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ABSTRACT
In this paper we present a formal framework to define and
study the properties of utility-oriented measurements of re-
trieval effectiveness, like AP, RBP, ERR and many other
popular IR evaluation measures. The proposed framework
is laid in the wake of the representational theory of measure-
ment, which provides the foundations of the modern theory
of measurement in both physical and social sciences, thus
contributing to explicitly link IR evaluation to a broader
context. The proposed framework is minimal, in the sense
that it relies on just one axiom, from which other properties
are derived. Finally, it contributes to a better understanding
and a clear separation of what issues are due to the inherent
problems in comparing systems in terms of retrieval effec-
tiveness and what others are due to the expected numerical
properties of a measurement.

Categories and Subject Descriptors
H.3.4 [Information Search and Retrieval]: Systems and
Software—Performance evaluation (efficiency and effective-
ness)

General Terms
Experimentation, Measurement, Performance, Theory

Keywords
Representational Theory of Measurement; Omomorphism;
Swap; Replacement; Balancing Index

1. INTRODUCTION
Information Retrieval (IR) has been deeply rooted in ex-

perimentation since its inception and we often hear quotes
like “To measure is to know” or “If you cannot measure, you
cannot improve it”, attributed to Sir William Thompson first
baron of Kelvin, to remark the importance of experimental
evaluation as a means to foster research and innovation in
the field.
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However, even if evaluation has greatly contributed to the
advancement of IR, we still lack a deep comprehension about
what the evaluation measures we daily employ are and this,
somehow, hinders the “to measure” part in Lord Kelvin’s
quotes. This is witnessed by the fact that our understanding
of evaluation measures is mostly tied to empirical evidence:
for example, we use different kinds of correlation analy-
sis [19, 35] to see how close two evaluation measures are,
we adopt different pool downsampling techniques to study
the robustness of measures to incomplete information [7,
34], we analyse their sensitivity, stability and discriminative
power [6, 28], and so on.

We, as others [3, 8, 16, 26], think that a better compre-
hension of evaluation measures is needed and that the de-
velopment of a formal theory to define what an evaluation
measure is and to derive and study its properties can be the
way to address this need.

In this paper, we start to lay the foundations for a formal
framework for utility-oriented measurements of retrieval ef-
fectiveness. In particular, we place our work in the broader
framework of the representational theory of measurement [21],
which provides the foundations of the modern theory of mea-
surement in both physical and social sciences.

Our work differs from previous attempts to formalize IR
evaluation measures in three main aspects: (i) for the first
time, it explicitly puts IR measures in the wake of the mea-
surement theory adopted in other branches of science; (ii)
it provides a deeper understanding of what issues are due
to the intrinsic difficulties in comparing runs rather than
attributing them to the expected numerical properties of a
measure; (iii) it is minimal, basically consisting of just one
axiom (Definition 5.1), which makes the framework easy and
intuitive to grasp and from which the other needed proper-
ties are (and will be) derived.

The paper is organized as follows: Section 2 explains the
basic concepts of the representational theory of measure-
ment and how our framework will lay on it; Sections 3 to 6
introduce our framework; finally, Section 7 wraps up the
discussion and outlooks some future work.

2. MEASUREMENT AND MEASURE

2.1 Representational Theory of Measurement

Measurement is the process by which numbers
or symbols are assigned to attributes of entities
in the real world in such a way as to describe
them accordingly to clearly defined rules [12].



The representational theory of measurement [21] aims at
providing a formal basis to our intuition about the way the
world works. According to the above definition of measure-
ment, the numbers or symbols we collect as measures about
the attributes of the entities we examine should be such
that their processing and manipulation maintain the rela-
tionships among the actual entities under examination in
the real world. Therefore, at the basis of measurement, there
are the relationships among entities and how we empirically
observe them [14].

Consider, for example, the attribute “height” of a tree: in
the real world, we are easily able to recognize that some
trees are “taller than” others. “Taller than” is an empirical
relation for height (of a tree) and we can think at it as a
mapping from the real world to a formal mathematical one,
namely from the set of trees to the set of real numbers,
provided that, whenever a tree is “taller than” another one,
any measure of height assigns a higher number to that tree.

This is the so called representation condition which en-
sures that a measurement must map attributes of entities
into numbers (symbols) and empirical relations into numer-
ical (symbolic) ones so that the empirical relations imply
and are implied by the numerical (symbolic) ones.

More formally [21, 24], a relational structure is an ordered
pair X =

〈
X,RX

〉
of a domain set X and a set of relations

RX on X, where the relations in RX may have different ari-
ties, i.e. they can be unary, binary, ternary relations and so
on. Given two relational structures X and Y, a homomor-
phism M : X→ Y from X to Y is a mapping M =

〈
M,MR

〉
where:

• M is a function that maps X into M(X) ⊆ Y , i.e.
for each element of the domain set there exists one
corresponding image element;

• MR is a function that maps RX into MR(RX) ⊆ RY

such that ∀r ∈ RX , r and MR(r) have the same arity,
i.e. for each relation on the domain set there exists one
(and it is usually, and often implicitly, assumed: and
only one) corresponding image relation,

with the condition that ∀r ∈ RX ,∀xi ∈ X, if r(x1, . . . , xn)

then MR(r)
(

M(x1), . . . ,M(xn)
)

, i.e. if a relation holds for

some elements of the domain set then the image relation
must hold for the image elements.

Note that we talk about a homomorphism rather than
an isomorphism because M is generally not one-to-one; in
general M(a) = M(b) does not mean that two trees are
identical but merely of equal height.

A relational structure E is called empirical if its domain
set E spans over the entities under consideration in the real
world, e.g. the set of trees; a relational structure S is called
symbolic if its domain set S spans over a given set of symbols,
e.g. the set of positive real numbers R+

0 =
{
x ∈ R | x ≥ 0

}
.

We can now provide a more precise definition of measure-
ment on the basis of the just introduced concepts

measurement is a homomorphism M =
〈
M,MR

〉
from the real world to a symbolic world. Con-
sequently, a measure is the number or symbol
assigned to an entity by this mapping in order to
characterize an attribute [12].

As an example, consider a set of rods R [21] where an
order relation � and a concatenation operation ◦ among

rods exist. Note that � is a binary relation on the set of
rods R while ◦ is a ternary one which assigns to each pair of
rods a third rod representing their concatenation. Then, the
empirical relational structure E =

〈
A,�, ◦

〉
can be mapped

into the symbolic relational structure S =
〈
R+

0 ,≤,+
〉
, using

as mapping function M(·) the length of a rod so that a �
b⇔M(a) ≤M(b) and M(a ◦ b) = M(a) +M(b). Note that
this example covers also the basics of the classical measure
theory [4, 15], where the order relation among sets is given
by A � B ⇔ A ⊆ B and the concatenation operation among
two disjoint sets A∩B = ∅ is given by ◦ = A∪B; a measure
is then requested to be monotonic A ⊆ B ⇒M(A) ≤M(B)
and additive A ∪ B ⇒ M(A) + M(B) when two sets are
disjoint A ∩B = ∅.

2.2 Our Framework
The core of our framework is to start individuating an

empirical relational structure E =
〈
IRS,�

〉
which allows

us to compare and order different IR systems on the basis
of the utility they provide to their users [9, 11, 29]. Clearly,
being an empirical relational structure, it is assumed to exist
in the real word, i.e. users have their own intuitive notion
of when a system is better than another one. In Section 4
we will make this intuitive notion explicit, at least for the
cases where it is possible to determine a commonly shared
agreement about when a system is better than another one,
thus leading to a partial ordering among systems.

We will then individuate a suitable symbolic relational

structure S =
〈
R+

0 ,≤
〉

with R+
0 = R+

0 ∪ {∞} and, in Sec-
tion 5, we will provide a definition of IR utility-oriented mea-
surement as a homomorphism between these two relational
structures, i.e. we will provide a representation condition.
We will also provide an equivalence theorem which allows
us to easily verify the representation condition in terms of
two simple properties, swap and replacement, i.e. to check
in practice when an evaluation measure like AP or nDCG
is actually a measurement in the previous sense. Note that
according to the above definition AP or nDCG are called
measurement while the actual numerical value computed by
AP or nDCG for a given run and topic is called measure.

Finally, we will also introduce the concept of balancing
meant to explore the behaviour of a measurement when, in
the empirical relational structure, the ordering between two
systems is not a priori known. We will show that balancing
accounts for the top heaviness of a measurement and we will
conduct a preliminary experiment to validate the meaning-
fulness of its numerical value.

The problem of grounding IR evaluation measures into a
broader approach to measuring is a longstanding and crucial
one [16]. C. J. van Rijsbergen was early pointing out the
issues we encounter with IR evaluation measures [31]:

In the physical sciences there is usually an empir-
ical ordering of the quantities we wish to measure
[...] Such a situation does not hold for informa-
tion retrieval. There is no empirical ordering for
retrieval effectiveness and therefore any measure
of retrieval effectiveness will by necessity be ar-
tificial

We are not claiming to have fully addressed this hard
problem in the present work but rather to have started lay-
ing foundations which can contribute to its solution. More-
over, to the best of our knowledge, this is the first attempt



to systematically apply the representational theory of mea-
surement in the context of IR evaluation.

Indeed, [3, 26] stated numerical properties and constraints
IR evaluation measures should comply on a case-by-case ba-
sis, e.g. when a system retrieves one more relevant document
than another one, but they did not build up on an explicit
relational structure among systems. [8, 22] built their for-
mal framework for IR evaluation measures on the notion of
measurement scale [12, 30], which somehow comes after the
definition of measurement; here, we prefer to start from the
definition of what IR utility-oriented measurements are and
we leave for future work a throughout study of the issues
concerning the scales for such measurements. [2] provided a
formal framework concerning measures for clustering rather
than for IR, even it has been extended in [3] to include also
IR measures. Finally, [5] sought for two axioms which al-
lowed him to define when an IR evaluation measure could
be expressed as a linear combination of the number of rel-
evant retrieved documents and the number of not-relevant
not retrieved documents, which is a different problem from
the one of the present paper.

3. PRELIMINARY DEFINITIONS
We stem from [1, 13] for defining the basic concepts of

topics, documents, ground-truth, run, and judged run. To
the best of our knowledge, these basic concepts have not
explicitly defined in previous works [3, 8, 22, 26].

Note that we need to define the same concepts for both
set-based retrieval and rank-based retrieval and, to keep the
notation compact and stress the similarities between these
two cases, we will use the same symbols in both cases –
e.g. rt for run, D(n) for set of retrieved documents by a run,
D for universe set of documents and so on – being clear later
on from the context whether we will refer to the set-based
or rank-based version.

3.1 Topics, Documents, Ground-truth
Let us consider a set of documents D and a set of topics

T ; note that D and T are typically finite sets but we can
account also for countable infinite ones.

Let (REL, �) be a totally ordered set of relevance de-
grees, i.e. they are defined on an ordinal scale [30], where
we assume the existence of a minimum that we call the non-
relevant relevance degree nr = min(REL). Note that REL
is typically a finite set but we can account also for an infi-
nite one. In the former case, we can represent both binary
relevance1 REL = {nr, r} (non relevant and relevant) and
graded relevance [18], e.g. REL = {nr, pr, hr} (non-relevant,
partially relevant, highly relevant); in the latter case, we
can represent both continuous relevance [18] and relevance
assigned using unbounded scales, e.g. by using magnitude
estimation [23]. Note that the definition of the REL set can
accomplish both a notion of “immutable” relevance, as the
one somehow adopted in evaluation campaigns, and a notion
of relevance dependent on users and their context. In the
latter case, we will have different REL sets corresponding
to each user/context.

In the following, and without any loss of generality, we
consider REL ⊆ R+

0 with the constraint that 0 ∈ REL

1Binary relevance is often thought to be on a categorical
scale but, since the scale consists only of two categories one
of which indicates the absence of relevance, we can safely
consider it as an ordinal scale in fact.

and the order relation � becomes the usual ordering ≤ on
real numbers, which ensures that a higher number corre-
sponds to a higher relevance degree; the non-relevant degree
is therefore given by min(REL) = 0. Note that most of
the algebraic operations we typically perform on numbers,
like addition and multiplication, will be in general senseless
on REL, since we take for granted only its order property.
As above, this choice allows us to represent the most com-
mon cases, i.e. both binary relevance with REL = {0, 1}
and graded relevance, either discrete with REL ⊆ N0 or
continuous with REL ⊆ R+

0 in general.
For each pair (t, d) ∈ T × D, the ground-truth GT is

a map which assigns a relevance degree rel ∈ REL to a
document d with respect to a topic t. Note that, in the case
of more complex situations like crowdsourcing for relevance
assessment, we can define different GT maps, one for each
crowd-worker.

The recall base is the map RB from T into N defined
as the total number of relevant documents for a given topic
t 7→ RBt =

∣∣{d ∈ D : GT (t, d) > 0}
∣∣. The recall base is a

quantity often hard to know in reality and, in some appli-
cations, it may be preferable to substitute it with a family
of random variables (t, ω) 7→ RBt(ω) which represents the
unknown number of relevant documents present in the col-
lection for every topic, that we will be able at most to es-
timate. For simplicity, in the sequel we will denote by RBt

the recall base in both the cases, omitting in the latter the
dependence on ω.

3.2 Set-based Retrieval
Given a positive natural number n called the length of

the run, we define the set of retrieved documents as
D(n) =

{
{d1, . . . , dn} : di ∈ D

}
and the universe set of

retrieved documents as D :=
⋃|D|

n=1D(n) = 2D, which is
the power set of D, i.e. the set of all the subsets of D.

A run rt, retrieving a set of documents D(n) in response
to a topic t ∈ T , is a function from T into D

t 7→ rt = {d1, . . . , dn}

Note that, since D can be an infinite set, we can have runs
retrieving infinite documents.

A multiset (or bag) is a set which may contain the same
element several times and its multiplicity of occurrences is
relevant [20]. A set of judged documents is a (crisp)
multiset (REL, m) = {rel1, rel2, rel1, rel2, rel2, rel4, . . .},
where m is a function from REL into N0 = N0∪{∞} repre-
senting the multiplicity of every relevance degree relj [25];
if the multiplicity is 0, a given relevance degree is simply
not present in the multiset, as in the case of rel3 in the
previous example. Note that the multiplicity function m
can lead to infinite multisets, when needed. Suppose M
is the infinite set of all the possible multiplicity functions
m, then the universe set of judged documents is the
set R :=

⋃
m∈M(REL,m) of all the possible sets of judged

documents (REL,m).
We call judged run the function r̂t from T × D into R,

which assigns a relevance degree to each retrieved document

(t, rt) 7→ r̂t =
{
GT (t, d1), . . . , GT (t, dn)

}
=
{
r̂t,1, . . . , r̂t,n

}
3.3 Rank-based Retrieval

Given a positive natural number n called the length of
the run, we define the set of retrieved documents as



D(n) = {(d1, . . . , dn) : di ∈ D, di 6= dj for any i 6= j},
i.e. the ranked list of retrieved documents without dupli-
cates, and the universe set of retrieved documents as

D :=
⋃|D|

n=1D(n).
A run rt, retrieving a ranked list of documents D(n) in

response to a topic t ∈ T , is a function from T into D

t 7→ rt = (d1, . . . , dn)

We denote by rt[j] the j-th element of the vector rt, i.e. rt[j] =
dj . Note that, since the cardinality of D may be infinite, we
can model also infinite rankings, as those assumed by [27,
33]. We define the universe set of judged documents as

R :=
⋃|D|

n=1REL
n.

We call judged run the function r̂t from T × D into R,
which assigns a relevance degree to each retrieved document
in the ranked list

(t, rt) 7→ r̂t =
(
GT (t, d1), . . . , GT (t, dn)

)
We denote by r̂t[j] the j-th element of the vector r̂t, i.e. r̂t[j] =
GT (t, dj).

4. EMPIRICAL RELATIONAL STRUCTURE
As discussed in Section 2, a key point in defining a mea-

surement is to start from a clear empirical relational struc-
ture among the attributes of the entities you would like to
measure, in our case the effectiveness of IR systems in terms
of the utility they provide to their users [9, 11, 29]. There-
fore, E =

〈
T × D,�

〉
is our empirical relational structure,

i.e. the set of all the runs with an ordering relation where the
utility systems provide to their users is roughly expressed in
terms of the “amount” of relevance: the more relevance is
retrieved by a run, the greater it is.

This is an especially critical point since, as highlighted
out by [31], “there is no empirical ordering for retrieval ef-
fectiveness”. The hardness of this problem clearly emerges
also when you consider the actual properties of the set D.

Typically, when you define a measurement, you start from
sets having very good properties. For example, in the case
of the theory of measure [4, 15], σ-algebras are closed un-
der countable unions, intersections, and complements and
the inclusion relation among sets leads to a natural par-
tial ordering. All these nice properties are then reflected
in measures and probabilities: since a σ-algebra is closed
under countable union, a measure is then requested to be σ-
additive, i.e. if {An}n∈N is a family of disjoints subsets, then
M(
⋃

n∈NAn) =
∑

n∈NM(An) and from this property one
obtains that is also monotone A ⊆ B ⇒ M(A) ≤ M(B),
since B = A ∪ (AC ∩B)⇒M(B) = M(A) +M

(
A ∪ (AC ∩

B)
)
≥M(A), which in turn reflects the ordering induced by

the inclusion relation on the σ-algebra.
Unfortunately, the set D lacks many of these desirable

properties. For example, inclusion and union on D would
not be as intuitive and agreeable as they are in the case of
σ-algebras and this hampers the possibility of requiring ad-
ditivity as a property of an IR utility-oriented measurement.

Let us consider inclusion: we could say that rt ⊆ st if
st appends one more document to rt. Differently from σ-
algebras, inclusion would not induce an ordering on D, since
you may think that a run retrieving one more relevant doc-
ument is greater than another one not retrieving it [3, 26]
but you may also think that a run retrieving one more not-

relevant document is smaller than another one not retrieving
it [3], or it should stay equal [26].

The above inclusion can be seen also as a form of union,
i.e. as concatenating a run with another one constituted by
just a single document, i.e. somehow st = rt ∪{dj}. Almost
no one would require additivity, i.e. M(st) = M(rt)+M(dj),
and as discussed above there is neither agreement on mono-
tonicity, i.e. when it should be M(st) > M(rt) and when
M(st) < M(rt). This is even more evident if you think at
data fusion, a kind of much more complicated union: no one
would quest for additivity, even in the case of runs without
any common document, and consider the performance of the
fused run as the sum of the performances of the composing
runs, nor they could a priori guarantee monotonicity, ensur-
ing that the performance of the fused run is always greater
than or equal to the the performances of the composing runs.

The above mentioned issues with inclusion and union of
runs make it difficult also to deal with runs of different
length, e.g. constraining the behaviour of a measurement
in the symbolic relational structure S when runs of different
length are somehow contrasted, as it is done in [3, 8, 22, 26],
since we basically do not know how to unite and compare
them in the empirical relational structure E.

Therefore, in this paper, we will focus on a partial order-
ing among runs of the same length in the empirical relational
structure E, leading to monotonicity in the symbolic rela-
tional structure S, and we leave for future work a deeper
investigation of inclusion, union, additivity and their im-
plications. In particular, we will restrict ourselves only to
those cases where the ordering is intuitive and it is possible
to find a commonly shared agreement. Examples of very
basic cases are: a run retrieving a relevant document in the
first rank position is greater than another one retrieving it
in the second position or a run retrieving a more relevant
document in a given rank position is greater than another
one retrieving a less relevant document in the same position.

The above discussion points out one key contribution of
this paper, i.e. highlighting that the core problem in defin-
ing an IR measurement is not to constraint its numerical
properties (symbolic world) but rather our quite limited un-
derstanding of the operations and relationships among runs
(empirical world). Indeed, if we better clarify how runs be-
have in the empirical relational structure, a measurement,
intended as a homomorphism between the empirical and
symbolic worlds, has to comply with them by construction.

Note that this vision is somehow implicitly present in [8,
22]. Their framework is based on the idea that there must
be an agreement between two distinct “relevance measure-
ments”, one made by assessors and the other by systems,
i.e. how assessors and systems rank documents on the basis
of their relevance to a query. Then, they constrain what they
call “metric” to the behaviour of the similarity between these
two “relevance measurements”, but without actually defin-
ing what this similarity is . In relation to our work, we could
say that the assessor and system “relevance measurements”
may somehow resemble the notion of relational structures
in the empirical world and the “metric” may in some way
approximate the notion of measurement as homomorphism
between empirical and symbolic worlds. However, we think
that framing the problem in the context of the represen-
tational theory of measurement provides more advantages
than an ad-hoc approach: it streamlines the core concepts,
helps to discuss and address issues at the proper level ei-



ther in the empirical or symbolic worlds, and better links
IR evaluation to other sciences. Moreover, we provide an
actual partial ordering among runs in the empirical world,
from which we derive properties for a measurement, while
the concept of similarity is not actually defined by [8, 22].

4.1 Set-based Retrieval
Let us consider two runs rt and st with the same length

n. We introduce a partial ordering among runs as

rt � st ⇔
∣∣{j : r̂t,j ≥ rel}

∣∣ ≤ ∣∣{j : ŝt,j ≥ rel}
∣∣ ∀rel ∈ REL

which counts, for each relevance degree, how many items
there are above that relevance degree and, if a run has higher
counts for each relevance degree, it is considered greater than
another one.

For example, if we have four relevance degrees REL =
{0, 1, 2, 3}, the run r̂t = {0, 1, 1, 2, 2} is smaller than the
run ŝt = {0, 1, 1, 2, 3} but the run r̂t = {0, 1, 1, 2, 2} is not
comparable to the run ŵt = {0, 1, 1, 1, 3} because, relying
just on an ordinal scale for the relevance degrees, it is not
a priori known whether the decrease from a document with
relevance degree 2 to one with relevance degree 1 is compen-
sated or not by the increase from a document with relevance
degree 2 to one with relevance degree 3, actually we cannot
even say if the two runs are equal.

If we have the relevance grades REL = {0, 1, · · · , q},
among all the runs with a fixed number of relevant doc-
uments, the run {1, . . . , 1, 0, . . . , 0} is the smallest, while
{q, . . . , q, 0, . . . , 0} is the greatest one.

In the case of binary relevance, i.e. REL = {0, 1}, we
obtain an intuitive total ordering

rt � st ⇔
∣∣{j : r̂t,j ≥ 1}

∣∣ ≤ ∣∣{j : ŝt,j ≥ 1}
∣∣

where rt is less than st if it retrieved less relevant documents
than st.

If REL relies on a more powerful scale, e.g. a ratio scale
where we can know, for example, that a highly relevant doc-
ument is twice as relevant as a partially relevant one, the
above definition becomes a total ordering also in the case of
graded relevance, by basically summing up how many “rele-
vance units” there are in each run.

4.2 Rank-based Retrieval
Let us consider two runs rt and st with the same length

n. We introduce a partial ordering among runs as

rt � st ⇔
∣∣{j ≤ k : r̂t[j] ≥ rel}

∣∣ ≤ ∣∣{j ≤ k : ŝt[k] ≥ rel}
∣∣

∀rel ∈ REL and k ∈ {1, . . . , n}

which counts, for each relevance degree and rank position,
how many items there are above that relevance degree and,
if a run has higher counts for each relevance degree and rank
position, it is considered greater than another one.

For example, if we have four relevance degrees REL =
{0, 1, 2, 3}, the run r̂t = (0, 1, 1, 2, 2) is smaller than the
run ŝt = (0, 1, 1, 2, 3) but the run r̂t = (0, 1, 1, 2, 2) is not
comparable to the run ŵt = (0, 1, 1, 1, 3) because, relying
just on an ordinal scale for the relevance degrees, it is not
a priori known whether the decrease from a document with
relevance degree 2 to one with relevance degree 1 at rank 4
is compensated or not by the increase from a document with
relevance degree 2 to one with relevance degree 3 at rank 5,
as it happens in the set-based retrieval case. On the other

hand, the run r̂t = (0, 1, 1, 2, 2) is not comparable with the
run v̂t = (2, 0, 1, 2, 1) because, even if the document with
relevance degree 2 moves forward from rank 5 to rank 1, the
backward movement of the document with relevance degree
1 from rank 2 to rank 5 may or may not compensate for it.
This latter case points out the effect of ranking with respect
to the previous case of set-based retrieval, which would have
considered these two runs as equal.

Note that in rank-based retrieval, we cannot achieve a
total ordering even in the case of binary relevance. Indeed
the run r̂t = (0, 1, 0, 1, 0) is not comparable to the run ŝt =
(1, 0, 0, 0, 1) because you cannot a priori say whether the
forward movement of the relevant document from rank 2 to
rank 1 is compensated or not by the backward movement of
the relevant document from rank 4 to rank 5.

A possible segmentation of all the runs can be performed
in terms of the total number of relevant documents, where
a minimum and maximum run can be found. Taking for
simplicity REL = {0, 1, . . . , q} and considering a run rt re-
trieving just one relevant document, we have that it lays
between the minimum and maximum below:

(0, . . . , 0, 1) � r̂t � (q, 0, . . . , 0)

More in general, for any run rt retrieving k relevant doc-
uments, it holds:

(0, . . . , 0, 1, . . . , 1) � r̂t � (q, . . . , q, 0, . . . , 0) (1)

Summing up, differently from the case of set-based re-
trieval, this partial ordering cannot become a total order
neither in the case of binary relevance nor in the case of
relevance degrees on more powerful scales, e.g. ratio ones.
Indeed, the presence of the ranking adds a further dimen-
sion which makes impossible to compare every run pair be-
cause it is not a priori known how much each rank position
influences the ordering.

5. UTILITY-ORIENTED MEASUREMENTS
OF RETRIEVAL EFFECTIVENESS

We define an utility-oriented measurement of re-
trieval effectiveness as an homomorphism between the
empirical relational structure E =

〈
T ×D,�

〉
, discussed in

the previous section, and the symbolic relational structure

S =
〈
R+

0 ,≤
〉
, that is a mapping which assigns to any se-

quence of documents D(n) retrieved by a system for a given
topic t, a non negative number, i.e. a utility-oriented
measure of retrieval effectiveness.

More in detail, a utility-oriented measurement of retrieval
effectiveness is the composition of a judged run r̂t with a
scoring function µ from the universe set of judged docu-

ments R into R+
0 which assigns to any sequence of judged

documents a non negative number, ensuring that the order-
ing � among the runs is properly mapped in the ordering ≤
among real numbers.

Definition 5.1. A function

M : T ×D → R+
0

defined as M = µ(r̂t), i.e. the composition of a judged run

r̂t with a scoring function µ : R → R+
0 is a utility-oriented

measurement of retrieval effectiveness if and only if for
any two runs rt and st with the same length n such that
rt � st, then µ(r̂t) ≤ µ(ŝt).



Any utility-oriented measurement of retrieval effectiveness
is indeed the specification of the scoring function µ and that
the property which ensures a proper mapping between the
empirical and symbolic relational structures is the mono-
tonicity of µ. In this respect, an utility-oriented measure-
ment of retrieval effectiveness is not a “measure” in the clas-
sical sense of the measure theory [4, 15], since it lacks the
additivity property, but shares with fuzzy measures [32] the
fact of relying just on monotonicity.

Note that the monotonicity requested in the definition
above differs from the notion of monotonicity in [26], since
this latter one applies to runs of different length, which is
not our case for the motivations we discussed in the previous
section. Similar considerations hold for the notion of docu-
ment/query monotonicity in [22] which applies to unions of
documents/queries.

Even if the previous definition fits our purposes, it could
be difficult to check it in practice. Therefore, we introduce
two“monotonicity-like”properties, called replacement and
swap, which we will prove to be equivalent to the required
monotonicity but are easier to check.

Replacement If we replace a less relevant document with a
more relevant one in the same rank position, a utility-
oriented measurement of retrieval effectiveness should
not decrease. More formally, if

rt = (d1, . . . , di−1,di, di+1, . . . , dn)

and

st = (d1, . . . , di−1, d̃i, di+1, . . . , dn)

with di 6= d̃i and r̂t[i] ≤ ŝt[i], then

M(rt) ≤M(st)

Swap If we swap a less relevant document in a higher rank
position with a more relevant one in a lower rank posi-
tion, a utility-oriented measurement of retrieval effec-
tiveness should not decrease. More formally, if

rt = (d1, . . . , di−1,di, di+1, . . . , dj−1,dj, dj+1, . . . , dn)

and

st = (d1, . . . , di−1,dj, di+1, . . . , dj−1,di, dj+1, . . . , dn)

with r̂[i] ≤ r̂[j], then

M(rt) ≤M(st)

The above definitions of replacement and swap are for-
mulated in the case of rank-based retrieval; clearly, in the
set-based retrieval case only replacement makes sense while
swap does not apply since there is no ranking among docu-
ments.

Note that the swap property somehow recalls the idea of
priority constraint in [3] and of convergence in [26].

Theorem 5.2 (Equivalence). A scoring function µ de-

fined from R into R+
0 leads to a utility-oriented measurement

of retrieval effectiveness M if and only if it satisfies the Re-
placement and the Swap properties.

Proof. : If µ leads to a utility-oriented measurement of
retrieval effectiveness, the Replacement property is clearly a
special case of the monotonicity of µ.

Let us now define

A(rt, k, p) = |{i ≤ k : r̂t[i] ≥ p}|

and assume that

rt = (d1, . . . , di−1,di, di+1, . . . , dj−1,dj, dj+1, . . . , dn)

and

st = (d1, . . . , di−1,dj, di+1, . . . , dj−1,di, dj+1, . . . , dn)

with r̂t[i] ≤ r̂t[j].
It is clear that A(rt, k, p) = A(st, k, p) for any k ≤ i − 1

and p ∈ R+
0 . If k = i, i + 1, . . . , j − 1, we have A(rt, k, p) =

A(st, k, p) for p < r̂t[j] and A(rt, k, p) < A(st, k, p) for p ≥
r̂t[j], while for k > j again A(rt, k, p) = A(st, k, p) for any
p ∈ R+

0 . This implies that rt � st: by the monotonicity we
get that µ(r̂t) ≤ µ(ŝt) and the Swap property is proved.

Let us now assume that the Replacement and the Swap
properties are satisfied by M . Taken rt � st, our aim is to
prove that we are able to construct an increasing sequence
of runs

rt = r0t � r1t � r2t � . . . � rht = st

such that µ(r̂jt ) ≤ µ(r̂j+1
t ) for any j = 0, . . . , h − 1, which

proves the monotonicity of µ. Let us start from the last
term in both the collections of judged runs. If r̂t[n] = ŝt[n],
we define r1t = rt and pass to the n − 1-th element. If
r̂t[n] < ŝt[n], we replace the last document in rt with a
document of relevance degree ŝt[n] and define this new run
as r1t . We have that r0t = rt � r1t , by the replacement that
µ(r̂0t ) ≤ µ(r̂1t ) and we pass to consider the n− 1-th element.
If r̂t[n] > ŝt[n], we swap the last document in rt with the
closest document of minimum relevance grade of the same
run. For example, if

r̂t = (1, 0, 1, 0, 1, 1) and ŝt = (1, 1, 0, 1, 1, 0)

we define r̂1t = (1, 0, 1, 1, 1, 0). It is immediate to see that the
new last element of rt has a relevance degree smaller than
or equal to ŝt[n]. Indeed, if on the contrary we assume that
r̂t[k] > ŝt[n] for any k < n and we define p = min{r̂t[i], 0 ≤
i ≤ n}, we have that

A(rt, n, p) > A(st, n, p)

which is in contradiction with the hypothesis that rt � st.
We have that r0t = rt � r1t and by the swap property that
µ(r̂0t ) ≤ µ(r̂1t ). Proceeding now as before in the case that
r̂1t [n] = ŝt[n] or r̂1t [n] < ŝt[n], we (possibly) define a new run
r2t such that r1t � r2t and we pass to consider the n − 1-th
element. Repeating this procedure to the n− 1-th element,
the n − 2-th element and so on we construct the desired
sequence of runs and the monotonicity is proved.

The same theorem can be proved in the case of set-based
retrieval by using just the Replacement property.

As a final remark, note that for any two runs rt and st
such that rt � st, Definition 5.1 ensures that any two utility-
oriented measurements M1 and M2 will order rt below st,
i.e. M1(rt) ≤ M1(st) and M2(rt) ≤ M2(st). On the con-
trary, when two runs are not comparable, i.e. when they are
outside the partial ordering � and we cannot say which one
is the greater, we can find two utility-oriented measurements
M1 and M2 which order them differently.

Consider, for example the following runs

rt = (1, 0, 0, 1, 0) and st = (0, 1, 1, 0, 1),



We obtain that

Prec(rt)[5] =
2

5
< Prec(st)[5] =

3

5

while

AP (rt) =
1

RBt

3

2
> AP (st) =

1

RBt

53

30

Therefore, Precision judges preferable st, while Average Pre-
cision (AP) rt.

5.1 Examples of Application of the Equivalence
Theorem

In this section, we use the equivalence Theorem 5.2 to
show how to demonstrate that an existing IR evaluation
measure is an utility-oriented measurements of retrieval ef-
fectiveness.

The proof is trivial in the case of Average Precision (AP),
Rank-Biased Precision (RBP) [27], and Normalized Discounted
Cumulated Gain (nDCG) [17] and not reported here due to
space reasons. Here, we present the case of Expected Recip-
rocal Rank (ERR) [10], which is more interesting.

Given a run rt of length n, the ERR is defined as

ERR(x1, . . . , xn) =

n∑
i=1

1

i

i−1∏
k=1

(1− xk)xi

with the convention that
∏0

i=1 = 1 and xi represents the
probability that a user leaves his search after considering
the document at position i. An additional assumption is
that the map r̂t[i] 7→ xi(r̂t[i]) is increasing and xi(0) = 0.

Let us consider the Replacement property and to avoid
trivial cases, take r̂t[i] < ŝt[i]. The property is satisfied if the
function (x1, . . . , xn) 7→ ERR(x1, . . . , xn) is non-decreasing
in any variable. With this aim, we will prove that the partial
derivatives ∂

∂xk
ERR > 0 for any k ≤ n and (x1, . . . , xn) ∈

[0, 1]n. It is immediate that ∂
∂xn

ERR = 1
n

∏n−1
k=1 (1− xk) >

0. Let us now consider ∂
∂xn−1

ERR. DenotingA(xi, . . . , xj) =∏j
k=i(1−xk), we get ∂

∂xn−1
ERR = A(x1, . . . , xn−2)

(
1

n−1
−

xn
n

)
> 0 since 1

n−1
− xn

n
> 1

n−1
− 1

n
> 1

(n−1)n
> 0.

The general case follows similarly: take k < n − 1 and
consider ∂

∂xk
ERR. This partial derivative will be positive if

and only if

S(xk+1, . . . , xn) =
1

k
− 1

k + 1
xk+1

− 1

k + 2
A(xk+1)xk+2 − . . .−

1

n
A(xk+1, . . . , xn−1)xn > 0.

Considering the last two terms, we get

1

n− 1
A(xk+1, . . . , xn−2)xn−1 +

1

n
A(xk+1, . . . , xn−1)xn

≤ A(xk+1, . . . , xn−2)
1

n− 1
.

This implies that

S(xk+1, . . . , xn) >
1

k
− . . .− 1

n− 2
A(xk+1, . . . , xn−3)xn−2

− 1

n− 1
A(xk+1, . . . , xn−2)

Applying the previous computation with the new last two
terms and repeating this procedure on and on, at the end
we obtain that

S(xk+1, . . . , xn) >
1

k
− 1

k + 1
> 0

and the replacement is proved for ERR.
The Swap property is a little more challenging. We have

ERR = F (x1, . . . , xi−1) +
1

i

i−1∏
k=1

(1− xk)xi

+
1

i+ 1

i−1∏
k=1

(1− xk)(1− xi)xi+1 + . . .

. . .+
1

j − 1

i−1∏
k=1

(1−xk)(1−xi)(1−xi+1) · · · (1−xj−2)xj−1+

+
1

j

i−1∏
k=1

(1− xk)(1− xi) · · · (1− xj−1)xj +G(x1, . . . , xn) ,

where F and G are suitable functions, while ERR(s) has
the same expression with the xi’s and xj’s interchanged. It
is immediate that ERR(rt) ≤ ERR(st) if j = i+ 1. Indeed,
we have that the previous inequality holds if and only if

1

i
xi +

1

i+ 1
(1− xi)xi+1 ≤

1

i
xi+1 +

1

i+ 1
(1− xi+1)xi

which is equivalent to 1
i(i+1)

xi ≤ 1
i(i+1)

xi+1. If |i − j| > 1,

ERR(rt) ≤ ERR(st) if and only if

xiD(xi+1, . . . , xj−1) ≤ xjD(xi+1, . . . , xj−1)

where

D(xi+1, . . . , xj−1) =
1

i
− 1

i+ 1
xi+1−

1

i+ 2
(1−xi+1)xi+2−. . .

. . .− 1

j − 1
(1− xi+1) · · · (1− xj−2)xj−1

−1

j
(1− xi+1) · · · (1− xj−2)(1− xj−1)

It will be therefore sufficient to prove that D(x1, . . . , xk) > 0
for any (x1, . . . , xk) ∈ [0, 1]k, where k = j − i − 1 > 0. Let
us prove this by induction on k: if k = 1 we get

D(x1) =
1

i
− x1
i+ 1

− (1− x1)

i+ 2
≥ 1

i(i+ 1)

for any x1 ∈ [0, 1]. Let us now assume thatD(x1, . . . , xi) > 0
for any i ≤ k − 1 and (x1, . . . , xi) ∈ [0, 1]i. It holds

D(x1, . . . , xk) = D(x1, . . . , xk−1)

+ 1
(i+k−1)(i+k)

(1− x1) · · · (1− xk−1) > 0

for any (x1, . . . , xk) ∈ [0, 1]k and the property is proved.

6. BALANCING
In this section, we explore the behaviour of utility-oriented

measurements when two runs rt and st are not comparable
according to the the partial ordering �.



Let n be the length of a run, let rt and st be two runs,
qmin = min{rel ∈ REL : rel > 0} be the minimum rel-
evance degree above not relevant and qmax = max{rel ∈
REL} be the maximum relevance degree, and M(·) a utility-
oriented measurement. We assume here that 0 < qmin ≤
qmax <∞.

We define the Balancing Index as

B(n) = max
{
b ∈ N : M

(
rt : r̂t[1] = qmax, r̂t[j] = 0, 1 < j ≤ n

)
≤M

(
st : ŝt[i] = 0, 1 ≤ i < b, ŝt[j] = qmin, b ≤ j ≤ n

)}
As an example, let us consider the case of four relevance

degrees REL = {0, 1, 2, 3} and runs of length 5. The bal-
ancing index seeks the maximum rank position b for which
M
(
(3, 0, 0, 0, 0)

)
is balanced by M

(
(0, 0, 0, 0, 1)

)
or M

(
(0, 0,

0, 1, 1)
)

or M
(
(0, 0, 1, 1, 1)

)
or M

(
(0, 1, 1, 1, 1)

)
, i.e. it de-

termines when the greatest run possible with just one maxi-
mally relevant document (3 in this case) is scored“the same”
as the smallest run possible with an increasing number of
minimally relevant documents (1 in this case).

The balancing index exploits the Replacement and Swap
properties in a way, different from the one used in the equiv-
alence theorem, that allows us to move among runs not com-
parable for the empirical ordering �.

In the above example, we have that

(3, 0, 0, 0, 0)
Swap−−−→
�

(0, 0, 0, 0, 3)
Replacement−−−−−−−−→

�
(0, 0, 0, 0, 1)

Replacement−−−−−−−−→
�

(0, 0, 0, 1, 1)
Replacement−−−−−−−−→

�
(0, 0, 1, 1, 1)

Replacement−−−−−−−−→
�

(0, 1, 1, 1, 1)

where every two adjacent run pairs in the chain are compa-
rable according to the empirical ordering � but not the first
run with the last ones, e.g. (3, 0, 0, 0, 0) is not a priori com-
parable to (0, 0, 0, 1, 1) because neither you know whether
the loss of a document with relevance degree 3 is compen-
sated or not by two documents with relevance degree 1 nor
you know the effect of ranking.

The balancing index allows us to explore cases that fall
outside the empirical ordering � and to characterize the be-
haviour of the measurements in those circumstances where
Definition 5.1 cannot ensure they will a priori act in a ho-
mogeneous way.

In particular, a measurement with B(n) → n behaves
like a binary set-based measure, being extremely sensitive
to the presence of additional relevant documents in the low-
est ranks. On the contrary, a measurement with B(n) → 1
is not sensitive to the presence of additional relevant docu-
ments after a relevant one in the top rank.

The balancing index models the concept of top heaviness,
an important and somehow desired characteristic of a mea-
surement, as highlighted also in previous works. The close-
ness threshold constraint [3] resembles it, even if it is for-
mulated as a constraint stating that relevant documents in
top ranks should count more rather than as an index you
can actually compute to characterize a measurement; similar
considerations hold for the notion of top-weightedness [26].
However, it should be noted that, instead of requesting top
heaviness to be an a-priori propriety as in [3, 26], the bal-
ancing index explicitly points out that top heaviness is a
property of the measurements that concerns the area where

runs are not a priori comparable, i.e. outside the empirical
ordering �, and this, in turn, causes measurements to possi-
bly behave differently one from another, being more or less
top heavy.

With respect to other empirical indexes for quantifying
top heaviness, the balancing index has the advantage that it
can be derived analytically. Below, some example of balanc-
ing indexes for some popular measurements are reported:

AP

B(n) = max

{
b ∈ N :

n−b+1∑
k=1

k

k + b− 1
≥ 1

}

RBP

B(n) = max
{
b ∈ N : b ≥ logp(1− p+ pn) + 1

}
where p is the persistence parameter of RBP.

ERR

B(n) = max

{
b ∈ N : xmin

n∑
k=b

(1− xmin)k−1

k
≥ xmax

}
where xmin represents the probability that a user leaves
his search after considering a document of relevance
qmin and xmax represents the probability that a user
leaves his search after considering a document of rele-
vance qmax.

nDCG

B(n) = max{b1, b2}

where

b1 = max

{
b > a ∈ N :

n−b∑
k=0

qmin

loga(k + b)
≥ qmax

}
,

b2 = max {b ≤ a ∈ N : (a− b+ 1)qmin + c ≥ qmax} ,

c =

n−a−1∑
k=0

qmin

loga(k + a+ 1)

and a is the base of the logarithm in nDCG. Recall
that max{∅} = −∞.

It can be noted that some of the above formulas depend
explicitly on the length of the run under consideration, as in
the case of RBP, while others have an implicit dependence
on it and might be more complex to be computed.

Therefore, we defined an algorithm which allows us to
compute the balancing index numerically. The complexity
of the algorithm is O(n), since, assuming that the computa-
tion of the measurement M requires a constant number of
operations, the while loop carries out at most n − 1 itera-
tions and at any iterations it performs a constant number of
operations.

Note that, even if we compute the balancing index in a
numerical way, it is not an empirical indicator, as for ex-
ample the discriminative power [28] is, whose computation
depends on a given experimental collection and a set of runs
and whose value may change from dataset to dataset.

Figure 1.(a) reports the balancing index for several evalu-
ation measurements at different run lengths. It can be noted
that for AP and nDCG we have B(n) → n since it is close



Algorithm 1 Algorithm for computing the balancing index.

Require: n, the length of the run; qmin and qmax the min-
imal and maximal relevance degrees

Ensure: b, the balancing index for a run of length n
procedure Balancing(n, qmin, qmax)

refV alue←M(r : r̂t[1] = qmax, . . .
r̂t[j] = 0 1 < j ≤ n)

cmpV alue←M(r : r̂t[j] = 0 1 ≤ j < n, . . .
r̂t[n] = qmin)

b← n
while refV alue > cmpV alue do

b−−
cmpV alue←M(r : r̂t[j] = 0 1 ≤ j < b, . . .

r̂t[j] = qmin b ≤ j ≤ n)
end while
return b

end procedure
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(a) Balancing index for AP, RBP, ERR, P10, nDCG 
for different run lengths.

(b) Test of the meaningfulness of the balancing 
index for RBP with p = 0.8. 

Figure 1: (a) Balancing index for various measures
and (b) its evaluation for RBP.

to the bisector, indicating that they are not strongly top-
heavy measurements and that they are sensitive to relevant
documents in the lower ranks. On the other hand, ERR is
the most top-heavy measurement since its balancing index
is b = 1 for any run length, meaning that missing a relevant
document in the first rank position can not be compensated
even by a run filled in with relevant documents from the
second rank position to the end. RBP falls somehow in-
between, still being a quite top-heavy measurement; it can
be noted as for p = 0.8 the balancing index saturates to
b = 8 for run lengths greater than 20 while, as p increases, it
tends to be less top-heavy with almost b = 60 for p = 0.95.

In order to assess the meaningfulness of the balancing in-
dex, we conducted a preliminary experiment with RBP and
p = 0.8. We simulated two runs of length n = 1000 con-
sisting of 50 topics each, generated as shown in Figure 2.

In the top ranks up to rnk they have the same proportion
(20%) of relevant documents; in the ranks from rnk to 20
they have different proportions of relevant documents 70%
for rt and 30% for st; in the ranks from 21 to n = 1000
they have still different proportions of relevant documents
10% for rt and 70% for st. Then, we increased rnk from 0
to 20: when rnk = 0, rt contains more than twice relevant
documents in the top ranks than st and much less relevant
documents in the very long tail; when rnk = 20, rt and st
have the same proportion of relevant documents in the top
ranks but rt has much less relevant documents than st in all

the other rank positions. For each increasing value of rnk,
we performed a Student’s t test with α = 0.05 to assess
whether rt and st were significantly different. We repeated
this experiment 10, 000 times and, for each value of rnk, we
computed the probability that the two runs are considered
significantly different as the ratio among the number of times
the Student’s t test rejects the null hypothesis and 10, 000,
the total number of trials.

Figure 1.(b) shows the results of this experiment. It can
be noted that, as far as rnk grows up the balancing index b =
8, the fact that rt contains a bigger proportion of relevant
documents than st in the top ranks almost always leads to
consider the two runs as significantly different. On the other
hand, as soon as rnk passes the balancing index b = 8 and
the proportion of relevant documents in the top ranks of rt
and st starts to get more and more similar, the probability
of considering the two runs significantly different gets lower
and lower, completely ignoring the long tail where they are
actually quite different. This is a clear indicator of top-
heaviness, well reflected by the balancing index.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have laid the foundations of a formal

framework for defining what a utility-oriented measurement
of retrieval effectiveness is, on the basis of the representa-
tional theory of measurement, putting IR evaluation in the
wake of other physical and social sciences as far as mea-
suring is concerned. A core contribution of the paper is to
address the problem by clearly separating what are the is-
sues in dealing with comparable/not comparable runs in the
empirical world from what are the expected properties of a
measurement in the symbolic world.

We proposed a minimal definition of measurement, based
on just one axiom (Definition 5.1), and provided an equiva-
lence theorem (Theorem 5.2) to check it in practice, as well
as examples of its application.

Finally, we proposed the balancing index as an indicator of
the top-heaviness of a measurement, providing both formu-
las and an algorithm to compute it. We have also conducted
a preliminary experiment to show that its numerical value
is a meaningful indicator of top-heaviness.

Future work will concern a deeper exploration of the core
problems such measurements have, as for example additiv-
ity. We will also exploit the theory of scales of measurement
in order to study the scales actually adopted by common
measurements like AP, RBP, ERR, nDCG and others.

20% 70% 10%rt

20% 30% 70%st

20rnk 1000

Figure 2: Creation of the simulated runs for assess-
ing the meaningfulness of the balancing index in the
case of RBP. Note that the percentages are not re-
ferred to the whole run but to each segment sepa-
rately. Therefore, they do not need to sum up to
100% but to be between 0% and 100% within each
segment.



Furthermore, we will consider the application of the pro-
posed framework to other cases, such as measures based on
diversity. This will lead to a different definition of the partial
ordering � in the empirical relational structure E to capture
the notion of diversity but Definition 5.1 of IR measurement
of retrieval effectiveness will remain the same. Moreover,
this may also require to individuate properties different from
Swap and Replacement to provide an equivalence theorem
in the vein of Theorem 5.2 suitable for this case.
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