EMBEDDED SYSTEMS
PROGRAMMING 2017-18

OO Basics

CLASS, METHOD, OBJECT...

e Class: abstract description of a “concept”

e Object: concrete realization of a “concept”.
An object is an instance of a class

e Method: piece of executable code

¢ Field: piece of memory containing data.
Fields store the results of the computation

Members

CLASSES: DECLARATION VS.
~ IMPLEMENTATION

e Java: declaration always coincides with
implementation

e C++: declaration can be separate from
implementation

EXPORTING DECLARATIONS

e Header files

® Java: no, declarations extracted automatically from
implementations

e C++:yes

e Declarations can be read by many source files
e (Java: no header files)

e C++: “#include’ directive

ACCESS MODIFIERS

In both Java and C++, methods and fields can be
e public

s private: accessible only by elements of the same
class

s protected: accessible only by elements in its class,
and classes in the same package (Java) or friends of
the class (C++)

ACCESS MODIFIERS: DEFAULT

e Java: members are visible only within their own
package (“‘package private”)

e C++: members are public

e

e Constructor: special method called (often
automatically) at the instantiation of an object.
It may accept parameters to initialize fields

e Destructor: special method called (often
automatically) when an object is destroyed

e If present, constructors/destructors are invoked
automatically. Multiple constructors can be defined
with different parameters

LSRN

e Java: the constructor must be named as the class.
The destructor must be called £inalize ()

e C++: the constructor must have the same name as the

class. The destructor has the same name as the class,
but with a tilde (“~”) in front of it

public class Point

{

private double x;
private double y;

!/ Default constructor
public Point ()

// 8tandard constructor
public Peint (double cx, double cy)

{
X = CX;
¥ = C¥q
}

JJ/ heoccessor methods

// Methods to set the coordinates to new wvalues
public woid SetX(double cx) [x=cx; }
public void Set¥(double cy) { y=cy: }

// Returns the distance from the origin
public deouble Distance ()

{

return java.lang.Math.sgrt (x*x+y¥y);

 i—

tinclude <cmath>

class Point

{

private:
double x:
double y;
public:
// Default constructor
Foint ()
{
x = 0.0;
y = 0.0;

J// Btandard ceonstructor

Point (double cx, double cy)

{

® = CX;
¥ = C¥:
}

// Accessor methods

// Methods to set the coordinates to new walues
vold SetX({double cx) { x=cx;
vold SetY¥ (deouble cy) { y=cyi

// Method that returns the distance from the origin

double Distance ()
{

return sgrt (x*x+y*y);

// new-style C4++ header

}
}

e Method declaration distinct from method definition

tinclude <cmath>

class Point

{

private:
double x;
double y;

public:
Point () ;
Point (double cx, deouble cy):
vold Set¥(double cx):
volid Set¥ (doukble cy);
double Distancel();

// Default constructor
Point::Point ()

{

x 0.0;
Y 0.0;

ACCESSING VARIABLES
AND METHODS (1/2)

e Java: the following example shows how to
|.access a variable
2.call a method
3.call a constructor from another

all within the same class

public Point () // Default constructor ;
{ |
// Invoke the standard constructor
this (0.0, 0.0);
}

public Point (double cx, double cy) // Standard constructor i
{
X = : // Bccess to a wvariable]
SetY (cy) ; // Call to a method defined in the class

}

S —e e ————

ACCESSING VARIABLES
AND METHODS (2/2)

e C++: the following example shows how to
| .access a variable
2.call a method

within the same class

. Calling a constructor from another: no way

Point (double cx, double cy)

{

X = CX; // hccess to a variable |
SetY (cy) ; // Call to a method defined in the class

}

e ——— — ——— -—ﬂ

ALLOCATING OBJECTS (1/2)

e Instantiation = creation of an object from a class
(i.e., an instance of the class)

e Java: use the new keyword. new returns a reference
(not a pointer!) to the newly allocated object

// Step 1l: definiticon of a reference variable
// for the appropriate class
Point ImaginaryUnit;

|
// Step 2: creation of the cobject (instantiation)
ImaginaryUnit = new Point (0.0, 1.0);

ALLOCATING OBJECTS (2/2)

¢ Instantiation = creation of an object from a class
(i.e., an instance of the class)

e C++: simply define the object as if it were a variable.
As an alternative, the new keyword can be used to

dynamically allocate the object on the heap

// Seluticon 1: just define the obiject _
Point RealUnit (1.0, 0.0); !

// Seclution 2: define a pointer, then allocate an object with "new"
Point * ImaginaryUnit; .
ImaginarylUnit = new Point (0.0, 1.0);

INVOKING
- OBJECT METHODS

o JavaZ ImaginaryUnit.SetX (0.0);

RealUnit.SetX(0.0) ; // For objects

S C++: a
ImaginaryUnit->SetX (0.0) ; // For pointers

e — e —e

INHERITANCE

e Inheritance: creation of new classes
that extend the behavior of previously-defined classes
while retaining the original behavior for some aspects

® Java: extends keyword

¢¢ ’»

e C++: colon “:” operator

& Java:

public class Pixel extends Point

{

public byte color[]: // New: color in RGE format

public Pixel() // Redefinitien of default constructor

{ super(); // Invoking the default constructor of Point
color = new byte[3]:
color[0] = color([l] = color[2] = 0;:

}

// Further new fields and methods can be placed here

e Redefinition of a method is called overriding

INHERITANCE: EXAMPLES (2/3) |

e Java (wrong code):

public class Pixel extends Point

{

public byte color[]: // New: color in RGE format [
public Pixel() // BRedefinition of default constructor
{

x=0.0;

y =0.0;

color = new byte[3]:

color[0] = color[l] = coloxr[2] = 0;:

}

// Further new fields and methods can be placed here

}

e Does not work because x and y are private in
point, hence inaccessible to subclasses.

It must not work, otherwise it would break
encapsulation

ENCAPSULATION

e Encapsulation: the internal status of a class/object is kept
hidden to the maximum possible extent. VWhen necessary,
portion of the status can only be accessed via approved
methods

s Encapsulation increases robustness
Hiding the internals of an object keeps it consistent by
preventing developers from manipulating it in unexpected
ways

¢ Encapsulation helps in managing complexity
Enforcing a strict discipline for object manipulation limits
nasty inter-dependencies between objects

INHERITANCE: EXAMPLES (3/3) .

s C++:
' °
class Pixel: public Point
{ |
public: |
unsigned char *coclor; // New: color in RGE format
Pixel () j
{
color = new unsigned char [3]; '
color[0] = coloxr[l] = coloxr[2] = 0; l

}

// Further new fields and methods can be placed here

}:

— == ————

e The base class constructor is called automatically

e Again, trying to access x and y results in a compile-
time error

ON THE USE OF NEW

e In C++ there is no garbage collector: memory
allocated with new () must be deallocated explicitly!

This is mandatory to avoid memory leaks

e In C++, memory is released with delete
(in the destructor, for instance)

~Pixel () // Destructor: memcry 1s deallocated here |

{
delete[] coclor;

}

B —— - : e

POLYMORPHISM

e From the Merriam-Webster dictionary:
“the quality or state of existing in,
or assuming, different forms”

e In OO languages: an object instantiated from a
derived class is polymorphic because it behaves both
as an object of the subclass and as an object of the
superclass

THE “STATIC” KEYWORD

e Fields and methods can be associated with either
e a class (static field/method)

e an object (instance field/method)

e If a field/method is marked with the static
keyword, only one copy of it exists

STATIC FIELDS (1/2)

e Example: Java

class Customer

{

static int MaxCustomerID = 0; // unique to class
int CustomerID; // different in each instance
[* ... */
public Customer () // constructor |
{
++MaxCustomerID;

e

CustomerlD = MaxCustomerID;

STATIC FIELDS (2/2)

e Example: C++

class Customer

{

static int MaxCustomerID; // initialize OQUTSIDE THE CLASS |
int CustomerlD; // different in each instance
f* .0 */
public: |
Customer () // constructor |
{ |
++MaxCustomerlD; i

CustomerlD = MaxCustomerID;

e Example: Java

public

[/

[/
[/
[/

class MathClass
// The constructor goes here
Accessor methods
The arctangent of a number can be calculated

even 1f no object of type MathClass has been
allocated

public static double arctan (double x)

{
}

// Additional methods go here

p————

e Example: C++

class MathClass
{
public:
// The constructor goes here

// Accessor methods

static double arctan(double x)

{
}

// Additiconal methods go here

}i

EXCEPTIONS

e An exception is an event (usually due to an error
condition) that occurs at run time and alters the
normal flow of execution

e Exceptions can be raised by library code or by the
programmer itself

e Exceptions must be managed!
Unmanaged exceptions lead to program termination

EXCEPTIONS: JAVA (1/2)

e An exception is an object

e Raise an exception: throw keyword

e Exceptions thrown by a method must be declared in
the method’s header

class DivideByZeroException extends Exceptlion { }

public class Point '

i

f/ Divides point coordinates by a given factor
public void ScaleByAFactor ({double f) throws DivideByEerocException ;
{ .
if(f==0.0) throw new DivideByZeroException():;
ezlse

{

® x / £;
Y v [/ I;

EXCEPTIONS: JAVA (2/2)

¢ Handle an exception:
try...catch()...finally

try // code that could throw an exception

{
ImaginaryUnit.ScaleByAFactor(sf);

) |

catch(DivideByZeroException e) // code that handles the exception; [

{ // executed only if an exception happens
// Do something

System.err.println("Division by zerc!");

finally // code finishing up the operation;
{ // executed in any case
file.closel();

}

e Multiple catch blocks can be present

EXCEPTIONS: C++ (1/2)

e An exception is not necessarily an object

e Raise an exception: throw keyword

e Thrown exceptions cannot be declared

public class Point

{ .
fa j
// Divides point coordinates by a giwven factor
vold ScaleByAFactor (double f)

{

i

1if(f==0.0) throw 123; // Throws an integer

elze

{

X x [/ £
Y y [/ £

EXCEPTIONS: C++ (2/2)

o Handle an exception: try. . .catch()

try // code that could throw an exception

{ |
ImaginaryUnit.ScaleByAFactor(sf); ’

}

catch({int e) // code that handles the exception;
{ // executed only if an exception happens

// Do something
cerr << "Divisicn by zero!";

}
S e ——————

e Multiple catch blocks can be present.
catch(..) (with the 3 dots) catches all exceptions

e No finally available

ASSERTIONS

e An assertion is a statement to test an assumption
about the program that the programmer thinks must
be true at a specific place.

If the assertion is not true, an error is generated

e [he test is performed at run-time,
hence the program is slowed down a tiny bit

¢ Java: assert keyword, raises exceptions

e C++: macro to simulate assertions

e Java:

s C++

/* Remove an user from a data
S oL, */

assert (NumberQfUsers >= 0);
e ——— = -

¥include <cassert>

/* Remove an user from a data
Jr oL, *f

assert (NumberQfUsers >= 0);
et e ——— =

structure */

structure */

LAST MODIFIED: MARCH 13,2018

COPYRIGHT HOLDER: CARLO FANTOZZI (CARLO.FANTOZZI@UNIPD.IT)
LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 4.0

