

APP COMPONENTS

Activity: a single screen with a user interface

Broadcast receiver: responds to system-wide

broadcast events. No user interface

Service: performs (in the background) long-running

operations (e.g., music playback). No user interface

Content provider

SERVICES: SUMMARY (1/3)

Run in the background (indefinitely, if necessary)

to perform

long-running operations

work for client processes

Handled via the Service and IntentService

abstract classes, plus the Intent class

Declared in AndroidManifest.xml

SERVICES: SUMMARY (2/3)

A service can operate

so that it can be stopped when not needed

so that it is never stopped, and even relaunched
after a forced stop (that freed up resources)

A service can be

private to the application that defines it,

available to other applications as well

SERVICES: SUMMARY (3/3)

By default, an instance of Service runs in the main

thread of its hosting process.

It is possible — indeed, it is advisable — to create

worker threads; instances of IntentService do so

automatically

It is possible to run the service in a separate process

by specifying so in the manifest

SERVICES:

KEY MANIFEST ATTRIBUTES

android:enabled (boolean)

Whether or not the service can be instantiated by the system

android:exported (boolean)

Whether or not components of other apps can invoke the

service or interact with it

android:permission (string)

Name of a permission (e.g., a signature permission) that an

entity must have in order to launch the service or bind to it

android:process (string)

Name of the process where the service is to run

USING A SERVICE

1. Implement the service

as a subclass of Service or IntentService

2.Declare the service in the application’s manifest

3.Start the service by invoking the startService

and/or bindService methods of your component

class

4.To communicate with the service: use intents,

or bind to the service (bindService method)

COMMUNICATING

WITH A SERVICE

Use intents

Bind with the service and implement a Binder
Works only if the client and service are in the same

application and process

Bind with the service and use a Messenger
Works even when the client and service are not in

the same process, but the service can not multithread

Bind with the service and use IPC via AIDL

http://developer.android.com/guide/components/bound-services.html#Binder
http://developer.android.com/guide/components/bound-services.html#Messenger
http://developer.android.com/guide/components/aidl.html

SERVICE CLASS

Base class for all Android services

No UI; use notifications to interact with the user

Remember: by default, no threads

SERVICE: STARTED, BOUND

Started service
Created by invoking the Context.startService(Intent

service) method. The service performs the job specified by the

intent and does not return a result to the caller. When the job is

over, the service may 1) terminate itself or 2) wait for further jobs

Bound service
Created by invoking the Context.bindService(Intent

service, ServiceConnection conn, int flags) method.

Runs as long as at least one app component is bound to it. Offers a

client-server, bidirectional communication interface that allows

components to interact with the service, even across processes (IPC)

A service can be started, bound, or both

SERVICE: KEY METHODS (1/3)

void onCreate()

Called by the system when the service is first created

int onStartCommand(Intent intent, int flags, int

startId)

Called after another component has started the service by invoking

Context.startService(…). The integer startId is a unique

token representing the start request. Must return a value that

describes how the OS should continue the service after a kill (more

about it later)

IBinder onBind(Intent intent)

Called after another component has requested to bind with the service

by invoking Context.bindService(…). Must return an interface

that the component can use to communicate with the service

ONSTARTCOMMAND

METHOD

Must return an int that describes how the OS should continue the service

in the event that it has been killed

START_NOT_STICKY

The OS does not recreate the service, unless there are pending intents to

deliver. Any unfinished or pending jobs are lost: the app must manually

restart them

START_STICKY

The OS recreates the service and calls onStartCommand(…) with a null

intent, unless there were pending intents to start the service, in which case,

those intents are delivered. Unfinished jobs are lost, pending jobs are not

START_REDELIVER_INTENT

The OS recreates the service and calls onStartCommand(…) with the last

intent that was delivered to the service. Pending intents are delivered in turn

SERVICE: KEY METHODS (2/3)

void startForeground(int id, Notification n)

Notifies the OS that killing the service would be

disruptive to the user. Supplies a Notification

to be shown to the user while in this state

void stopForeground(boolean removeNotificat)

Removes the service from foreground state,

allowing the OS to kill it more freely

STOPPING A SERVICE

A component requests to stop a given service by invoking
Context.stopService(Intent service)

A service will not be destroyed as long as there are

components bound to it with the BIND_AUTO_CREATE

flag

A component requests to unbound from a service by

invoking
Context.unbindService(ServiceConnection

conn)

SERVICE: KEY METHODS (3/3)

void stopSelf()

Stops the service. The effect is the same as when a
component invokes Context.stopService(…)

boolean onUnbind(Intent intent)

Called when all clients have disconnected from a
particular interface published by the service. The default
implementation does nothing

void onDestroy()

Called by the OS to notify the service that it is being
removed. The service should clean up any resources it
holds

SERVICE: LIFECYCLE

P
ic

tu
re

:
G

o
o
gl

e

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

BACKGROUND SERVICE

LIMITATIONS

API Level ≥26 (Android 8.0+)

When an app goes into the background,

it has a window of several minutes in which it is
allowed to create and use services.

After that, the the app’s background services are
stopped. Background activities can be carried
forward with JobScheduler jobs

Note: the definition of “background” here is distinct
from the definition used by memory management!

SERVICE CLASS: EXAMPLE

A started service that plays music in the background

Main files:

layout/activity_main.xml

MainActivity.java

PlayerService.java

AndroidManifest.xml

values/strings.xml

raw/doowackadoo.mp3

SIMPLEBGPLAYER CODE (1/6)

layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:paddingBottom="@dimen/activity_vertical_margin"

android:paddingLeft="@dimen/activity_horizontal_margin"

android:paddingRight="@dimen/activity_horizontal_margin"

android:paddingTop="@dimen/activity_vertical_margin"

tools:context="it.unipd.dei.esp1516.simplebgplayer.MainActivity">

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_gravity="center"

android:text="@string/hello_world"

android:id="@+id/textView"

android:layout_alignParentTop="true"

android:layout_centerHorizontal="true"

android:layout_marginTop="16dp" />

<Button

android:id="@+id/PlayButton"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_gravity="center"

android:text="@string/button_play"

android:layout_below="@+id/textView"

android:layout_centerHorizontal="true"

android:layout_marginTop="32dp" />

<Button

android:id="@+id/StopButton"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_gravity="center"

android:text="@string/button_stop"

android:layout_below="@+id/PlayButton"

android:layout_centerHorizontal="true" />

</RelativeLayout>

SIMPLEBGPLAYER CODE (2/6)

values/strings.xml

<resources>

<string name="app_name">SimpleBGPlayer</string>

<string name="hello_world">Let\'s make some music!</string>

<string name="button_play">Play</string>

<string name="button_stop">Stop</string>

</resources>

SIMPLEBGPLAYER CODE (3/6)

MainActivity.java

package it.unipd.dei.esp1516.simplebgplayer;

import …

public class MainActivity extends AppCompatActivity {

private Button bu_play, bu_stop;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

// Play button: starts the playback music service

bu_play = (Button)findViewById(R.id.PlayButton);

bu_play.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {

Intent i = new Intent(getApplicationContext(),PlayerService.class);

i.putExtra(PlayerService.PLAY_START, true);

startService(i);

}

});

// Stop button: stops the music by stopping the service

bu_stop = (Button)findViewById(R.id.StopButton);

bu_stop.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {

Intent i = new Intent(getApplicationContext(),PlayerService.class);

stopService(i);

}

});

}

}

SIMPLEBGPLAYER CODE (4/6)

PlayerService.java (1/2)

package it.unipd.dei.esp1516.simplebgplayer;

import …

public class PlayerService extends Service

{

public static String PLAY_START = "BGPlayStart";

public static String PLAY_STOP = "BGPlayStop";

private MediaPlayer myPlayer = null;

private boolean isPlaying = false;

@Override

public IBinder onBind(Intent intent)

{

return null; // Clients can not bind to this service

}

@Override

public int onStartCommand(Intent intent, int flags, int startId)

{

if(intent.getBooleanExtra(PLAY_START, false)) play();

return Service.START_STICKY;

}

private void play()

{

if(isPlaying) return;

isPlaying = true;

…

SIMPLEBGPLAYER CODE (5/6)

PlayerService.java (2/2)
…

// Music downloaded from "Public Domain 4U"

// http://publicdomain4u.com/paul-whiteman-orchestra-doo-wacka-doo-mp3-download

myPlayer = MediaPlayer.create(this, R.raw.doowackadoo);

myPlayer.setLooping(true);

myPlayer.start();

// Runs this service in the foreground,

// supplying the ongoing notification to be shown to the user

Notification notification = new NotificationCompat.Builder(getApplicationContext())

.setContentTitle("Paul Whiteman Orchestra")

.setContentText("Doo Wacka Doo")

.setSmallIcon(R.mipmap.ic_launcher)

.build();

final int notificationID = 5786423; // An ID for this notification unique within the app

startForeground(notificationID, notification);

}

private void stop() {

if (isPlaying)

{

isPlaying = false;

if (myPlayer != null)

{

myPlayer.release();

myPlayer = null;

}

stopForeground(true);

}

}

@Override

public void onDestroy() { stop(); }

}

SIMPLEBGPLAYER CODE (6/6)

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="it.unipd.dei.esp1516.simplebgplayer">

<application

android:allowBackup="false"

android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"

android:supportsRtl="true"

android:theme="@style/AppTheme">

<activity android:name=".MainActivity">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<service

android:name=".PlayerService"

android:enabled="true"

android:exported="false" />

</application>

</manifest>

INTENTSERVICE CLASS (1/2)

Android 1.6+

Inherits from the Service class

When a request (an Intent) arrives, it handles the
request in a worker thread, and it automatically stops
itself when the work is done

A developer is basically required to implement only
the onHandleIntent(Intent intent) method

Requests are queued and processed one at a time

INTENTSERVICE CLASS (2/2)

More precisely, IntentService augments Service

by implementing the following operations

It creates a worker thread that executes all intents delivered by

invoking startService(…)

It creates a work queue that passes to onHandleIntent(…)

one intent at a time, so your code does not need to be thread-safe

It provides a default implementation of onStartCommand(…)

that sends each received intent to the work queue

It stops the service after all start requests have been handled,

so there is no need to call stopSelf()

INTENTSERVICE CLASS:

EXAMPLE (1/2)

Defining a started service

C
o

d
e
:
G

o
o
gl

e

http://developer.android.com/guide/components/services.html

INTENTSERVICE CLASS:

EXAMPLE (2/2)

Invoking a service from an activity

with an explicit intent

Intent i = new Intent(this, HelloIntentService.class);

startService(i);

BOUND SERVICE

Creates a long-standing connection with one or more app components

A component connects to the service by invoking the
Context.bindService(Intent service,

ServiceConnection conn, int flags) method.
The call returns true if the connection was established, false
otherwise

Via the conn object, the service

notifies the component when it is started or stopped,

provides an interface that specifies how the component can
communicate with the service

Once there are no components bound to the service, the system
destroys the service

SERVICECONNECTION

INTERFACE

void onServiceConnected(ComponentName

name, IBinder servicebinder)

Called when a connection to the service has been
established, with the servicebinder object
describing the communication interface with the service

void onServiceDisconnected(ComponentName

name)

Called when a connection to the service has been lost

BOUND SERVICE:

COMMUNICATION INTERFACE

Several ways to provide an object implementing the IBinder interface

Extend the Android Binder class

Use a Messenger
The service defines a Handler that is the basis for a Messenger that

can then share an IBinder with the client, allowing the client to send

commands to the service using Message objects. The client can define

an additional Messenger of its own so the service can send messages

back

Use AIDL
Create an .aidl file that defines the programming interface. The Android

SDK tools use this file to generate an abstract class that implements the

interface and handles IPC, which you can then extend within the service

EXTENDING

THE BINDER CLASS

The onBind() method of the service returns an

instance of a Binder-derived class that either:

1. contains public methods that the client can call

2. returns the current instance of the class

implementing the service, which has public methods

the client can call

3. returns an instance of another class hosted by the

service with public methods the client can call

BOUND SERVICE: EXAMPLE (1/4)

BOUND SERVICE: EXAMPLE (2/4)

A simple activity that binds to LocalService

C
o

d
e
:
G

o
o
gl

e

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

BOUND SERVICE: EXAMPLE (3/4)

A simple activity that binds to LocalService

C
o

d
e
:
G

o
o
gl

e

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

BOUND SERVICE: EXAMPLE (4/4)

A simple activity that binds to LocalService

C
o

d
e
:
G

o
o
gl

e

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

REFERENCES

Services

Bound Services

AIDL

Running in a Background Service

http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/bound-services.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/training/run-background-service/index.html

LAST MODIFIED: APRIL 20, 2018

COPYRIGHT HOLDER: CARLO FANTOZZI (CARLO.FANTOZZI@UNIPD.IT)

LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 4.0

