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Abstract

Information Retrieval (IR) systems are the prominent means for searching and accessing huge
amounts of unstructured information on the Web and elsewhere. They are complex systems,
constituted by many different components interacting together, and evaluation is crucial to both
tune and improve them. Nevertheless, in the current evaluation methodology, there is still no
way to determine how much each component contributes to the overall performances and how the
components interact together. This hampers the possibility of a deep understanding of IR system
behaviour and, in turn, prevents us from designing ahead which components are best suited to
work together for a specific search task.

In this paper, we move the evaluation methodology one step forward by overcoming these bar-
riers and beginning to devise an “anatomy” of IR systems and their internals. In particular, we
propose a methodology based on the General Linear Mixed Model (GLMM) and ANalysis Of VAri-
ance (ANOVA) to develop statistical models able to isolate system variance and component effects
as well as their interaction, by relying on a Grid of Points (GoP) containing all the combinations
of the analysed components.

We apply the proposed methodology to the analysis of two relevant search tasks – news search
and Web search – by using standard TREC collections. We analyse the basic set of components
typically part of an IR system, namely stop lists, stemmers and n-grams, and IR models. In this
way, we derive insights about English text retrieval.

1. Introduction

A limitation of the current experimental methodology in Information Retrieval (IR) is that
it allows us to evaluate IR systems and search engines only as a kind of “black-box”, without
an understanding of how their different components interact with each other and contribute to
the overall performances. In other terms, the current experimental methodology considers system
performances as indivisible and it cannot break them down into the contributions of the different
components constituting an IR system. This severe impediment was pointed out a long time ago
by (Robertson, 1981): “if we want to decide between alternative indexing strategies for example,
we must use these strategies as part of a complete information retrieval system, and examine its
overall performance (with each of the alternatives) directly”.

This limitation has several drawbacks: it prevents us from gaining a thorough understanding
of IR system performances; it precludes the possibility of knowing beforehand which combination
of components is best suited for a specific search task or collection of documents (Fuhr, 2010,
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2012); and, it hampers the possibility of determining in which components it is more convenient
to invest effort and resources because they or their combination have the greatest impact in terms
of performance gains.

Therefore, we would need to develop some sort of anatomy of IR system performances, meant
as a set of methodologies which allow us to study and gain knowledge about the internals of IR
system performances and how to combine them.

In this paper, we start to overcome the limitations of the current experimental methodology
and we provide the means to estimate the effects of the different components of an IR system. In
particular, we develop a methodology, based on the General Linear Mixed Model (GLMM) and
ANalysis Of VAriance (ANOVA) (Rutherford, 2011), which makes use of a Grid of Points (GoP)
containing all the possible combinations of inspected components (Ferro and Silvello, 2016a).

We create extensive GoPs covering 6 different stop lists, 6 types of stemmers, 8 flavours of
n-grams, and 17 distinct IR models, representing the basic set of common components typically
present in any IR system for English retrieval. Then, the proposed methodology allows us to break
down the system performances into the contributions of these stops lists, stemmers or n-grams and
IR models, as well as to study their interaction.

The main contributions of the paper are:

• the methodology for breaking down component effects and analysing the GoPs across multiple
evaluation measures;

• the GoPs themselves, a valuable resource which can also be exploited for other kinds of anal-
yses and which is available to the research community1. They also provide a very extensive
sample of the most commonly used components for English retrieval;

• the application of the proposed methodology to two different search tasks, namely news search
and Web search, and their thorough analysis in order to derive insights on English retrieval.

Note that the goal of the paper is not to analyse the effects of any possible kind of components,
such as word compounding, entity extraction or query expansion, just to name a few, which you
may find in an operational IR system. The goal is instead to introduce a methodology that allows
us to break-down the effects of components and to show an application of this methodology to the
basic and common set of components described above, highlighting what it allows us to understand
in the context of two relevant search tasks, as news search and Web search are. Further research
could then exploit the proposed methodology and apply it to other kinds of components and search
tasks.

The paper is organized as follows: Section 2 presents related works; Section 3 introduces our
methodology; Section 4 describes the experimental setup and the produced GoPs; Section 5 and 6
apply, respectively, the proposed methodology to the analysis of the news and Web search tasks;
Section 7 analyses the component effects and their interaction with evaluation measures; finally,
Section 8 draws some conclusions and provides an outlook for future work.

2. Related works

Experimental evaluation is a core activity in IR but it is very demanding in terms of both the
time and effort needed to perform it. Therefore, it is usually carried out in publicly open and large-

1http://gridofpoints.dei.unipd.it/
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scale evaluation campaigns at the international level, all based on the Cranfield paradigm (Clever-
don, 1997), which makes use of shared experimental collections. This allows for sharing the effort
of producing large experimental collections and comparing state-of-the-art systems and algorithms
on a common and reproducible ground.

The impossibility of testing a single component by setting it aside from the complete IR system
is a long-standing and well-known problem in IR experimentation. Component-based evaluation
methodologies have tried to tackle this issue by providing technical solutions for mixing different
components without the need of building an entire IR system from scratch. However, even if these
approaches allowed researchers to focus on the components of their own interest, they have not
delivered estimates of the performance figures of each component yet.

When it comes to explaining system performances and differences between algorithms, it is
commonly understood (Jayasinghe et al., 2015; Robertson and Kanoulas, 2012; Tague-Sutcliffe
and Blustein, 1994) that system performances can be broken down to a reasonable approximation
as

system performances =topic effect + system effect+ topic/system interaction effect

even though it is not always possible to estimate these effects separately, especially the inter-
action effect.

It is well-known that topic variability is greater than system variability (Tague-Sutcliffe and
Blustein, 1994). Therefore, a lot of effort has been put into better understanding this source
of variance (Robertson and Kanoulas, 2012) as well as making IR systems more robust to it,
e.g. (Zhang et al., 2014), basically by trying to improve on the interaction effect. Nevertheless,
with respect to an IR system, topic variance is a kind of “external source” of variation, which
cannot be controlled by developers, but can only be taken into account to better deal with it.

On the other hand, system variance is a kind of “internal source” of variation, since it is
originated by the choice of system components, it can be directly affected by developers by working
on them, and it represents the intrinsic differences between algorithms.

The decomposition of performances into system and topic effects has been exploited by Banks
et al. (1999) and Tague-Sutcliffe and Blustein (1994) to analyze Text REtrieval Conference (TREC)
data; Carterette (2012) proposed model-based inference, using linear models and ANOVA, as an
approach to multiple comparisons; Jayasinghe et al. (2015) used multivariate linear models to
compare non-deterministic IR systems among them and with deterministic ones. In all these cases,
the goal is a more accurate comparison among systems rather than an analysis and breakdown
of system variance per se. Robertson and Kanoulas (2012) applied GLMM to the study of per-
topic variance by using simulated data to generate more replicates for each (topic, system) pair in
order to also estimate the topic/system interaction effect.Sanderson et al. (2012) and Jones et al.
(2014) started a preliminary investigation of the sub-corpus effect exploiting correlation analysis
while, recently, Ferro and Sanderson (2017) made it part of a whole model for system performance.
Overall, to the best of our knowledge, this paper represents the first attempt to apply GLMM and
ANOVA to the decomposition of system components effects.

The idea of creating all the possible combinations of components has been proposed by Ferro and
Harman (2010), who noted that a systematic series of experiments on standard collections would
have created a GoP, where (ideally) all the combinations of retrieval methods and components are
represented, allowing us to gain more insights into the effectiveness of the different components and
their interaction; this would have also called for the identification of suitable baselines with respect
to which all the comparisons have to be made. Even though Ferro and Harman (2010) introduced
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the idea of a GoP and how it could have been central to the decomposition of system component
performances, they did not come up with a fully-fledged methodology for analysing such data and
breaking down component performances, which is instead the contribution of the present work.

More recently, the proliferation of open source IR systems (Trotman et al., 2012) has greatly
ameliorated the situation, allowing researchers to run systematic experiments more easily. Trotman
et al. (2014) conducted a vertical exploration of variations of two IR models while the “Open-Source
Information Retrieval Reproducibility Challenge” (Lin et al., 2016) provided several reproducible
baselines over TREC and Conference and Labs of the Evaluation Forum (CLEF) collections. Over-
all, both these efforts added a few points to the ideal GoP mentioned above, but they do not propose
any methodology for estimating the component effects. We move a step forward with respect to
these works since we propose an actual methodology for exploiting such GoPs to decompose system
performances and we rely on a much more fine-grained grid, in terms of the number of components
and IR models experimented.

Finally, on a different angle, (Ferro, 2017) exploited GLMM and ANOVA together with GoPs
as a means to study the behaviour of correlation among evaluation measures.

3. Methodology

We aim to decompose the effects of different components on the overall system performances.
In particular, we are interested in investigating the effects of the components commonly present
in almost any IR system: stop lists; Lexical Unit Generator (LUG), namely stemmers or n-grams;
and IR models, such as the vector space, the probabilistic model or the language models. For a
detailed survey and description of the main IR system components refer to (Croft et al., 2009).

The methodology we adopt relies on the Cranfield paradigm (Cleverdon, 1997) based on exper-
imental collections C = (D,T,GT ) consisting of a set of documents D, a set of topics T , and the
ground-truth GT which, for each topic t ∈ T , determines the documents d ∈ D relevant for that
topic.

We create a Grid of Points (GoP) on an experimental collection by running all the IR systems
resulting from all the possible combinations of the considered components (stop list, LUG, IR
model); stemmers and n-grams are considered as mutually exclusive LUG components, thus we do
not consider IR systems using both stemmer and n-grams.

We employ a GLMM to explain the variation of a dependent variable (“Data”) in terms of
a controlled variation of independent variables (“Model”) in addition to a residual uncontrolled
variation (“Error”): Data = Model + Error.

In this context, we are interested both in single independent variables, i.e., the main effects
of the different components alone, and their combinations, i.e., the interaction effects between
components. Note that some independent variables are considered fixed effects – i.e., they have
precisely defined levels, and inferences about its effect apply only to those levels – which in our case
are different kinds of systems and components; and, some others are considered random effects –
i.e., they describe a randomly and independently drawn set of levels that represent variation in a
clearly defined wider population – which in our case are the topics.

In our experimental design, systems and their components are the experimental conditions
(factors) while topics are the subjects. Given that each topic is processed by each system, we have
a repeated measure design which has the advantages of reducing the error variance due to the
greater similarity of the scores provided by the same subjects and increasing the statistical power
for a fixed number of subjects.
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The adopted design is the one typically used when ANOVA is applied to the analysis of the
system performances in a track of an evaluation campaign, as in (Banks et al., 1999; Tague-Sutcliffe
and Blustein, 1994), where the subjects are the topics and the factors are the system runs. Basically,
in this context ANOVA is used to determine which experimental condition dependent variable score
means differ, i.e. which systems are significantly different from others. On top of this and unlike
the state-of-the-art, we are also interested in determining which proportion of variation is due to
the topics and which one to the systems. Furthermore, we also aim to determine the proportion
of variance explained by each component of a system.

3.1. Analysis of component effects

We define a three factors design where we manipulate factors A, B and C corresponding to
the stop lists, the LUG and the IR models respectively; with this design we can also study the
interaction between component pairs as well as the third order interaction between them.

In this design the systems are decomposed into three main constituents: (i) factor A (stop lists)
with p levels where, for instance, A1 corresponds to the absence of a stop list, A2 to the indri stop
list, A3 to the terrier stop list and so on; (ii) factor B (LUG) with q levels where B1 corresponds
to the absence of a LUG, B2 to the Porter stemmer, B3 to the Krovetz stemmer and so on; (iii)
factor C (IR models) with r levels where C1 corresponds to BM25, C2 to TF*IDF and so on.

The full GLMM for the described factorial ANOVA for repeated measures with three fixed
factors (A, B, C) and a random factor (T

′
) is:

Yijkl =µ···· + τi + αj + βk + γl︸ ︷︷ ︸
Main Effects

+αβjk + αγjl + βγkl + αβγjkl︸ ︷︷ ︸
Interaction Effects

+ εijkl︸︷︷︸
Error

(3.1)

where: Yijkl is the score of the i-th subject in the j-th, k-th, and l-th factors; µ···· is the
grand mean; τi is the effect of the i-th subject τi = µi··· − µ···· where µi··· is the mean of the i-th
subject; αj = µ·j·· − µ···· is the effect of the j-th factor, where µ·j·· is the mean of the j-th factor;
βk = µ··k· − µ···· is the effect of the k-th factor, where µ··k· is the mean of the k-th factor; and,
γl = µ···l − µ···· is the effect of the l-th factor where µ···l is the mean of the l-th factor; εijkl is the
error committed by the model in predicting the score of the i-th subject in the three factors j, k, l.
It consists of all the interaction terms between the random subjects and the fixed factors, such
as (τα)ij , (τβ)ik and so on, plus the error εijkl which is any additional error due to uncontrolled
sources of variance. As in the single factor design to calculate interaction effects with the subjects,
you need to have replicates; when there is only one score per subject per factor the factor εijkl
cannot be separated from the interaction effects with the random subjects.

3.2. Analysis of component and measure effects

We define a four factor design which extends the three factors one defined above. The first
three factors remain the same – i.e., A = stop list, B = lug, and C = model; whereas, the fourth
factor D is represented by the different evaluation measures. Each available evaluation measure
represents a different angle to weight and understand system performances. The goal of this new
model is twofold: (i) to further dig into the components contribution without taking into account
the influence of the adopted evaluation measure; (ii) to understand how measures interact with the
different components.

Different evaluation measures are not directly comparable with each other, as you would expect
from factorial design above, because they embed different user models. Therefore, even though all
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the measure scores are in the range [0, 1], AP = 0.20 is not the same as ERR = 0.20 because they
exploit the [0, 1] scale in different ways. In order to smooth these differences and make the scores
more directly comparable, we normalized them by the maximum value achieved on the dataset and
then reasoned in terms of ratios.

Basically, with this design the system variance is decomposed into factor A represented by the
p levels of the stop lists, factor B with the q levels of the LUG, factor C with the r levels of the IR
models and factor D with the s levels of the measures.

Yijklm =µ····· + τi + αj + βk + γl + δm︸ ︷︷ ︸
Main Effects

+

αβjk + αγjl + αδjm + βγkl + βδkm + γδlm︸ ︷︷ ︸
Interaction Effects

+ εijklm︸ ︷︷ ︸
Error

(3.2)

where: Yijklm is the score of the i-th subject in the j-th, k-th, l-th, and m-th factors; µ····· is
the grand mean; τi is the effect of the i-th subject, i.e. topics; αj is the effect of the j-th factor,
i.e. stop lists; βk is the effect of the k-th factor, i.e. stemmers or n-grams; γl is the effect of the
k-th factor, i.e. IR models; δm is the effect of the m-th factor, i.e. measures.

For this analysis, we also consider the interaction effects among these factors, e.g. γδlm is
the interaction between an IR model and a measure. We do not consider third and fourth order
interactions such as αβγjkl reporting the interaction between stop lists, LUGs and IR models,
because they are rarely significant.

Finally, εijklm is the error committed by the model in predicting the score of the i-th subject
in the four factors j, k, l,m.

3.3. Effect size, multiple comparisons, and power analysis

We are not only interested in determining whether the factor effect is significant, but also
which proportion of the performances variance is due to it, that is we need to estimate its effect-
size measure (Strength of Association (SOA)). The SOA is a “standardized index and estimates a
parameter that is independent of sample size and quantifies the magnitude of the difference between
populations or the relationship between explanatory and response variables” (Sakai, 2014). We use
the ω̂2

〈fact〉 SOA:

ω̂2
〈fact〉 =

dffact(Ffact − 1)

dffact(Ffact − 1) +N
(3.3)

which is an unbiased estimator of the variance components associated with the sources of variation
in the design. Ffact is the F-statistics and dffact are the degrees of freedom for the factor while N
is the total number of samples.

The common rule of thumb (Rutherford, 2011) when classifying ω̂2
〈fact〉 effect size is: 0.14 and

above is a large effect, 0.06–0.14 is a medium effect, and 0.01–0.06 is a small effect. ω̂2
〈fact〉 values

could happen to be negative and in such cases they are considered as zero.
When conducting experiments, two types of error may happen. A Type I error occurs when a

true null hypothesis is rejected and the significance level α is the probability of committing a Type
I error. A Type I error occurs when a true null hypothesis is rejected and the significance level
α is the probability of committing a Type I error. We keep Type I errors controlled by applying
the Tukey Honestly Significant Difference (HSD) test with a significance level α = 0.05. Tukey’s
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method is used in ANOVA to create confidence intervals for all pairwise differences between a given
factor level means while controlling the family error rate.

A Type II error occurs when a false null hypothesis is accepted and it is concerned with the
capability of the conducted experiment to actually detect the effect under examination. Type II
errors are often overlooked because if they occur, although a real effect is missed, no misdirection
occurs and further experimentation is very likely to reveal the effect.

The power is the probability of correctly rejecting a false null hypothesis when an experimental
hypothesis is true

Power = 1− β

where β (typically β = 0.2) is the Type II error rate.
To determine the power of an experiment, we compute the effect size parameter:

φ =

√√√√N ·
ω̂2
〈fact〉

1− ω̂2
〈fact〉

(3.4)

and we compare it with its tabulated values for a given Type I error rate α to determine β.

4. Grid of points, measures and setup

4.1. Grid of points (GoP)

We considered three main components of an IR system: stop list, LUG and IR model. We
selected a set of alternative implementations of each component and, by using the Terrier2 open
source system (Macdonald et al., 2012), we created a run for each system defined by combining
the available components in all possible ways. The components we selected are:

• Stop list: nostop, indri, lucene, snowball, smart, terrier;

• LUG: nolug, weak Porter, Porter, snowball Porter, Krovetz, Lovins, 4grams, 5grams, 6grams,
7grams, 8grams, 9grams, 10grams;

• Model: BB2, BM25, DFIZ, DFRee, DirichletLM, DLH, DPH, HiemstraLM, IFB2, InB2,
InL2, InexpB2, Js KLs, LemurTFIDF, LGD, PL2, TFIDF.

The stoplists differ from each other by the number of terms composing them; specifically, indri
has 418 terms, lucene has 33 terms, snowball has 174 terms, smart has 571 terms and terrier 733
terms.

As for the LUG component, we consider two distinct classes: stemmers and n-grams. Stemmers
can be classified into aggressive and weak stemmers. One of the first stemmers developed for IR
systems is Lovins; this is an iterative affix removal stemmer which removes the longest possible
string of characters from a word, according to a set of rules. Lovins is the most aggressive stemmer
amongst those we consider. The Porter algorithm and its variants (snowball and a weaker version)
is inspired by the Lovins algorithm, but it adds machine-readable dictionaries and well-defined
rules for morphology. The Krovetz algorithm adds a word-disambiguation algorithm to the Porter
stemmer. n-grams are LUG components alternative to the stemmer which can be defined as a

2http://www.terrier.org/
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contiguous sequence of n items from a given sequence of text. Character n-grams are a language-
independent alternative to complex language-specific tokenization. We consider seven different
n-grams lengths ranging from n = 4 to n = 10; we did not employ 3-grams or smaller lengths
because they are very ineffective for the English language and the runs employing this component
would be treated as outliers in the experiments.

The models we employ are classified into the three main approaches currently adopted by
search engines: (i) the vector space model: TFIDF and LemurTFIDF; (ii) the probabilistic model
– including the BM25 models and the Divergence From Randomness (DFR) models, and in par-
ticular: BB2 (Bose-Einstein model), DFIZ, DFRee (hyper-geometric model), DLH (parameter free
DFR model), DPH (DFR model with Popper’s normalization), IFB2 (ITF with Bernoulli’s pro-
cesses), InB2 (a variant of the PL2), InL2 (IDF model for randomness with Laplace succession),
InexpB2 and PL2 (Poisson estimation using Laplace succession)); and, (iii) the language models,
and in particular: DirichletLM (LM with Bayesian smoothing and a Dirichlet Prior), HiemstraLM
(Hiemstra’s LM), Js KLs (Jefrreys’ divergence with Kullback Leibler’s divergence) and LGD.

We consider the stemmers and n-grams and mutually exclusive LUG components because they
represent very different approaches to lexical unit generation and, typically, without prejudice to
the other components, they lead to alternative pipelines. Thus, we end up with two distinct groups
of runs, one using the stemmers and one using the n-grams; the nolug component is common to
both these groups instantiated as nostemmer for the stemmer group and as nograms for the n-
grams one. The stemmer group defines a 6× 6× 17 factorial design with a GoP consisting of 612
runs; the n-grams group defines a 6× 8× 17 factorial design with a grid of points consisting of 816
runs.

Note that the above GoPs consider whole components and do not further break them down
into sub-components. For example, IR models are not broken down into their constituents, as
studied by Zobel and Moffat (1998). In addition, for IR models, we use the default setup of their
parameters, as provided by Terrier, and we do not explore here variations of this setup, which
would lead to much bigger GoPs: this is left for future work.3.

4.2. Experimental collections

We used the following standard and shared collections: TREC 07 Adhoc track, TREC 08 Adhoc
track, TREC 09 Web track and TREC 10 Web track. TREC 07 and TREC 08 focus on a news
search task and adopt a corpus of about 528K news documents (i.e., disk 4 and 5 of the TIPSTER
collection minus the Congressional Record); both TREC 07 and 08 provide 50 different topics and
a set of binary relevance judgments – i.e., given a topic t ∈ T a document d ∈ D is judged either
not relevant or relevant. TREC 09 and TREC 10 focus on a Web search task and adopt a corpus of
1.7M Web pages (i.e., the WT10g collection); both TREC 09 and 10 are composed of 50 different
topics and a set of graded relevance judgments – i.e., not relevant, relevant and highly relevant.

We conducted the experiments on two collections composed of 100 topics each, one created by
combining the topics of TREC 07 with those of TREC 08 and the topics of TREC 09 with those
of TREC 10.

4.3. Evaluation measures

We evaluated the GoPs by employing nine different evaluation measures: AP, P@10, Rprec,
RBP, nDCG, nDCG@20, ERR, ERR@20 and Twist.

3To ease reproducibility, the code is available at: http://gridofpoints.dei.unipd.it/.
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Average Precision (AP) represents the “gold standard” measure in IR, known to be stable and
informative, with a natural top-heavy bias and an underlying theoretical basis as approximation
of the area under the precision/recall curve.

Precision at Ten (P@10) is the classic precision measure with cut-off at the first 10 retrieved
documents. This measure is defined for binary relevance judgments and is particularly well-suited
for evaluating Web tasks.

RPrec is precision calculated with cut-off at the recall base – i.e., the total number of relevant
documents for a given topic determined by the ground truth.

Rank-Biased Precision (RBP) (Moffat and Zobel, 2008) is built around a user model based on
the utility a user can achieve by using a system: the higher, the better. The model it implements
is that a user always starts from the first document in the list and then s/he progresses from one
document to the next with a probability p. We calculated RBP by setting p = 0.8 which represent
a good trade-off between a very persistent and a remitting user.

These measures are based on binary relevant judgments and thus can be naturally applied to
TREC 07 and TREC 08. For TREC 09 and TREC 10, we performed a lenient mapping of the
relevance judgments by considering as relevant both highly relevant and relevant documents.

Normalized Discounted Cumulated Gain (nDCG) (Järvelin and Kekäläinen, 2002) is the nor-
malized version of the widely-known DCG which discounts the gain provided by each relevant
retrieved document proportionally to the rank at which it is retrieved. nDCG is defined for graded
relevance judgments and it is one of the most common measures used for evaluating Web search
tasks. For TREC 07 and 08, we calculated nDCG in a binary relevance setting by giving gain
0 to non-relevant documents and gain 5 to the relevant ones; whereas, for TREC 09 and TREC
10 we assign a weight 0 to non-relevant documents, 5 to the relevant ones and 10 to the highly
relevant ones. Furthermore, we used a log10 discounting function. nDCG is calculated up to the
last relevant retrieved document, whereas nDCG@20 is calculated up to rank position 20.

Expected Reciprocal Rank (ERR) (Chapelle et al., 2009) is a measure defined for graded rele-
vance judgments and for evaluating navigational intent. It is particularly top-heavy since it highly
penalizes systems placing not-relevant documents in high positions. For TREC 07 and TREC 08,
we calculated ERR in a binary relevance setting as we have done for nDCG. ERR is calculated
up to the last relevant retrieved document, whereas ERR@20 is calculated with cut-off at 20, thus
focusing on the top retrieved documents.

Twist (Ferro et al., 2016) is a measure for informational intents, which handles both binary
and graded relevance. Twist adopts a user model where the user scans the ranked list from top to
bottom until s/he stops, and returns an estimate of the effort required by the user to traverse the
ranked list. Twist evaluates systems from the viewpoint of the avoidable effort for their users by
accounting for their fatigue while visiting a non-ideal ranking of documents; thus, it evaluates IR
systems from a different angle i.e., user effort than other measures such as nDCG and ERR which
are more focused on user’s gain.

5. News search analysis

We use the three-way GLMM of Section 3.1 to carry out the analysis of IR system components.
In the following, we focus on AP as reference measure; the analysis across measures is reported in
Section 7.

Table 1 reports the estimated ω2 SOA for all the main and interaction effects and, within
parentheses, the p-values for all the ANOVA three-way tests we conducted; this table presents the
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results divided by search task (news search in the upper part or Web search in the lower part) and,
within a search task, by LUG group (stemmers or n-grams).

For the stemmers group, we can see that stop lists are a medium size effect followed by IR
models and stemmers, which are both small size effects. All second- and third-order interactions
between components are not significant with the notable exception of the Stop lists * IR models
interaction, which is a medium size effect and the biggest among all the effects. Overall, this
suggest that stops lists are a key component for the stemmers case and that they even influence
the IR models.

From the main effects plot of the stop lists in the upper part of Figure 1, we can see that
there is a substantial difference between systems employing or not a stop list while the impact of
different stop lists is less marked, even though the corresponding Tukey HSD plot shows that the
lucene stop list, i.e. the shortest one, is not in the top group, thus marking a significant loss in
performances with respect to the others.

When it comes to stemmers, the main effects and the Tukey HSD plots show that the best
performances are obtained by the krovetz stemmer, followed by the Porter-based stemmers; sys-
tems employing the lovins stemmer or not employing a stemmer at all report significant lower
performances, even if lovins is still significantly better than no stemming.

Finally, as far as IR models are concerned, the top group is composed, in descending order,
by inexpb2, inb2, and inl2, which are three variations of the DFR probabilistic model; it is also
possible to identify a second group including the tfidf (a vector space model), jskls (a second
generation DFR model) and lgd (a bridge between language and DFR models). It is interesting
to note that, for news search, the effect of bm25 alone is not in the first two top performing groups,
despite the fact that it is one of the widest employed models in IR and often the default choice
when employing off-the-shelf search engines.

The interaction plot in the upper right of Figure 1 shows the joint effects of stop lists and IR
models: we can see that there is some interaction, in general, due to the fact that lines tend to
cross but, mostly, we can see that there are IR models which significantly suffer from the lack of
a stop list, namely ifb2, bb2, pl2, bm25, and dfiz. This means that a generally well performing
model, as bm25 is, changes performances a lot with or without a stop list – e.g. Mean Average
Precision (MAP) 0.2381 with lucene stop list and krovetz stemmer versus MAP 0.1575 without
stop list and without krovetz stemmer; it also implies that the same model may perform worse than
a generally lower performing model, but less influenced by stop lists, as in the case of dirichletlm
– MAP 0.1967 with lucene stop list and krovetz stemmer and MAP 0.1910 without stop list and
without krovetz stemmer.

In particular, the small interaction between stop lists and language models has been argued
by Zhai and Lafferty (2004): “the effects of stop word removal should be better achieved by
exploiting language modeling techniques”. The interaction plot in Figure 1 supports this claim
since the effect of the stop list on hiemstralm is almost null and on dirichletlm is very small.
Moreover, there is a greater interaction between the stop list and the lgd model, probably because
this is a hybrid model that bridges between language models and the DFR models, which typically
exhibit a sizable interaction with stop lists. Overall, we observe a kind of increasing interaction
between stop lists and the family of probabilistic models: almost no interaction for the language
models; some interaction for the DFR models; and, a lot of interaction for the classic bm25 model.
Finally, the vector space model, namely tfidf and lemurtfidf, shows almost no interaction with
the stop lists.

10



Figure 1: TREC 07-08 news search: main effects, interaction effects, and Tukey HSD plots for average precision on
stemmers and n-grams groups.
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The interaction between stemmers and IR models reported in Table 1 is almost null and not
significant but, as we will discuss in Section 7, we are lacking the statistical power to be able to
detect it. Nevertheless, if we consider the interaction plot for stemmers * IR models shown in
Figure 1, with the previous caveat about the size and significance of the effect, we notice that all
the IR models are somehow affected by the use of a stemmer and some of them – bm25, hiemstralm,
inb2, inl2, inexpb2, lemurtfidf – seems to be affected more by the lack of a stemmer.

Overall, this supports the importance of the stop lists noted above and it is quite a striking
result since, nowadays, it is commonly thought that stop lists were more useful in the past to reduce
the index size and skip useless calculations for efficiency reasons while their impact on effectiveness
should have been limited and basically hidden by IR models, since they assign almost zero weight
to stop words.

For the n-grams group, we can see from Table 1 that all the effects, with the exception of third
order interactions, become significant even if they are all now small size effects, compared to the
small and medium size they were in the case of the stemmers group. We can observe that the
effect of IR models becomes more pronounced than the effect of the stop lists, while n-grams have
less of an impact than stemmers, about half of the effect size. Moreover, the interaction Stop lists
* IR models is as big as the IR models effect alone and this suggests that stop lists play a central
role also in the case of n-grams. The interaction between stop lists and n-grams and IR models
and n-grams, even though significant, is almost negligible in terms of size.

From the lower part of Figure 1, as far as the main effects of stop lists are concerned, we observe
the same behaviour as in the case of stemmers: there is a marked difference between using or not
a stop list and lucene stop list is the only one outside the top group. Regarding the main effects
of n-grams, they are not effective for news search, since the top performing systems are those
not employing n-grams or those employing the 10-grams, which is a very mild form of character
sequencing. In particular, we can see that the 5-grams component is statistically as effective as the
9-grams component – i.e., they are the second best performing group; from 6- to 8-grams we can
see a progressive degradation of performances. For the IR models effect, the top group consists
of inexpb2 and inb2, while the second top group consists of lemurtfidf and inl2; therefore, in
comparison to the stemmers group, inexpb2 and inb2 confirm themselves as the top performing
approaches, while in the second groups we always find a vector space model (either tfidf or
lemurtfidf). Regarding the interaction between stop lists and IR models, we observe also in the
n-grams case a behaviour similar to that of the stemmers group: ifb2, bb2, pl2, bm25, and dfiz

models greatly suffer from the lack of a stop list.
The interaction plot of n-grams with IR models shows marked interaction. Moreover, even

though systems employing nolug perform in general better than those employing no form of char-
acter sequencing, some models benefit from employing a 4- or 5-grams component, as with bm25,
inexpb2, and lemurtfidf where the use of 5-grams increases performances with respect to not
using them.

Overall, we can appreciate that n-grams interact with IR models more than stemmers, even
though they are less effective than stemmers for English retrieval as also noticed by Büttcher et al.
(2010). Moreover, stop lists play a central role both alone and in conjunction with IR models and
their importance is basically independent of the LUG component adopted.
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Figure 2: TREC 09-10 Web search: main effects, interaction effects, and Tukey HSD plots for average precision on
stemmers and n-grams groups.
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6. Web search analysis

Table 1 shows the Web search task, which displays a trend similar to the case of the news search
tasks, even though it is more pronounced and with some notable differences we will discuss.

For the stemmer group, the stop lists and IR models yield medium size effects while the stem-
mers show a small size effect, almost negligible in this case; regarding interaction effects, the Stop
lists * IR models yields the biggest effect, which is of medium size, while all the others are not
significant.

From the main effects and Tukey HSD plots of the stop lists in Figure 2, we can see that,
again, there is a substantial difference between systems employing or not a stop list, while the top
performing stop list is terrier, i.e. the longest one, followed by a second group constituted by
snowball, smart, and indri; lucene is still the lowest performing stop lists. The fact that there
is a clearer distinction between stop lists than in the news search case, and that the longest stop
list is the top performing one, lead us to hypothesize that the noisy Web context benefits more
from the aggressive filtering of a longer stop list.

As far as stemmers are concerned, the Porter-based stemmers constitute the top group in the
case of Web search, while krovetz and lovins stay together in the second group, well above the
group employing no stemmer at all. With respect to the news search case, the less aggressive
stemmers perform better for Web search and this may be motivated again by the hypothesis that
the noisy Web context benefits more from avoiding further noise due to over-stemming.

Regarding IR models, the top group is constituted by dph, a DFR probabilistic model, and
jskls, a second generation DFR model requiring no parameter tuning, while the second group
includes dfree, inexpb2, inl2, and tfidf; therefore, we observe a kind of swap between the first
and the second group with respect to the news search case.

The interaction plot in the upper right of Figure 2 shows the joint effects of stop lists and IR
models: it shows even more interaction with respect to the news search case and the number of
IR models which severely suffer from a lack of a stop list increases – now ifb2, bb2, pl2, dfiz,
dlh, and bm25 – even though in this case bm25 is much less impacted from the lack of a stop list.
Moreover, language models exhibit a higher interaction with stop lists for the Web search task
than for news search, in particular for dirichletlm; by contrast, both the vector space models,
i.e. tfidf and lemurtfidf, confirm a low interaction with the stop lists as observed for the news
search task.

Regarding the interaction between stemmers and IR models, bearing in mind the caveats
pointed out in the previous section, in the Web search scenario a number of models seem to
be affected by the lack of a stemmer, namely bm25, inb2, inl2, inexpb2, jskls, lemurtfidf, lgd,
pl2, and tfidf. Moreover, in this case, the difference in interaction between not using and using
a stemmer is higher than the difference between the use of different stemmers.

For the n-grams group, all the effects, apart from third order interactions, are significant and
the IR models yield the biggest effect, a medium size one, followed by n-grams, Stop lists * IR
models interaction, and Stop lists, which are all small size effects. Regarding the news search task,
we can observe the more pronounced role of the IR Models and n-grams effects, while the impact of
stop lists is a bit reduced, with the interaction Stop lists * IR models still being the second biggest
effect. From the lower part of Figure 2, we can note again the impact of using a stop list also in
the case of n-grams with terrier, which is the top performing stop list, followed by all the others
now in the same second group. This supports the hypothesis of the benefits of a longer stop list in
the noisy Web context, made even noisier by the application of n-grams. The n-grams component
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Table 2: Statistical power (1 − β error probability) for news search (TREC 07-08) and Web search (TREC 09-10)
with α = 0.05. High power (0.90-1.00) is highlighted in dark blue; good power (0.80-0.90) is in medium blue; low
power (0.70-0.80) is in light blue; insufficient power (below 0.70) is in light gray. SL×M is an abbreviation for the
Stop list * IR models and LUG×M for the LUG * IR models.

TREC 07-08 news search
LUGs Power AP P@10 R-

prec
RBP nDCG

@20
nDCG ERR

@20
ERR Twist

Stemmers

Stop Lists 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Stemmers 0.82 0.46 0.75 0.46 0.59 0.99 0.13 0.12 0.91
IR Models 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SL×M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LUG×M 0.10 0.18 0.08 0.13 0.09 0.09 0.14 0.14 0.14

N-grams

Stop Lists 0.74 0.85 0.83 0.88 0.88 0.95 0.76 0.77 0.92
N-grams 0.63 0.30 0.75 0.30 0.62 0.89 0.36 0.36 0.83
IR Models 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SL×M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LUG×M 0.96 0.86 0.92 0.90 0.85 1.00 0.81 0.82 0.98

TREC 09-10 Web search

Stemmers

Stop Lists 1.00 0.98 0.98 1.00 1.00 1.00 0.88 0.89 1.00
Stemmers 0.24 0.09 0.13 0.08 0.11 0.64 0.07 0.07 0.16
IR Models 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SL×M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LUG×M 0.11 0.12 0.12 0.10 0.12 0.15 0.09 0.09 0.11

N-grams

Stop Lists 0.71 0.74 0.65 0.78 0.79 0.99 0.53 0.54 0.89
N-grams 0.99 0.93 0.98 0.98 0.96 1.00 0.87 0.88 1.00
IR Models 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SL×M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LUG×M 0.79 0.95 0.67 0.97 0.98 1.00 0.76 0.76 0.85

always performs significantly worse than no n-grams at all and it seems to be more harmful for
Web search than for news search.

Regarding IR models, the top group contains lemurtfidf, a vector space model, and inexpb2,
a DFR probabilistic model, which were, respectively, in the second and the first top group in the
case of news search. If we look at the interaction between stop lists and IR models, we can observe
the same list of models suffering from the lack of a stop list, although bm25 is less impacted than
in the previous case. The interaction plot between n-grams and IR models shows that there is
no model benefiting from n-grams, unlike the news search case where some models benefited from
using a 4- or 5- grams component.

7. Power analysis and measures analysis

Table 1 also reports the estimated ω2 SOA for all the other considered measures; this emphasises
the difference between the various measures when it comes to breaking down component effects.

In general, all the measures agree on which effects are not significant, for both the stemmers
and the n-grams groups and both the news and Web search tasks, with the only exception being
P@10 where the Stemmers*IR models interaction is significant for the stemmers group in the news
search tasks, even though its effect size is almost negligible.

It is interesting to note that the effect sizes with nDCG and Twist are bigger than with the
other measures; in particular, nDCG and Twist greatly enhance the impact of stop lists, IR models
and their interaction as well as putting more emphasis on LUG, both stemmers and n-grams. On
the other hand, ERR and ERR@20 show the opposite behaviour by reducing the effect size of these
components with respect to AP; indeed, for these measures the effect size of stop lists is small and
not medium, as it is with all the other measures, and the impact of LUG, both stemmers and
n-grams, becomes almost negligible.

This suggests that not all the measures are equally good at detecting differences between the
components and they have quite a diverse perception of what the internals of an IR system are.
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Table 3: Summary of component and measure effects for TREC 07-08 and TREC 09-10. Each cell reports the
estimated ω2 SoA for the specified effects and, within parentheses, the p-value for those effects, and their statistical
power. Not significant effects are in light gray; small size effects are in light blue; medium size effects are in blue;
and, large size effects are in dark blue. High power (0.90-1.00) is highlighted in dark blue; good power (0.80-0.90) is
in medium blue; low power (0.70-0.80) is in light blue; insufficient power (below 0.70) is in light gray.

Lexical Units TREC 07-08 News search TREC 09-10 Web search

ω̂2 power ω̂2 power

Stemmers

Stop Lists 0.0408 (0.00) 0.96 0.0264 (0.00) 0.82
Stemmers 0.0067 (0.00) 0.24 0.0009 (0.00) 0.07
IR Models 0.0277 (0.00) 1.00 0.0377 (0.00) 1.00
Measures 0.4397 (0.00) 1.00 0.2597 (0.00) 1.00
Stop Lists×Stemmers 0.0001 (0.00) 0.06 -0.0000 (0.91) 0.10
Stop Lists×IR Models 0.0906 (0.00) 1.00 0.0598 (0.00) 1.00
Stop Lists×Measures 0.0038 (0.00) 0.54 0.0014 (0.00) 0.17
Stemmers×IR Models 0.0002 (0.00) 0.31 0.0001 (0.00) 0.07
Stemmers×Measures 0.0004 (0.00) 0.09 0.0005 (0.00) 0.09
IR Models×Measures 0.0038 (0.00) 0.13 0.0040 (0.00) 0.13

N-grams

Stop Lists 0.0154 (0.00) 0.54 0.0118 (0.00) 0.42
N-grams 0.0053 (0.00) 0.23 0.0178 (0.00) 0.73
IR Models 0.0267 (0.00) 1.00 0.0388 (0.00) 1.00
Measures 0.3784 (0.00) 1.00 0.2245 (0.00) 1.00
Stop Lists×N-grams 0.0008 (0.00) 0.10 0.0010 (0.00) 0.13
Stop Lists×IR Models 0.0456 (0.00) 1.00 0.0339 (0.00) 1.00
Stop Lists×Measures 0.0017 (0.00) 0.21 0.0007 (0.00) 0.10
N-grams×IR Models 0.0035 (0.00) 0.83 0.0034 (0.00) 0.82
N-grams×Measures 0.0013 (0.00) 0.20 0.0008 (0.00) 0.13
IR Models×Measures 0.0031 (0.00) 0.81 0.0041 (0.00) 0.93

To further investigate this issue, we compute the statistical power using the G*Power tool4:
Table 2 reports the statistical power of the main effects and the most interesting interaction effects.
We can observe that, in general, we have good or high power in most of the cases, which ensures we
are able to actually detect the effects we are looking for. In particular, the best and most robust
measures in terms of statistical power are nDCG, Twist and AP, since they exhibit enough power
in almost all the circumstances; on the other hand, the lower performing measures are ERR and
ERR@20, closely followed by other top-heavy measures such as P@10, nDCG@20 and RBP.

More in detail, we can note how ERR and ERR@20 do not have enough power to detect the
LUG effects, both stemmers and n-grams on both news and Web search tasks, and how they also
lack some power for detecting stop lists effects when n-grams are employed. This confirms that
ERR and its variants are not robust measures since they require more topics than other measures
to detect reliable effect sizes (Sakai, 2016).

In general, stemmer effects are the most difficult to detect for most measures, the Web search
task being more challenging than news search. It is generally thought that stemming is not par-
ticularly important for English retrieval, especially with respect to other European languages, but
these analyses show that we may actually be in the situation of not properly detecting its effects
due to the lack of power. Since p-values and significance are affected by the sample size and we
would need to increase it to obtain enough power, it may be also worth reconsidering the stemmers
* IR models interaction which might not be properly detected in the current settings.

To further investigate the impact of measures, we employ the four-way GLMM of Section 3.2 to
carry out the analysis of IR system components by considering the measures as a factor contributing
to explain the system variance. In Table 3 we report the estimated ω2 SOA for all the main and
interaction effects, the p-values for all the ANOVA four-way tests we conducted and the statistical
power. This table presents the results divided by experimental collection and, within a collection,
by LUG group.

4http://www.gpower.hhu.de/
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The most noticeable phenomenon is the huge proportion of variance explained by the measures
whose effect sizes are up to three orders of magnitude bigger than those of the IR components and
that the interaction between components and measures is always significant even if we have a small
size effect. Furthermore, this analysis allows us to point out the contribution of IR components and
their interactions, without considering the influence of the evaluation measures. In this respect,
the main trends observed in the previous sections are supported: for the news search task, stop
lists yield the biggest effect, followed by IR models and stemmers or n-grams; and, for the Web
search task, IR models yield the biggest effect followed by n-grams, stop lists and stemmers.
It is interesting to note that, independently of the measure effects, almost all the second-order
interactions are now significant even though of small/negligible size.

Regarding the power, we observe a loss of power with respect to the 3-way analysis of Sections 5
and 6. This gives us a feeling about how much the variability between measures in detecting
component effects actually impacts our analyses and the conclusions we draw.

8. Conclusions and Future Work

We addressed a previously unsolved issue in the IR evaluation methodology and proposed
an innovative solution to break-down the performances of an IR system into the effects of its
components, in order to understand their contributions to the overall performances as well as their
interactions.

To this end, we developed an analysis methodology consisting of two elements: a Grid of
Points (GoP) created on standard experimental collections, where all the combinations of system
components under examination are considered; and a GLMM to decompose the contribution of
these components to the overall system variance, paired with some graphical tools to easily assess
the main and interaction effects. Note that such a controlled experimental setting is typically not
available in evaluation campaigns, such as TREC, where participating systems do not constitute
a systematic sampling of all the possible combinations of components and often are not even
described in such detail to know exactly what components have been used.

We conducted a thorough experimentation on TREC collections, considering two different tasks
– news search and Web search – and adopting several evaluation measures. For each task, we created
GoPs consisting of nearly all the state-of-the-art stop lists, stemmers and n-grams, and IR models
available for English retrieval.

We found that the most prominent effects are those of stop lists and IR models, as well as their
interactions, while stemmers and n-grams play a smaller role. As a general observation, we found
that linguistic resources play a prominent role on English retrieval and that their interaction with
IR models can have such a big influence to completely change the model performances.

We also highlighted the lack of some statistical power to properly detect the effects of stemmers
and their interaction with IR models. This might be a consequence of the common knowledge that
stemming does not have much impact on English retrieval. Nevertheless, these conclusions should
be further validated with a sample size big enough to reliably detect these effects.

Finally, we have seen that measures explain a large portion of system variance and that different
measures detect system and component effects differently. We conclude that not all the measures
are suitable for all the cases, as for ERR and ERR@20 which almost fail to detect the stemmer
effect. On the other hand, nDCG, Twist and AP proved themselves to be stable and robust, being
able to detect components effect size with good or even high statistical power.
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As far as future work is concerned, we plan to extend the proposed methodology in order to also
be able to capture interaction between topics/systems and topics/components. Indeed, to estimate
interaction effects, more replicates would be needed for each (topic, system) pair, as Robertson
and Kanoulas (2012) simulated, and they are not possible in the present settings, since running
the same system on the same topics more than once produces exactly the same results.

Furthermore, we will investigate how to apply the proposed methodology in the context of
the analysis of MultiLingual Information Access (MLIA) components. We have already started to
prepare GoPs in many European languages using CLEF collections (Ferro and Silvello, 2016b). To
study them, we need to extend the current methodology to allow for comparisons across languages.
Indeed, unlike the case handled in this paper, within each component family, we are actually
experimenting with components that differ from language to language, e.g. an aggressive French
stemmer is intrinsically different from a German one. As a consequence, this setting may require a
GLMM which makes use of random effects instead of the fixed ones currently used for representing
the various components.

List of Acronyms

ANOVA ANalysis Of VAriance

AP Average Precision

CLEF Conference and Labs of the Evaluation Forum

DCG Discounted Cumulated Gain

DFR Divergence From Randomness

ERR Expected Reciprocal Rank

GLMM General Linear Mixed Model

GoP Grid of Points

HSD Honestly Significant Difference

IR Information Retrieval

LUG Lexical Unit Generator

MAP Mean Average Precision

MLIA MultiLingual Information Access

nDCG Normalized Discounted Cumulated Gain

RBP Rank-Biased Precision

SOA Strength of Association

TREC Text REtrieval Conference
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