Keyword-based access to relational data:
To reproduce, or to not reproduce?

Alex Badan, Luca Benvegnii, Matteo Biasetton, Giovanni Bonato, Alessandro
Brighente, Stefano Marchesin, Alberto Minetto, Leonardo Pellegrina, Alberto
Purpura, Riccardo Simionato, Matteo Tessarotto, Andrea Tonon, and
Nicola Ferro

University of Padua, Italy
{alex.badan, luca.benvegnu.2, matteo.biasetton, giovanni.bonato,
alessandro.brighente, stefano.marchesin, alberto.minetto,
leonardo.pellegrina, alberto.purpura, riccardo.simionato.1,
matteo.tessarotto.l, andrea.tonon.3}@studenti.unipd.it
ferro@dei.unipd.it

Abstract. We investigate the problem of the reproducibility of keyword-
based access systems to relational data. These systems address a chal-
lenging and important issue, i.e. letting users to access in natural lan-
guage databases whose schema and instance are possibly unknown. How-
ever, neither there are shared implementations of state-of-the-art algo-
rithms nor experimental results are easily replicable. We explore the
difficulties in reproducing such systems and experimental results by im-
plementing from scratch several state-of-the-art algorithms and testing
them on shared datasets.

1 Introduction

Structured data are an intrinsic and pervasive constituent of Big Data. Raw
figures estimate the existence of about 14 billion raw tables, coming from 5.4
million schemas and comprising more than 5.4 million attributes [8] and Gartner
puts the relational database market at $26 billion with about 9% annual growth
for an expected $40 billion market in 2018. The Deep Web alone is estimated to
be 500 times the size of the surface or indexable Web [4,19] while [7] estimates
in excess of one billion structured data sets as of February 2011: more than 300
million sources just come from a subset of all English-language HTML tables [8]
and HTML lists [12], a total that does not account for the non-English Web.
Structured queries are not end-user oriented and far away from a natural
expression of user information needs by means of keywords [6,20], given that
their formulation is based on a quite complex syntax and requires some knowl-
edge about the structure of the data to be queried. Furthermore, structured
queries are issued assuming that a correct specification of the user information
need exists and that answers are perfect — i.e. they follow the “exact match”
search paradigm. On the other hand, end-users are more oriented towards a
“best match” search paradigm where their often vague information needs are

progressively refined by the search process itself. Keyword-based access to re-
lational data [21] is the key technology to lower the barriers of access to such
huge amounts of structured data since it matches user keywords or their inter-
pretations to the data structures and domains of selected attributes in order to
retrieve and rank database tuples according to their degree of relevance to user
information needs. Over the past years, these facts triggered the research com-
munity and big data technology vendors to put a lot of effort into developing
new approaches for keyword search over structured databases and it is still a
primary research and industrial concern [1].

One of the major obstacles to the take up of keyword-based access systems
is the lack of a fully-fledged reference architecture [3] which allows for a coher-
ent and unifying vision of the different modules comprising such systems. As
a consequence, there is a also lack of commonly shared open source platforms
implementing state-of-the-art algorithms for keyword-based access to relational
data. This situation is very different from the case of Information Retrieval (IR)
where there are shared platforms openly available such as Lucene! or Terrier?. On
the contrary, for keyword-based access system, you mostly need to re-implement
each system from scratch, somehow “wasting” resources in re-developing exist-
ing solutions. Moreover, the lack of shared implementations also raises serious
concerns about the reproducibility [13-15] of the obtained experimental results,
since there is no way to know if a new implementation corresponds to the ref-
erence one or in which respect a new implementation is better than a reference
one.

Therefore, as part of a student project at the course on databases in the mas-
ter degree in computer engineering at the University of Padua [2], academic year
2015-2016, we considered several state-of-the-art algorithms, we implemented
them from scratch, and we experimented them on the shared datasets provided
by [10]. The goal is two-fold: (i) to understand the difficulties and pitfalls in im-
plementing these state-of-the-art algorithms; (ii) to compare against the results
of [10] for the same algorithms on the same datasets in order to get an idea of
how difficult are these results to be reproduced. All the implemented algorithms
and the experimental data are available online® as open source.

The paper is organized as follows: Section 2 describes the considered algo-
rithms, their implementation and the main issues encountered; Section 3 intro-
duces the experimental setup; Section 4 reports and discusses the experimental
results; and, Section 5 draws conclusions and discusses future work.

2 Implemented Keyword-based Search Algorithms

There are two main approaches to keyword search over relational data: graph-
based approaches model relational databases as graphs where nodes are tuples

! http://lucene.apache.org/
2 http://www.terrier.org/
3 nttps://bitbucket.org/ks-bd-2015-2016/ks-unipd/

and edges are foreign-primary key relationships between those tuples; schema-
based approaches exploit schema information to formulate SQL queries generate
from the user keyword queries. For a broader perspective on keyword search over
relational databases, please refer to [18,21].

As discussed in [2], we have implemented several state-of-the-art algorithms,
both graph-based and schema-based. Each group of students was responsible
for the implementation of a specific algorithm and all the groups worked inde-
pendently. All the algorithms are implemented in Java using PostgreSQL* as
relational engine.

BANKS-I Browsing ANd Keyword Searching I (BANKS-I) [5] is a graph-
based algorithm: it starts from the nodes containing keywords and traverses all
the edges in reverse direction, the so-called backward expansion, by using the
Dijkstra’s single source shortest path algorithm. When multiple paths intersect
at a common node r in the graph, the resulting tree with root r is examined
to check whether its leaves contain all the user keywords and it is weighted
accordingly. Then, it returns the most relevant trees, until a predefined number
of results has been reached.

We start with a pre-processing step which creates the required graph in main
memory and, then, we use this graph for answering all the different queries.
We create this graph in a schema-agnostic way by deducing the structure of a
database from its information schema; in this way our implementation is easily
portable to different databases. For each node in the graph, we save in main
memory only the identifier of a tuple while an external file is used to store the
information contained in the tuple itself, in order to avoid further queries to
the database. The graph is represented as an hash map, where keys are iden-
tifiers node/tuple and values are lists of adjacent nodes, by using the efficient
implementation provided by the fastutil library®.

[5] lacked details on how to efficiently run multiple instances of the Dijkstra’s
algorithm, even if these aspects considerably affect the memory usage and the
execution time. Moreover, some corner cases were not described: for example,
trees with nodes containing all the user keywords, where there is no need to
run the Dijkstra’s algorithm, or trees composed of only a root and a child node,
which we decided to consider as valid if both nodes contain a keyword.

We optimize the execution of multiple instances of Dijkstra’s algorithm (one
for each keyword node) by computing the next node to be returned by the
algorithm only when it is actually required. i.e. only when we have to process
a result tree to be returned, which typically involves only an handful of nodes
instead of executing the Dijkstra’s algorithm on the whole graph.

We also developed an improved version of BANKS-I by observing that it
tends to return trees containing more nodes than necessary, which are also po-
tentially irrelevant. Therefore, we penalize longer paths by incrementing the
weight of each edge proportionally to the depth of the path.

4 https://www.postgresql.org/
® http://fastutil.di.unimi.it/

BANKS-II Browsing ANd Keyword Searching II (BANKS-II) [17] improves
over BANKS-I by allowing forward search from potential roots towards other
keyword nodes. The algorithm uses two concurrent iterators, called outgoing and
ingoing: both iterators use the Dijkstra’s single source shortest path approach
but the outgoing iterator expands towards other matching sets using the forward
expansion while the ingoing iterator implements the same backward expansion
strategy of BANKS-I. In addition, BANKS-II prefers expansion of paths with
less branching by using a spreading activation mechanism, which assigns an
activation score to every explored vertex and prioritizes the most promising
paths to avoid wasteful exploration of the graph.

As in the previous case, a pre-processing step creates the required graph in
main memory using a schema-agnostic approach. In this case, instead of using
adjacency lists, we implement the graph in an object-oriented way by developing
our own Graph, Vertex, and Edge classes. In particular, Vertex objects are
stored in the Graph object using a two-layered Java HashMap: the name of a
table in the database is used as key to a second HashMap which associates an
unique identifier to a tuple Vertex. Since [17] does not mandate a specific way
of weighting edges, we assigned uniform weights.

[17] lacked some details on the update of the distances of the reached an-
cestors and the spread of activations when adding a new node (ATTACH and
ACTIVATE methods); we opted for a recursive solution. In our implementation,
the outgoing and ingoing iterators explore the Graph, by using the Java TreeSet
class and defining a custom compare method to order nodes by their activation.
We decided to use TreeSets instead of a priority queue as suggested by [17] to
update more efficiently the activation parameter of the nodes already stored in
the TreeSet. As soon as a new result for the user query is found, i.e. a rooted
tree connecting all the matching keywords, we store it in a Java PriorityQueue
which ranks the results by the overall sum of the weights of the edges in the
tree. Finally, to increase performance, we used two heuristic solutions: we set a
maximum distance of the results trees (dmax = 8) as suggested by [17] and to
avoid wasteful spreading towards the graph we set a minimum threshold value
for the activation of a node even if not explicitly stated in [17].

DPBF Dynamic Programming Best-First (DPBF) [11] is a graph-based algo-
rithm which relies on minimum cost Steiner trees to merge trees with the same
root and different sets of keywords until a tree contains all searched keywords is
found. In the pre-processing stage we create the graph from the database, using
specific knowledge of the schema, and serialize it to a file for the subsequent pro-
cessing. The graph is represented using a Java HashMap associating each Vertex
to the list of its adjacent neighbours. Furthermore, we also keep an additional
Java HashMap where keys are query keywords and values are sets of vertexes
associated to those keywords.

As in the case of the other algorithms, also [11] does not specify the actual
data structure to be used to represent the graph, even it actually impacts on
performances. Moreover, [11] presents just a specific case of graph exploration

and tree merging but it lacks details on the general case, i.e. the most important
for reproducibility purposes.

We also developed an improved version of DPBF by modifying the order
of the different steps of the algorithm. Indeed, when DPBF creates a new root
adding a level to the tree, it then merges the trees containing different keywords
under this new root. However, this step produces a large number of trees, some of
which containing the very same keywords and representing the same candidate
solution, but, in the end, the algorithm will keep only the trees with the lower
weight. Therefore, we swap these two operations: first, we merge trees and remove
all the duplicate candidate solutions with higher weight and then we add a new
root to the trees, as before. In this way we reduce the number of possible found
solutions but we converge to the optimal ones faster, especially in the case of
complex schemas.

DISCOVER-II DISCOVER-II [16] is a schema-based algorithm which uses
IR-style document-relevance ranking strategies. For each table, the IR engine
module extracts and ranks the tuple sets corresponding to the query keywords
which, in turn, are used to generate the Candidate Networks (CNs), i.e. join
of tuples which are potential answers to the issued query. The CN Generator
involves a combination of not-free and free tuple sets — the former contains at
least one keyword, the latter contains no keywords but allows us to connect not-
free tuple sets via foreign-key joins. The final step is to identify the top-k results
by combining the top-k results from each CN in a sort-merge manner.

In our implementation, we build the graph using a schema-agnostic approach,
as in the previous cases, and use a Graph class, which is a container for tuple
sets and their primary key/foreign key links. The full text extension of Post-
greSQL and generalized inverted indexes (GIN) are used to implement the IR
engine module. Moreover, to improve performance, we store the tuple sets for
a given query as a materialized view to have them readily available during the
subsequent execution of the algorithm. The Execution Engine module receives
as input the set of CNs along with the non-free tuple sets, it repeatedly contacts
the database to identify the top-k query results. We compute a bound on the
maximum possible score of a tuple tree derived from a CN and discard the CN
when this bound does not exceed the score of the already produced CNs. The
CNs for a user query are evaluated in ascending size order, so that smallest CN,
i.e. the least expensive to process and the most likely to produce high-score tuple
trees, are evaluated first.

3 Experimental Setup

We adopted the same evaluation framework of [10], which is based on the Cran-
field approach [9] widely used in IR. In particular, we used the Mondial and
IMDb datasets. Each dataset, available online®, contains 50 topics assessed us-
ing binary relevance.

5 https://www.cs.virginia.edu/~jmc7tp/resources.php

Mondial has a complex schema and consists of 28 relations, containing 17,000
tuples, 56,000 foreign keys and 12,000 unique terms for a total size of 16 Mbyte;
IMDDb has a simple schema and consists of 6 relations, containing 1,673,000
tuples, 6,075,000 foreign keys, and 1,748,000 unique terms for a total size of 459
Mbyte.

We kept only the topics where all the studied algorithms retrieved at least
one result (relevant or not). Therefore, we removed topics 31-36, 38 and 41 from
Mondial, that is we used 42 topics, and we removed topics 21-22; 24, 26-27,
29-35, 38-39, 41, 46, 48 and 50 from IMDb, that is we used 32 topics. We set a
maximum retrieval depth of 20 results.

We used a six-processor 3.33 GHz Intel(R) Xeon(R) machine with 96GB of
RAM running Java 1.8 and PostgreSQL 9.1. We set a maximum execution time
of 1 hours and maximum 15 Gbytes of memory to be used.

We used the following measures for evaluating effectiveness. Precision at Ten
(P@10) is the classic precision measure with cut-off at the first 10 retrieved
documents: Prec(n) = 130 | r;, where r; is 1 if a relevant result is found; 0
otherwise. Note that several topics have only 1 relevant document and this affects
P@10 which can only be 0.1 in this cases. Average Precision (AP) represents the
“gold standard” measure in IR, known to be stable and informative, with a
natural top-heavy bias and an underlying theoretical basis as approximation of
the area under the precision/recall curve: AP = = >, 5 Prec(i), where R is
the sets of ranks at which relevant results have been retrieved and RB is the
recall base, i.e. the total number of relevant documents.

4 Experimental Results

4.1 Efficiency

Figure 1 shows the memory occupation and execution times for running the
queries: each sub-figure reports a boxplot computed over the different queries.
Figure 1(e) reports the mean performance.

Memory-wise BANKS-I and DPBF are the most demanding algorithms on
both Mondial and IMDb while their UNIPD variants improve on this, especially
in the case of IMDb when there are lots of data and we save between 15% and 40%
in memory occupation. DISCOVER-II performs very well on Mondial and better
than BANKS-I and DPBF on IMDb. BANKS-II always outperforms all the
other algorithms, requiring a very small memory footprint. Finally, Figure 1(a)
and 1(b) show quite a bit variance in the memory occupation across the different
queries and, especially in the case of IMDb, there are quite high outliers. This
indicates that the algorithms are quite affected by the topic and collection at
hand and that the performance can vary quite a lot. The most robust algorithm
in this respect is BANKS-II, which has a very low variance.

[10] reports in Table 10 at page 38 the memory occupation for creating the
graph and the initial memory required by a search technique, so these figures does
not seem directly comparable with the memory occupation per query execution

Mondial Memory Occupation

@

IMDb Memory Occupation

=
I

e
N

T T
= B
2 o)
Qar — e Q10 ! — |
< ! ! — P ! .
‘% 3 i | S8 ! N
] | ' o g i : i . -
3 1 | | | 3 | !
8 ! | ! 26 . ! . |
) | : | ‘ g
= 24 -
S S
51 : ‘ = =
= T =2 T
* = ‘ - —
o - o — o o
banksl banksl unipd banks2 discover2 dbpf dbpf_unipd banks1 banksl_unipd banks2 discover2 dbpf dbpf_unipd
Algorithm Algorithm

(a) Mondial memory occupation.

Mondial Execution Time

(b) IMDb memory occupation.

IMDb Execution Time

s ==

Execution Time (s) - Log scale
e

t

!

4
ﬁ

(s) - Log scale
e e
5 5 g

Execution Time
=
5

=
o,

S

=

banks1 banksl_unipd banks2 discover2

dbpf dbpf_unipd

Algorithm

(c) Mondial execution time.

=
)

banks1

banksl_unipd banks2 discover2 dbpf dbpf_unipd

Algorithm

(d) IMDDb execution time.

Algorithm Mondial IMDb

Memory (Gbyte)|Time (s)|Memory (Gbyte)|Time (s)
BANKS-I 1.597| 93.939 4.602| 576.835
BANKS-I UNIPD 1.174 86.865 2.630| 149.971
BANKS-II 0.020 1.837 0.856 10.423
DISCOVER-II 0.358 0.482 2.976| 653.302
DPBF 1.270 14.337 3.481| 1,544.736
DPBF UNIPD 1.192 8.355 4.025| 1,366.078

(e) Average memory occupation and execution time.

Fig. 1. Efficiency: memory occupation and execution time for running the queries.

we report in Figure 1. However, we may try some very qualitative observation:
[10] reports, in the case of Mondial, a memory occupation in the range of tens
of megabytes while Figure 1(a) shows a memory occupation in the range of
gigabytes, except for BANKS-II and DISCOVER-II; in the case of IMDDb, both
[10] and Figure 1(b) report a memory occupation in the range of gigabytes,
except for BANKS-II in our case. As discussed in Section 2, most of the papers
lack any details on the actual data structures to be used and this leads to the
differences we observed above.
Time-wise, on Mondial DISCOVER-II is the fastest algorithm followed by
BANKS-II, the DPBF variants, and, finally, the BANKS-I variants; on IMDb,
BANKS-IT is the fastest algorithm, followed by the BANKS-I variants, DISCOVER-
IT, and DPBF. Figure 1(c) and 1(d) show how, in general, there is less variance

in the execution times than in memory occupation, even if DPBF exhibit the
largest spread of performance and BANKS-I suffers from several high outliers in
the case of Mondial. We can note how the UNIPD variant of BANKS-I improves
around 8% and 75% on Mondial and IMDb, respectively; this indicates that the
optimization on the length of the paths is most effective with larger amounts of
data, as in the case of IMDb, when we also save about 40% in memory occu-
pation. The UNIPD variant of DPBF performs similarly on IMDb but it saves
about 42% of execution time on Mondial; this indicates that the optimization in
the merging steps is most effective for more complex schemas, as expected.
Since we used a different hardware than [10], execution times are not di-
rectly comparable in a quantitative way, even if it is possible to discuss trends in
a qualitative manner. Tables 8(a) and 8(b) at page 37 of [10] report the mean exe-
cution times for Mondial and IMDDb, respectively. In the Mondial case, according
o [10], DISCOVER-II is the fastest algorithm, followed by DPBF, BANKS-II,
and BANKS-I; we also note that [10] reports execution times one/two orders of
magnitude bigger than ours. In the case of IMDDb, according to [10], DISCOVER-
IT is the fastest algorithm, followed by BANKS-I, DPBF, and BANKS-II; in this
case [10] reports execution times 2-3 times bigger than ours. Overall, there is
some agreement in the ranking of algorithms on Mondial but there is quite dis-
agreement in the case of IMDb. As in the case of the memory occupation, we
think all these differences in the execution times are due to quite different choices
at implementation level.

4.2 Effectiveness

Figure 2 shows the effectiveness of different algorithms under examination in
terms of AP and P@10: each sub-figure reports a boxplot computed over the
different queries while Figure 2(e) reports the mean performances for AP and
P@10 on each collection. Note that, since by construction of the dataset many
queries have just one relevant result, in many cases it is not possible to have
P@10 bigger than 0.10.

In the case of AP, on Mondial the BANKS-I variants are the top performing
algorithms, followed by the DPBF versions, BANKS-II, and DISCOVER-II. In
particular, the UNIPD variants of both BANKS-I and DPBF outperform the
original versions and BANKS-I UNIPD is the top performer. On IMDb, the
BANKS-I versions are the top performing algorithms, followed by BANKS-II,
DPBF, and DISCOVER-II; in this case the UNIPD variants perform very simi-
larly to the original algorithms. So we can deduce, that the UNIPD variants of
BANKS-T and DPBF provide benefits in terms of memory occupation and/or
execution time, as shown in Figure 2, and they keep or even improve the effec-
tiveness in terms of AP.

The boxplots of Figures 2(a) and 2(b) indicate quite a lot of variance in the
performances and, especially, distributions skewed towards 1.0 AP. This is a very
different behaviour with respect to the one typically observed in IR evaluation
and it might be more an indicator of overfitting and/or design issues in the
dataset rather than high performances of these algorithms.

Mondial - Average Precision

IMDb - Average Precision

< o o
iS > ® -

Average Precision

o
N

},44
},

o
@

Average Precision
o
=

-

o
®

=
[

T T
L . .

banksl banksl_unipd banks2 ~discover2 dpbf dpbf_unipd

Algorithm

(a) Mondial AP.

Mondial - Precision At 10 Retrieved Documents

banksl banksl_unipd banks2 discover2 dpbf dpbf_unipd

Algorithm

(b) IMDb AP.

IMDb - Precision At 10 Retrieved Documents

[

o
@

o
Y

<
=

o
N

Precision At 10 Retrieved Documents

Precision At 10 Retrieved Documents

o
®

-

—
|

I T o T | iloo e - o0
banksl banksl_unipd banks2 discover2 dpbf dpbf_unipd banksl banksl_unipd banks2 discover2 dpbf dpbf_unipd
Algorithm Algorithm
(c) Mondial P@10. (d) IMDb P@10.
Algorithm Mondial IMDb

MAP |Mean P@10| MAP |Mean P@10
BANKS-I 0.7166 0.1214| 0.6245 0.1313
BANKS-I UNIPD| 0.7553 0.2000| 0.6240 0.1281
BANKS-II 0.5220 0.0667| 0.4100 0.1375
DISCOVER-II 0.0498 0.0143| 0.0312 0.0031
DPBF 0.6575 0.2167| 0.1393 0.0500
DPBF UNIPD 0.6699 0.2381| 0.1376 0.0469

(e) Mean performances for Mondial and IMDb.

Fig. 2. Efficiency: precision at 10 retrieved documents and average precision.

If we compare Figures 2(a) and 2(b) with Figure 7 at page 40 of [10], we
can observe several differences. On Mondial, [10] identifies DPBF as the top al-
gorithm, followed by BANKS-II, DISCOVER-II, and BANKS-I; on IMDb, [10]
ranks the algorithms as BANKS-I, DISCOVER-II, DPBF, and no results for
BANKS-II. These trends are quite different from those emerging in our exper-
iments. For example, if we look at mean performance of BANKS-I, on Mon-
dial [10] roughly” reports 38% of MAP while we have around 71% and, on IMDb,
20% against 62% in our case; we can find similar discrepancies in the case of the
other algorithms.

" There are no tables in [10] with precise values for MAP and P@10 and we have to

“deduce” them from the histograms in their figures.

We think that the cause of these differences is two-fold. Firstly, we used only
the topics where all the algorithms retrieved at least one result while [10] does
not specify how topics without results are considered and averaged. Secondly,
the difficulty in reproducing the results of [10] indicates that the issues we en-
countered in implementing the various algorithms have led to implementations
that are non-identical to those of [10]. However, these differences may be due to
our own choices to address the lack of details previously pointed out but also the
implementations of [10] may be based on choices and assumptions not explicitly
reported which made them different from the original algorithms; so, overall,
it is not easy to determine which is the closer implementation of the original
algorithms, also because those of [10] are not available online as open source.

When it comes to P@10, on Mondial, the DPBF versions are the top algo-
rithm, followed by the BANKS-I versions, BANKS-II, and DISCOVER-II; also
in this case, the UNIPD variants of both BANKS-I and DPBF improve with
respect to their original versions and DPBF UNIPD is the top performer. On
IMDb, BANKS-IT is the top performer, followed by the BANKS-I versions, the
DPBF versions, and DISCOVER-II; also in this case the UNIPD variants per-
form very similarly to the original algorithms.

Also in the case of P@10, if we compare our results with those of [10], we
can find several differences and it is hard to reproduce the same results.

5 Discussion and Future Work

In this paper, we have tried to reproduce several state-of-the-art algorithms for
keyword-based search over relational databases and compare our results with
those of [10], which represents one of the most comprehensive studies so far.

As discussed in Section 2, we found that, in general, the papers describing
these algorithms lack many details on both the exact data structures to be used
and some specific steps of each algorithm. This lack of details is also confirmed by
the diversity of choices made by the student groups, which worked independently:
for example, even if they all had to represent a graph, they all adopted a different
approach to this problem.

As discussed in Section 4, we obtained experimental results different from
those of [10] in terms of both efficiency and effectiveness. So, we discovered that
it is extremely hard to reproduce these experiments.

It could be argued that keyword-based search over relational databases is a
research topic and master students may be not experienced enough yet to prop-
erly deal with it, leading to implementations with bugs or misinterpretations
of an algorithm. Our implementation will certainly contain bugs and/or errors,
nevertheless a striking question arises: how difficult should be to re-implement
keyword-based search over relational databases algorithms? Our master stu-
dents attended courses on algorithms and data structures, advanced algorithms,
databases and, about half of them, information retrieval; so you can guess that
they have quite a good mix of competencies to study and implement algorithms
whose core is basically navigation in graphs. The fact that they found so difficult,

if not impossible, to reproduce the results suggests that these algorithms are not
explained clearly enough and that the barrier to just start working on this topic
is very high. Think about a PhD student: how long she/he should take to just
get started on the topic? Would one year (or more) be a reasonable amount of
time?

Overall, this experience further stresses the issues we discussed in the in-
troduction: keyword-based search over relational databases completely lacks a
reference architecture and, as a consequence, also a reference implementation
of state-of-the-art algorithms. If these algorithms turn out to be so difficult to
implement from scratch, it becomes even more compelling to have reference im-
plementations available, where all the possible care and expertise have been put
in correctly implementing them.

Therefore, this work represents a first step towards shared and common im-
plementations of such algorithms. Indeed, notwithstanding all the limitations
that a student project may have, we implemented several algorithms which are
online available® under a very liberal open source license, and everyone is now
free to start from, correct, improve and compare against these implementations.

Our future works concerns revising and consolidating all these independent
implementations into a single an coherent framework to begin providing a “ref-
erence” implementation of keyword-based search algorithms.

References

1. D. Abadi, R. Agrawal, A. Ailamaki, M. Balazinska, P. A. Bernstein, M. J. Carey,
S. Chaudhuri, J. Dean, A. Doan, M. J. Franklin, J. Gehrke, L. M. Haas, A. Y.
Halevy, J. M. Hellerstein, Y. E. Ioannidis, H. V. Jagadish, D. Kossmann, S. Mad-
den, S. Mehrotra, T. Milo, J. F. Naughton, R. Ramakrishnan, V. Markl, C. Olston,
B. C. Ooi, C. Rg, D. Suciu, M. Stonebraker, T. Walter, and J. Widom. The Beck-
man Report on Database Research. SIGMOD Record, 43(3):61-70, 2014.

2. A. Badan, L. Benvegnu, M. Biasetton, G. Bonato, A. Brighente, A. Cenzato,
P. Ceron, G. Cogato, S. Marchesin, A. Minetto, L. Pellegrina, A. Purpura,
R. Simionato, N. Soleti, M. Tessarotto, A. Tonon, F. Vendramin, and N. Ferro.
Towards open-source shared implementations of keyword-based access systems to
relational data. In Proc. 1st International Workshop on Keyword-Based Access and
Ranking at Scale (KARS 2017) — Proc. of the Workshops of the EDBT/ICDT 2017
Joint Conference (EDBT/ICDT 2017). CEUR Workshop Proceedings (CEUR-
WS.org), ISSN 1613-0073, http://ceur-ws.org/Vol-1810/, 2017

3. S. Bergamaschi, N. Ferro, F. Guerra, and G. Silvello. Keyword-based Search over
Databases: A Roadmap for a Reference Architecture Paired with an Evaluation
Framework. LNCS Transactions on Computational Collective Intelligence (TCCI),
9630:1-20, 2016.

4. M. K. Bergman. The Deep Web: Surfacing Hidden Value. The Journal of Electronic
Publishing, 7(1), August 2001.

5. G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword
Searching and Browsing in Databases using BANKS. In Proc. 18th International

8 https://bitbucket.org/ks-bd-2015-2016/ks-unipd

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Conference on Data Engineering (ICDE 2002), pages 431-440. IEEE Computer
Society, Los Alamitos, CA, USA, 2002.

M. Bron, K. Balog, and M. de Rijke. Example Based Entity Search in the Web
of Data. In Advances in Information Retrieval. Proc. 35th European Conference
on IR Research (ECIR 2013), pages 392-403. Lecture Notes in Computer Science
(LNCS) 7814, Springer, Heidelberg, Germany, 2013.

M. J. Cafarella, A. Halevy, and J. Madhavan. Structured Data on the Web. Com-
munications of the ACM (CACM), 54(2):933-947, February 2011.

M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. WebTables: Ex-
ploring the power of tables on the Web. Proceedings of the VLDB Endowment
(PVLDB), 1:538-549, 2008.

C. W. Cleverdon. The Cranfield Tests on Index Languages Devices. Aslib Proceed-
ings, 19(6):173-194, 1967.

J. Coffman and A. C. Weaver. An Empirical Performance Evaluation of Rela-
tional Keyword Search Techniques. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 1(26):30-42, 2014.

B. Ding, J. Xu Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding Top-k Min-Cost
Connected Trees in Databases. In Proc. 23rd International Conference on Data
Engineering (ICDE 2007), pages 836-845. IEEE Computer Society, Los Alamitos,
CA, USA, 2007.

H. Elmeleegy, J. Madhavan, and A. Halevy. Harvesting Relational Tables from
Lists on the Web. Proceedings of the VLDB Endowment (PVLDB), 2:1078-1089,
2009.

N. Ferro. Reproducibility Challenges in Information Retrieval Evaluation. ACM
Journal of Data and Information Quality (JDIQ), 8(2):8:1-8:4, February 2017.
N. Ferro, N. Fuhr, K. Jarvelin, N. Kando, M. Lippold, and J. Zobel. Increasing
Reproducibility in IR: Findings from the Dagstuhl Seminar on “Reproducibility of
Data-Oriented Experiments in e-Science”. SIGIR Forum, 50(1):68-82, June 2016.
N. Ferro and G. Silvello. The Road Towards Reproducibility in Science: The Case
of Data Citation. In Proc. 13th Italian Research Conference on Digital Libraries
(IRCDL 2017). Communications in Computer and Information Science (CCIS),
Springer, Heidelberg, Germany, 2017.

V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-Style Keyword
Search over Relational Databases. In Proc. 29th International Conference on Very
Large Data Bases (VLDB 2003), pages 850-861. Morgan Kaufmann Publisher,
Inc., San Francisco, CA, USA, 2003.

V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and H. Karam-
belkar. Bidirectional Expansion For Keyword Search on Graph Databases. In Proc.
31st International Conference on Very Large Data Bases (VLDB 2005), pages 505—
516. ACM Press, New York, USA, 2004.

H. Wang and C. C. Aggarwal. A Survey of Algorithms for Keyword Search on
Graph Data. In Managing and Mining Graph Data, pages 249-273. Springer-
Verlag, New York, USA, 2010.

A. Wright. Searching the Deep Web. Communications of the ACM (CACM),
51(10):14-15, October 2008.

W. Wu. Proactive Natural Language Search Engine: Tapping into Structured Data
on the Web. In 16th International Conference on Extending Database Technology
(EDBT 2013), pages 143-148. Academic Press, New York, USA, 2013.

J. X. Yu, L. Qin, and L. Chang. Keyword Search in Databases. Morgan & Claypool
Publishers, USA, 2010.

