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We propose the Assessor-driven Weighted Averages for Retrieval Evaluation (AWARE) probabilistic framework,
a novel methodology for dealing with multiple crowd assessors, who may be contradictory and/or noisy. By
modeling relevance judgements and crowd assessors as sources of uncertainty, AWARE takes the expectation
of a generic performance measure, like Average Precision (AP), composed with these random variables. In
this way, it approaches the problem of aggregating di�erent crowd assessors from a new perspective, i.e.
directly combining the performance measures computed on the ground-truth generated by the crowd assessors
instead of adopting some classi�cation technique to merge the labels produced by them. We propose several
unsupervised estimators that instantiate the AWARE framework and we compare them with state-of-the-art
approaches, i.e. Majority Vote (MV) and Expectation Maximization (EM), on TREC collections. We found that
AWARE approaches improve in terms of their capability of correctly ranking systems and predicting their
actual performance scores.
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1 INTRODUCTION
Ground-truth is central to Information Retrieval (IR) evaluation since it enables the scoring and
comparison of algorithms and systems with respect to human judgments, determining whether
documents are relevant, or not, to user information needs.

Creating a dataset and, in particular, gathering relevance assessments is an extremely demanding
activity: it involves sizable costs for hiring assessors and a fairly large amount of time to judge a
pool of documents. Therefore, there is an increasing interest for more e�ective and a�ordable ways
of gathering assessments [23], especially to face the ever increasing number of new search tasks
that need an appropriate dataset to be evaluated.
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Crowdsourcing [2, 39, 43, 47] has emerged as a viable option for ground-truth creation since
it allows to cheaply collect multiple assessments for each document. However, it raises many
questions regarding the quality of the collected assessments. Therefore, in order to obtain a ground-
truth good enough to be used for evaluation purposes, the possibility of discarding the low quality
assessors and/or combining them with more or less sophisticated algorithms has been considered.

The problem of merging multiple crowd assessors has been addressed mostly from a classi�cation
point of view, i.e. choosing among the set of possible judgements (labels) those best supported by
the evidence provided by the crowd assessors. In detail, traditional approaches focus mainly on how
to select assessors and/or discard low quality assessors, how to merge judgments from multiple
assessors into a single assessor, and how to route tasks to assessors. They typically determine the
“best” relevance judgements, combining those produced by multiple crowd assessors according to
some criteria, and use them to compute a performance measure, like AP, and score systems. We
can consider this as a kind of “upstream” approach, because the aggregated ground-truth is created
before systems are evaluated and performance scores are computed.

In this paper, we address the problem of ground-truth creation in a crowdsourcing context from
a new angle, i.e. we investigate how to estimate performance measures in a way more robust to
crowd assessors. To the best of our knowledge, what happens when you aggregate the di�erent
performance scores directly computed on the judgements produced by multiple assessors is yet to
be explored. In particular, we seek a better estimation of the true expected value of a performance
measure, by leveraging its multiple observations, generated separately by the relevance judgements
of each crowd assessor. We can consider this as as a kind of “downstream” approach with respect
to the classi�cation ones, since the aggregation happens after performance measures have been
computed.

The main intuition behind our approch is based on the idea that the choice of the “best” relevance
judgments, operated ahead at the pool level, may have a diverse impact on di�erent systems
and on various performance measures. Indeed, systems rank the same documents di�erently and
therefore the same correctly labelled or mis-labelled documents impact the performances of di�erent
systems in di�erent ways. Moreover, performance measures embed di�erent user models, weighting
di�erently even the same system ranking; therefore, the same correctly labelled or mis-labelled
documents have a di�erent impact on di�erent performance measures. As a consequence, even a
small error over a whole pool of documents may a�ect systems and performance measures in quite
di�erent ways.

To make an intuitive yet extreme toy example, suppose that out of 10 relevant documents
in a pool, just 1 document has been wrongly labelled as not relevant, thus there is a 10% error
with respect to the whole pool. Now consider a run which retrieves that mis-labelled document,
represented as a blue R in italics, somewhere in the ranks from 1 to 5 and it also retrieves a few
other relevant documents in the ranks from 6 to 10, marked as a plain R.

Rank 1 2 3 4 5 6 7 8 9 10 P@5 AP
Run1 R R R 0.0000 0.0765
Run2 R R R R 0.2000 0.1407
Run3 R R R R 0.2000 0.1463
Run4 R R R R 0.2000 0.1556
Run5 R R R R 0.2000 0.1741
Run6 R R R R 0.2000 0.2296

Run1 represents the case where the mis-labelled document is not detected in any ranks from 1
to 5, while the other runs show what could have happened if it had been correctly labelled. You
can see how for P@5, i.e. precision at 5 retrieved documents, wherever this document is in the
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ranks from 1 to 5, it makes the di�erence between P@5 = 0 and P@5 = 20%, which represents a
100% error; for AP, it changes from AP = 7.65% to AP between 14.07% and 22.96%, i.e. an error
ranging between 45.61% and 66.67%. In all these cases, the e�ect of a single mis-labelled document
has a di�erent impact on di�erent runs and for di�erent performance measures and, in the extreme
example at hand, it is much greater than the error on the pool itself.

We propose the Assessor-driven Weighted Averages for Retrieval Evaluation (AWARE) probabilistic
framework, which allows us to combine multiple versions of a performance measure, computed
from the ground-truth created by each crowd assessor, into a single composite measure, which
we call the AWARE version of it. The AWARE framework speci�es how performance measures
have to be merged on the basis of the estimated crowd assessor accuracies and we propose several
unsupervised estimators of such accuracies. Intuitively, these unsupervised estimators compute
some kind of “distance” between the selected performance measure computed on the ground-truth
produced by the crowd assessor and the same performance measure computed on the ground-truth
produced by di�erent types of random assessors: the greater this “distance”, the better the accuracy
of the crowd assessor.

We conduct a thorough experimental evaluation, using the ground-truth created by the crowd
assessors of the TREC 21, 2012, Crowdsourcing track [63] with respect to the systems submitted to
the TREC 08, 1999, Ad-hoc [70] and the TREC 13, 2004, Robust [69] tracks. We experiment with
the following performance measures: Average Precision (AP) [6], Normalized Discounted Cumulated
Gain (nDCG) [28], and Expected Reciprocal Rank (ERR) [10]. The experimentation shows that
AWARE approaches improve in terms of capability of correctly ranking systems and predicting
their actual performance scores.

The paper is organized as follows: Section 2 introduces related works and provides a description
of state-of-the-art algorithms for combining multiple assessors which will be used for comparison
with the AWARE approach; Section 3 introduces the AWARE framework; Section 4 proposes several
unsupervised estimators for determining the assessors accuracies to be used for combining AWARE
measures; Section 5 describes the experimental setup; Section 6 and Section 7 carry out a thorough
evaluation using TREC collections; �nally, Section 8 draws some conclusions and presents an
outlook for future work.

2 BACKGROUND
2.1 Crowdsourcing for Ground-truth Creation
One of the �rst investigated issues, assuming the quality of the assessors for granted, concerned the
impact of the inter-assessor disagreement. What happens if we assign the same set of topics and
documents to another assessor? Will the ranking of the systems remain stable? Several studies [7,
44, 67, 68] have shown that even a not negligible amount of inter-assessor disagreement does not
severely impact the ability of ranking systems and, more recently, [74] has provided evidence that
the rank of a document is a factor in�uencing the probability of disagreement among assessors.
Other issues concern the expertise of the assessors on the domain of the topics they are judging:
[3, 40] noted that this factor has some impact on the evaluation.

Moreover, regarding the comparison of di�erent types of assessors, a lot of work was done
to investigate the relation between domain experts and crowd assessors [11], authoritative and
alternative assessors [75], primary and secondary assessors [72], NIST assessors and user studies
participants [62], crowd assessors and university laboratory participants [61]. Finally, [58] studies
the assessors’ characteristics that lead to di�erent relevance assessments and [60] investigates how
to build test collections in order to optimize the assessor e�ort.
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Research in crowdsourcing has focused on several di�erent issues: aggregating labels from
multiple assessors to improve the quality of the gathered assessments, by using unsupervised [4,
26], supervised [52, 53, 55], and hybrid [24] approaches; behavioural aspects [34]; proper and
careful design of Human Intelligence Tasks (HITs) [1, 22, 27, 33], also using gami�cation to improve
quality [14] and game theory to increase user engagement [49]; and, routing tasks to proper
assessors [30, 42].

There is a growing concern about the quality of the gathered assessments [31, 35, 71], how
assessor quality and errors impact evaluation [9, 32], how much tolerant evaluation measures are
to these errors [45], and how crowd and editorial assessors agreement relates to user intent and
click-based measures [36].

In recent years, several evaluation activities have focused on crowdsourcing for ground-truth
creation, as witnessed by the TREC Crowdsourcing track series1 from 2011 to 2013 [63, 64], the
MediaEval Crowdsourcing tracks2 in 2013 and 2014 [46, 77], or the CrowdScale 2013 Shared Task
Challenge3 [29]. There is also a growing interest and attention about how crowdsourcing a�ects
the repeatability and reproducibility of IR experiments [5, 18, 19].

In this paper we are interested in aggregating labels from multiple assessors and, in the ex-
perimental part in Sections 6 and 7 we will compare our proposed approach, AWARE, with two
state-of-the-art approaches for label aggregation, namely Majority Vote (MV) and Expectation
Maximization (EM) [4, 26], which are brie�y summarized in the following sections.

2.2 Majority Vote
In [17] we introduced the following de�nitions: let D and T be a set of documents and a set of topics,
respectively; let (REL, �) be a totally ordered set of relevance degrees, i.e. they are de�ned on an
ordinal scale [66], where we assume the existence of a minimum that we call the non-relevant
relevance degree nr = min(REL). In the following, and without any loss of generality, we consider
REL ⊆ R+0 with the constraint that 0 ∈ REL and the order relation � becomes the usual ordering ≤
on real numbers; the non-relevant degree is therefore given by min(REL) = 0; in the following we
restrict ourself to the case of binary relevance and we assume REL = {0, 1}.

For each pair (t ,d) ∈ T × D, the ground-truth GT is a map which assigns a relevance degree
rel ∈ REL to a document d with respect to a topic t . This means that if the document d has relevance
grade д ∈ REL, then GT (t ,d) = д.

Moreover, let Λ = {W1, . . . ,Wl } be a �nite set of assessors, we de�ne as GTk (t ,d) the discrete
variable with values in {0, 1}, which represents the label given by the assessor k to the document d
with respect to the topic t . Note that this is the only information that we are provided with, indeed
we assume that the relevance judgments, GT (t ,d), are not known. We further suppose that each
document receives at least one relevance label. Finally, let 1{GTk (t, ·)=д } be a binary variable that is
equal to 1 if the assessor k assigns the label д to the document d and zero otherwise.

The simplest way of estimating the true relevance labels is the Majority Vote (MV) algorithm,
which views each worker as a voter. If the number of voters which consider a given document
as relevant is greater than the number of voters that consider it as not relevant, that document
will be classi�ed as relevant. Hence, if nt [d,д] =

∑l
k=1 1{GTk (t,d )=д } is the number of times that the

document d is labeled as д for the topic t , we will assign to d the relevance д that maximizes nt [d,д],
that is д such that nt [d,д] = arдmaxд{nt [d, 0],nt [d, 1]}. In the case of tie, i.e. nt [d, 0] = nt [d, 1], a
coin is tossed to determine whether the document is relevant or not.

1https://sites.google.com/site/treccrowd/
2http://www.multimediaeval.org/
3http://www.crowdscale.org/shared-task
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2.3 Expectation Maximization
The Expectation Maximization (EM) algorithm is an alternative to MV for de�ning the relevance of
the documents. We follow the same approach described in [26] to implement the EM algorithm.

Suppose that a latent confusion matrix, πt [·, ·](k), k ∈ {1, . . . , l}, is assigned to each assessor,
this matrix has as many rows and columns as the number of relevance grades, i.e. two in the binary
case. Each row represents the true relevance grade and each column the label given by the worker.
We de�ne πt [д,h](k) = P

[
GTk (t , ·) = h |GT (t , ·) = д

]
, i.e. the probability that the assessor k assigns

to a document the relevance grade h, given that the true relevance label of the document is д. For
instance, πt [1, 0](k) is the probability that the worker k labels a document as not relevant, given
that this document is relevant. The matrix πt [д,h](k) could be estimated by:

number of times the worker k provides label h while the true label is д
number of labels provided by worker k for documents of relevance д

.

Note that, in the binary case:

πt [д, 0](k) + πt [д, 1](k) = 1 ∀ k ∈ {1, . . . , l} and д ∈ {0, 1} .

Moreover, we de�ne pt [д] = P
[
GT (t , ·) = д

]
, the probability that a randomly chosen document

has relevance grade д, i.e. pt [0] is the probability that a document drawn at random is not relevant
and pt [1] is the probability that it is relevant.

The EM algorithm consists of �ve main steps that we will describe in the following, and we will
indicate with the symbol ˜ a possible estimate of the parameter or the variable under the ˜.

Step 1: Initialization Firstly we initialize the parameters of our model, we adopt two di�er-
ent strategies that we will illustrate later in detail.

Step 2: Estimate the maximum likelihood Then we compute the maximum likelihood
estimates of πt [·, ·](·) and pt [·] as follows:

π̃t [д,h](k) =

∑ |D |
d=1 1{GT (t,d )=д }1{GTk (t,d )=h }∑

h∈REL
∑ |D |
d=1 1{GT (t,d )=д }1{GTk (t,d )=h }

,

p̃t [д] =

∑ |D |
d=1 1{GT (t,d )=д }

|D |
.

Step 3: Estimate the probability of relevance We compute the new estimate of the rele-
vance judgments based on π̂t [·, ·](·) and p̂t [д]:

P
[
GT (t ,d) = д |GT ·(t , ·),πt [·, ·](·)

]
=

p̃t [д]
∏l

k=1
∏

h∈REL(π̃t [д,h](k))
1{GTk (t,d )=h}∑

д∈REL p̃t [д]
∏l

k=1
∏

h∈REL(π̃t [д,h](k))
1{GTk (t,d )=h}

.

Step 4: Iterate We repeat the steps 2 and 3 until the results converge.
Step 5: De�ne the relevance labels Finally, for each document d , we assign the label д to

the documents with the maximal probability of having relevance grade д; i.e. we compute
arдmaxд∈REL{P

[
GT (t ,d) = д |GT ·(t , ·),πt [·, ·](·)

]
}, then we set GT (t ,d) = д. Notice that in

the binary case all the documents with probability of relevance greater than 0.5 are consid-
ered as relevant, and documents with probability equal or lower than 0.5 are considered as
not relevant.

The convergence of the EM algorithm strongly depends on many assumptions that, if not satis�ed,
could compromise the convergence of the algorithm [13, 76]. In particular, the starting point of
the EM algorithm represents a criticality that has to be treated properly. Therefore, we de�ne two
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di�erent instantiations of the EM algorithm, by interpreting the initialization step in two di�erent
ways:

EM-MV We use the algorithm of [26] and we set the initial relevance labels as the result of
the MV algorithm, as done in [53, 55];

EM-NEU We initialize each worker confusion matrix and the probability pt as done in [4]:

π̃t [·, ·](k) =

[
0.9 0.1
0.1 0.9

]
, p̃t =

[
0.5 0.5

]
.

Hence, we make the hypothesis that each worker honestly assigns the relevance labels.
Then, we initialize the relevance labels by computing the probability of relevance as in the
third step of the EM algorithm.

3 THE AWARE FRAMEWORK
In the following we recall some further de�nitions introduced in [17]. Given a positive natural
numbern called the length of the run, we de�ne the set of retrieved documents asD(n) = {(d1, . . . ,dn) :
di ∈ D,di , dj for any i , j}, i.e. the ranked list of retrieved documents without duplicates, and
the universe set of retrieved documents as D :=

⋃ |D |
n=1 D(n). A run rt , retrieving a ranked list of

documents D(n) in response to a topic t ∈ T , is a function from T into D: t 7→ rt = (d1, . . . ,dn).
We denote by rt [j] the j-th element of the vector rt , i.e. rt [j] = dj . We de�ne the universe set of
judged documents as R :=

⋃ |D |
n=1 REL

n . We call judged run the function r̂t fromT ×D into R, which
assigns a relevance degree to each retrieved document in the ranked list

(t , rt ) 7→ r̂t =
(
GT (t ,d1), . . . ,GT (t ,dn)

)
We denote by r̂t [j] the j-th element of the vector r̂t , i.e. r̂t [j] = GT (t ,dj ).

A performance measure, like AP, is a function m : T × D → R
+

0 de�ned as m = µ(r̂t ), i.e. the
composition of a judged run r̂t with a scoring function µ : R → R

+

0 , which assigns to any sequence
of judged documents a non negative number, representing the e�ectiveness of the run.

In order to cope with and leverage crowd assessors, we need to extend the de�nitions of [17] and
frame them in a probabilistic context. In particular, we assume that the relevance of a document is
not deterministically known, but it is described by a probability distribution: instead of specifying
a single value from REL as results of the relevance assessment, we model the uncertainty entailed
in the assessment process as a whole distribution of possible values associated to each (t ,d)
pair. Furthermore, we assume that the ability of the crowd assessors themselves is stochastically
determined by a probability assigned to them, that we call their accuracy.

More precisely, we assume that there exists a probability space (Ω,F ,P), which provides the
source of randomness and encompasses the judgements done by all the possible crowd assessors,
on all the possible documents for any possible topic. Considering this space, we can extend the
de�nition of the ground-truth as follows:

GT : Ω ×T × D → REL

In this way, to any pair (t ,d) we associate a random variable GT (·, t ,d) with value on REL, whose
distribution describes the relevance of the document d with respect to the topic t . This distribution
can be modeled by means of various parameters, for example, the expected relevance obtained by
all the possible crowd assessors who judge that pair.

All the previous de�nitions (judged run, performance measure and so on) remain unchanged,
provided that it is understood that all the objects are now random variables. For example, a (random)
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judged run will be the random variable r̂t from Ω×T ×D into R, which assigns a (random) relevance
degree to each retrieved document in the ranked list

(ω, t , rt ) 7→ r̂t =
(
GT (ω, t ,d1), . . . ,GT (ω, t ,dn)

)
In the sequel, as it usually done in probabilistic frameworks, we omit to explicitly write the
dependence of the random variables on ω.

Let Λ = {W1, . . . ,Wl } be a �nite set of crowd assessors and let us assume that there exists a
random variable,W : Ω×T → Λ, whose distribution identi�es the ability of a single crowd assessor
with respect to any given topic. In practice, we can assume to be able, from the judgments of all
the documents and with respect to a given topic t , to weight the average ability of any single
crowd assessor with a positive number; the distribution on Λ can be then obtained from these
numbers once normalized to 1. We call ak (t) = P[T = t ,W =Wk ] the accuracy of crowd assessor
Wk in assessing topic t and we assume that ak (t) is determined by the expected ability she/he
demonstrates in assessing all the possible documents for that topic.

The easiest way to jointly cope with these random objects, i.e. ground-truth and crowd assessors,
is to consider their expectations. The expected ground-truth of a pair (t ,d), i.e. the expected
relevance of document d for topic t , by the law of total expectation, is given by

E
[
GT (t ,d)

]
= E

[
E
[
GT (t ,d)

��W ] ]
=

l∑
k=1
E[GT (t ,d)|W =Wk ] ak (t) (1)

The conditional expectation E
[
GT (t ,d)

��W =Wk
]

in (1) represents the “best" possible approxima-
tion ofGT (t ,d) given that the assessment has been provided by the crowd assessorWk , where “best"
refers to the minimal distance in mean square between them. This is, for example, the approach
adopted by MV, under some strong assumptions: the crowd assessors Wk are independent and
identically distributed (i.i.d.) and the accuracies ak (t) are uniformly distributed.

For a performance measure m(·), we can proceed in a similar way and de�ne its AWARE version
as its expectation with respect to P:

aware-m
(
t , rt

)
= E

[
µ
(
r̂t

) ]
=

l∑
k=1
E
[
µ
(
r̂t

) ��W =Wk
]
ak (t) (2)

To make this approach feasible, we need to have a simple but yet reasonable way to estimate
E
[
µ
(
r̂t

) ��W =Wk
]

and ak (t).
For the �rst term, we estimate E

[
µ
(
r̂t

) ��W =Wk
]

by µ
(
r̂kt

)
, where r̂kt represents the judged run

under the assessments done by the crowd assessorWk . Indeed, we typically have available just one
judgement for each (t ,d) pair by each crowd assessor and therefore the expectation collapses into
that single observation.

The estimation of the accuracies ak (t) = P[T = t ,W = Wk ] is somehow more problematic.
Indeed, the estimation of the probability P calls for multiple observations and this is addressed by
state-of-the-art approaches like MV and EM by assuming that crowd assessors are somehow i.i.d..
However, this is quite a strong assumption since crowd assessors are very di�erent from each other
and even the same crowd assessor may have a quite di�erent behavior across di�erent topics.

Therefore, we remove the i.i.d. assumption about the crowd assessors and we look for something
to compare our not-i.i.d. crowd assessors against, something that can be truly i.i.d. and allows us
to perform inferential statistics. We therefore take a random assessor as a truly i.i.d. comparison
point. In the case of binary relevance, i.e. when REL = {0, 1}, an assessorWk is a random assessor
of parameter p ∈ [0, 1], if for any pair (t ,d) the conditional random variables GT (t ,d)|W =Wk ∼
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Bin(1,p), where Bin(1,p) denotes a Binomial random variable with parameter p, and are mutually
independent.

A random assessor, of any possible parameter p, is the prototype of a “bad” or at least a “shallow”
assessor, since p is the same for any possible pair (t ,d). As the de�nition of the random assessor is
purely theoretic, we can assume that we are able to produce a sample of i.i.d. random assessors
with the same parameter p. This fact allows us to provide classical inferential constructions of the
estimates of the accuracy ak (t), as will be described in detail in the next section. The basic idea
that we will apply in the next section is that the farther a crowd assessor is from the random ones,
the better she/he is and the higher her/his accuracy will be.

Thanks to these considerations, we de�ne the estimated version of AWARE as follows

�aware-m
(
t , rt

)
=

l∑
k=1

µ
(
r̂kt

)
akt (3)

where akt represents an estimate of the unknown accuracies ak (t).
Let us discuss how equation (3) works and the potential bene�ts of the AWARE approach by

means of a toy example. Let us consider AP as performance measure, a pool containing just 3
relevant documents, and a run of length 5 where the �rst and the third documents are relevant,
while the second, fourth and �fth are not relevant:

r̂t = (1, 0, 1, 0, 0) ⇒ AP
(
r̂t

)
= 0.5556

Suppose that we have three crowd assessors, judging that documents as follows:

r̂ 1
t = (1, 1, 0, 0, 0) ⇒ AP

(
r̂ 1
t
)
= 0.6667

r̂ 2
t = (1, 1, 1, 0, 0) ⇒ AP

(
r̂ 2
t
)
= 1.0000

r̂ 3
t = (0, 1, 1, 0, 1) ⇒ AP

(
r̂ 3
t
)
= 0.5889

By using the MV and EM approaches we can compute a merged ground-truth, which in this case is
the same for both approaches, and thus we obtain:

r̂MV
t = r̂EM

t = (1, 1, 1, 0, 0) ⇒ AP
(
r̂MV
t

)
= AP

(
r̂EM
t

)
= 1.0000

which represents a 20% error in terms of relevance labels but an 80% error in terms of AP. If in
equation (3) we take the simplest estimator possible of ak (t), i.e. a uniform distribution akt =

1
3 , k =

1, 2, 3, which basically is the same underlying uniform approach used by MV, we obtain�aware-AP(r̂t ) = 0.7518

which represents a 35% error in terms of AP.

4 ESTIMATING CROWD ASSESSOR ACCURACY
This sections aims at providing several unsupervised estimators of the accuracy akt of a crowd
assessor. We introduce some notation and an intuitive overview of the proposed estimators and
then we go into their details.

4.1 Notation
Let S be the set of systems under experimentation and s ∈ S be a generic system.

We call assessor measure the |T | × |S | matrix Mk containing the scores of each system for each
topic, computed using a performance measure m(·), according to the ground-truth generated by
the crowd assessorWk .
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Mk =

2
6666664
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. . .
...
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⇥
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2
64...

3
75 = Mk(T, ·)

2
64...

3
75 = Mk(T, ·)

Mk =

2
6666664
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3
7777775

mean

mean

mean

m
ean

m
ean

m
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Fig. 1. Matrix notation for the assessor measure Mk .

The notation Mk (·, s) indicates a column vector containing all the performance �gures for a
given system s ; the Mk (·, s) indicates the average of the previous column vector; Mk (·, S) indicates
the average across the rows for all the systems; similarly, Mk (t , ·), Mk (t , ·), and Mk (T , ·) indicate a
row vector containing all the performance �gures for a given topic t , its average, and the average
across the columns for all the topics. Finally, the notation Mk (:) indicates the linearization of the
matrix, i.e. the row-wise concatenation of all its elements. A visualization of this matrix notation is
reported in Figure 1.

For example, in the case of AP, each cell of APk contains the values of AP for system s on topic
t according to assessor Wk ; if we average over the topics Mk (·, S), we obtain the Mean Average
Precision (MAP) for all the systems s ∈ S according to assessorWk .

4.2 Intuitive Overview
Figure 2 shows the main steps (granularity, gap and weight) we use to estimate the accuracy of a
crowd assessor and the di�erent estimators we can obtain by combining the various alternatives at
each step. The basic idea is to compare the crowd assessor against a set of random assessors and
how “di�erent” this crowd assessor is from the random ones, i.e. how much better she/he is.

For each pool we generate, ρph , h = 1, 2, . . . ,H , a set of random assessors of level p, i.e. which
randomly evaluate as relevant the p per cent of the documents in the pool. As above, each of these
random assessors gives origin to an assessor measure M

p
h for a given performance measure m(·).

We consider three di�erent classes of random assessors, each of which contains a set of H random
replicates:

• uniform random assessor ρunih : this tosses a coin to judge a document, i.e. p = 0.5;
• underestimating random assessor ρundh : this tends to judge documents as non relevant, e.g.
p = 0.05;
• overestimating random assessor ρovrh : this tends to judge documents as relevant, e.g. p = 0.95.

Note that the idea of generating random assessors resembles [65] when they investigated the
impact of random assessors compared to real assessors. However, to generate the random asses-
sors [65] used a normal distribution with a proportion of relevant/not relevant documents derived
by the same proportion in the case of real assessors. In our case, being a fully unsupervised ap-
proach, we do not have the real proportion of relevant documents available; when it comes to the
distribution to be used, we chose the uniform distribution to avoid any assumption on assessor
behavior, but a normal distribution or others could be an interesting future exploration.

Similarly, the approaches proposed by [9, 45] to simulate di�erent types of assessors and di�erent
types of assessor errors cannot be applied in this unsupervised context, since they both start from a
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Fig. 2. Approach to determine the accuracy of a crowd assessorWk with respect to a random assessors ρph .

gold standard ground-truth and modify the assigned labels according to some desired distribution of
truly/falsely relevant/not relevant documents. Even in [49] the authors presents a way of simulating
assessors based on a probabilistic approach, however they are interested in simulating the time
that each assessor spends in completing a task.

Therefore, the intuitive idea described above boils down to determining some sort of “di�erence”
between the measure Mk of a crowd assessorWk and those M

p
h of the three random assessors ρph

and turning this “di�erence” into an estimated accuracy akt assigned to the crowd assessorWk to
compute the AWARE version of the performance measure m(·). This is achieved in two main steps:

• gap Gk : this quanti�es what “di�erent” means. We consider three alternatives:
– measure level: this operates directly on the assessor measures by computing either the

Frobenius norm4 of their di�erence (labelled fro, see Section 4.3.1) or their Root Mean
Square Error (RMSE) (labelled rmse, see Section 4.3.2);

– distribution level: this works on the performance distributions estimated from the
assessor measures by usingKernel Density Estimation (KDE) and computes theKullback-
Leibler Divergence (KLD) between them (labelled kld, see Section 4.3.3);

– rankings level: this considers the system rankings induced by the assessor measures
and compares them by using either the Kendall’s tau correlation (labelled tau, see
Section 4.3.4) or the AP correlation (labelled apc, see Section 4.3.5);

• weight wk
t : this turns the gap computed in the previous step into an estimated accuracy

to be assigned to a crowd assessor. In particular, we reason in terms of dissimilarity from

4We used the Frobenius norm because it is the Euclidean norm in the space Rn×m and it has many desirable properties,
such as invariance under rotations, which makes it robust for our purposes.
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random assessors since, for a crowd assessorWk , being close to a random one ρph can be
considered as an indicator of her/his poor quality. We have three alternatives:
– minimal dissimilarity (labelled md, see Section 4.4.2): this computes a weight which

is proportional to the minimum gap from one of the random assessors (uniform,
underestimating, and overestimating), i.e. the closer to one of the random assessors,
the smaller the weight;

– minimal squared dissimilarity (labelled msd, see Section 4.4.3): this is similar to the
previous case but uses the minimum squared gap;

– minimal equi-dissimilarity (labelled med, see Section 4.4.4): this computes a weight
which is proportional to the crowd assessor being equally distant from all three random
assessors (uniform, underestimating, and overestimating).

For each of the three random assessor classes, we generate a set of H replicates to cope with the
uncertainty of the random generation process and to obtain better estimates. Therefore, for each
crowd assessorWk , we obtain a set of H estimates and we need to aggregate them into a single
one; we compute a mean gap Ḡk , averaging over the set of H gaps computed with respect to each
random assessor ρph .

Finally, the described procedure produces an estimated accuracy akt to be assigned to a crowd
assessor Wk for each topic t ∈ T ; this is what we call topic-by-topic score granularity, labelled
tpc. However, we are also interested in the case when a single accuracy score is assigned to a
crowd assessorWk , i.e. when the akt are the same for all the topics; this is what we call single score
granularity, labelled sgl.

4.3 Gap
4.3.1 Frobenius Norm. Given anm × n matrix A, its Frobenius norm [21] is:

����A����
F =

√√√ m∑
i=1

n∑
j=1

��ai j ��2 (4)

which is also equal to the square root of the matrix trace
����A����

F =

√
Tr

(
AAH

)
, where AH is the

transpose conjugate of A.

Single Score Granularity. This is given by the Frobenius norm of the matrices of the crowd and
random assessor measures, as de�ned below:

G
p
k =

����Mk −M
p
h

����
F (5)

Topic Score Granularity. For each topic t ∈ T , this is given by the Frobenius norm of row vectors
of the crowd and random assessor measures for that topic, as de�ned below:

G
p
k (t) =

����Mk (t , ·) −M
p
h (t , ·)

����
F (6)

4.3.2 Root Mean Square Error. Given two m elements vectors X and Y , their Root Mean Square
Error (RMSE) [38] is:

RMSE =

√√
m∑
i=1

(
Xi − Yi

)2

m
(7)

Note that RMSE = 1√
m

����X − Y ����
F .
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Single Score Granularity. This is given by the RMSE of the vectors of the crowd and random
assessor measures averaged by topic, as de�ned below:

G
p
k = RMSE

(
Mk (·, S) −M

p
h(·, S)

)
(8)

Topic Score Granularity. For each topic t ∈ T , this is given by the RMSE of row vectors of the
crowd and random assessor measures for that topic, as de�ned below:

G
p
k (t) = RMSE

(
Mk (t , ·) −M

p
h(t , ·)

)
(9)

4.3.3 KL Divergence. To compute the Kullback-Leibler Divergence (KLD) [41], we need the
Probability Density Function (PDF) of the performance measures, which we estimate by using a
Kernel Density Estimation (KDE) [73] approach.

Given a vector X ofm elements, the KDE estimation of its PDF is given by

f̂X (x) =
1
mb

m∑
i=1

K

(
x − Xi

b

)
(10)

where b is a positive number called bandwidth or window width; K(·) is the kernel satisfying∫ +∞
−∞

K(x)dx = 1.
Given twom elements vectors X and Y , the KLD between their PDFs is given by

DKL
(
X
����Y )
=

∑
x

ln

(
f̂X (x)

f̂Y (x)

)
f̂X (x) (11)

DKL ∈ [0,+∞) denotes the information lost when Y is used to approximate X [8]; therefore, 0
means that there is no loss of information and, in our settings, it will mean that two assessors are
considered the same; +∞ means that there is full loss of information and, in our settings, it will
mean that two assessors are considered completely di�erent. Note that DKL is not symmetric and
so, in general, DKL

(
X
����Y )
, DKL

(
Y
����X )

.

Single Score Granularity. This is given by the KLD of the vectors of the crowd and random
assessor linearize measures, as de�ned below:

G
p
k = DKL

(
Mk (:)

����Mp
h (:)

)
(12)

Topic Score Granularity. For each topic t ∈ T , this is given by the KLD of row vectors of the
crowd and random assessor measures for that topic, as de�ned below:

G
p
k (t) = DKL

(
Mk (t , ·)

����Mp
h (t , ·)

)
(13)

4.3.4 Kendall’s Tau Correlation. Given two m elements vectors X and Y , their Kendall’s τ
correlation [37] is given by

τ
(
X ,Y

)
=

C − D

m(m − 1)/2
(14)

where C is the total number of concordant pairs (pairs that are ranked in the same order in both
vectors) and D the total number of discordant pairs (pairs that are ranked in opposite order in the
two vectors).

Single Score Granularity. This is given by the τ correlation of the vectors of the crowd and random
assessor measures averaged by topic, as de�ned below:

G
p
k = τ

(
Mk (·, S) −M

p
h(·, S)

)
(15)
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Topic Score Granularity. For each topic t ∈ T , this is given by the τ correlation of row vectors of
the crowd and random assessor measures for that topic, as de�ned below:

G
p
k (t) = τ

(
Mk (t , ·),M

p
h (t , ·)

)
(16)

4.3.5 AP Correlation. AP correlation τap [78] is a correlation coe�cient inspired by the Kendall’s
τ correlation, but it puts more emphasis on the order of the top ranked systems.

Given twom elements vectors X and Y , their AP correlation is given by

τap
(
Y ,X

)
=

2
m − 1

m∑
i=2

C(i)

i − 1
− 1 (17)

where C(i) is the number of items above rank i in X and correctly ranked with respect to the
item at rank i in Y , which acts as a reference. Note that τap is not symmetric and so, in general,
τap

(
Y ,X

)
, τap

(
X ,Y

)
.

Note that τap does not handle tied values in the two vectors, so we adopt the same approach
suggested in the TREC 2013 Crowdsourcing track [64] where, in case of ties, they sample over
possible orders and average the obtained τap coe�cients.

Single Score Granularity. This is given by the τap correlation of the vectors of the crowd and
random assessor measures averaged by topic, as de�ned below:

G
p
k = τap

(
Mk (·, S),M

p
h(·, S)

)
(18)

Topic Score Granularity. For each topic t ∈ T , this is given by the τap correlation of row vectors
of the crowd and random assessor measures for that topic, as de�ned below:

G
p
k (t) = τap

(
Mk (t , ·),M

p
h (t , ·)

)
(19)

4.4 Weight
As anticipated above, the basic idea is to understand how close a crowd assessorWk is to a random
one ρph and consider this as an indicator of being a poor quality assessor. Therefore, we are interested
in reasoning in terms of dissimilarity from random assessors: the farther away from a random
assessor the higher the accuracy assigned to a crowd assessor.

As shown in Figure 3, we can create a vector space whose base is given by the three random
assessors ρph , represent each crowd assessorWk in this space, and project the crowd assessor on the
random assessors (indicated byW uni

k ,W ovr
k , andW und

k respectively); b is the bisector of the �rst
quadrant. Note that the projections of the crowd assessor on the random assessors are given by the
gaps described above and properly normalized as discussed in the following section.

4.4.1 Normalization. When you reason in terms of similarity between vectors, if two vectors
v and w are equal, then the norm of v −w will be equal to 0, i.e. 0 means equal. However, in the
vector space of Figure 3, we reason in terms of dissimilarity between vectors: 0 means di�erent
from random assessor and 1 means equal to random assessor. Therefore, in the following section,
�rst we normalize all the gaps to the range [0, 1]; then, when needed, we also transform them, e.g.
by reversing the [0, 1] range, to ensure that these normalized gaps have the expected meaning of 0
“di�erent from random assessor” and 1 “equal to random assessor”.

Frobenius Norm. The Frobenius norm is in the
[
0,

√
|T | · |S |

]
range, where 0 means equal to a

random assessor. So we need to divide it by its maximum and reverse it so that 0 means di�erent
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Fig. 3. Vector space representation of the crowd assessorWk and the random assessors ρph .

from a random assessor:
G ′ = 1 −

G√
|T | · |S |

(20)

Note that when we consider the single score Gk , the equation holds as above; if we consider the
topic score Gk (t) we have to set |T | = 1 in the above equation.

Root Mean Square Error. The RMSE is in the
[
0, 1

]
range, where 0 means equal to a random

assessor. So we need to reverse it so that 0 means di�erent from a random assessor:

G ′ = 1 −G (21)

KL Divergence. The KLD is in the
[
0,∞

)
range, where 0 means equal to a random assessor. So

we map it to the
(
0, 1

]
range by the negative exponential so that 0 means di�erent from a random

assessor

G ′ = e−βG (22)
where β > 0 is a positive real number.

Kendall’s Tau Correlation. The Kendall’s τ correlation is in the
[
− 1, 1

]
range, where 0 means

di�erent from a random assessor, 1 means equal to a random assessor and −1 completely opposite
to a random assessor5. We consider −1 as 1:

G ′ =
��G�� (23)

AP Correlation. The τap correlation is in the
[
− 1, 1

]
range, where 0 means di�erent from a

random assessor, 1 means equal to a random assessor and −1 completely opposite to a random
assessor6. We consider −1 as 1:

G ′ =
��G�� (24)

5Consider an assessor that has correlation equal to −1 with one of the random assessors. This means that the assessor gives
the exact opposite relevance judgement for each document. Therefore, this assessor can be considered a random assessor as
well, and it is correct to give him a weight equal to 1.
6Same considerations as in the case of Kendall’s τ hold here as well.
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4.4.2 Minimal Dissimilarity. If we take the minimum between the dissimilarities of the assessor
Wk from the random assessors, the assessorWk cannot be closer to any of the random assessors
more than this minimum. Therefore, we compute the minimum of the scalar products of the
dissimilarity vector with the axes of the vector space shown in Figure 3:

wk = min
( (
Gund
k

) ′
,
(
Guni
k

) ′
,
(
Govr
k

) ′) (25)

4.4.3 Minimal Squared Dissimilarity. We reason as in the previous case, but we consider the
square of the gaps to have steeper behaviour:

wk = min

(( (
Gund
k

) ′)2
,
( (
Guni
k

) ′)2
,
( (
Govr
k

) ′)2
)

(26)

4.4.4 Minimal Equi-Dissimilarity. The bisector vector b represents the direction with the greatest
equal dissimilarity from all the random assessors at the same time. Therefore, the closer the crowd
assessorWk is to the bisector b, the farther away she/he is from all the random assessors at the
same time. The scalar product between the crowd assessor vector and the bisector represents this
quantity:

wk =
(
Gund
k

) ′
+

(
Guni
k

) ′
+

(
Govr
k

) ′ (27)

4.5 Summary
Algorithm 1 shows the pseudo-code for computing the estimated accuracy of a crowd assessorWk
in the case of the single score granularity, while Algorithm 2 describes the case of the topic-by-topic
score granularity. The inputs of the algorithms are the ground-truth produced by the crowd assessor
Wk , i.e. the relevance judgments assigned by crowd assessorWk , the ground-truths generated by
each replicate of the random assessors with level p equals to 0.5 (uni), 0.05 (und) and 0.95 (ovr)
and the performance measure to be computed. As output the algorithm will give the accuracy ak
for the crowd assessorWk , which will be a single number for the single score granularity and a
vector of length |T | for the topic score granularity.

Firstly the performance measure is computed on the ground-truth provided by the crowd assessor
Wk and by theH replicates of the three types of random assessors, obtaining respectively the |T |× |S |
matrices Mk and M

p
h . Then the gap between the crowd assessorWk and the random assessors is

computed with respect to the strategies previously described:
• Measure Level:

– Frobenius Norm: Equation (5) for single score granularity and Equation (6) for topic
score granularity, Equation (20) to normalize the accuracy;

– Root Mean Square Error: Equation (8) for single score granularity and Equation (9) for
topic score granularity, Equation (21) to normalize the accuracy;

• Distribution Level:
– KL Divergence: Equation (12) for single score granularity and Equation (13) for topic

score granularity, Equation (22) to normalize the accuracy;
• Ranking Level:

– Kendall’s τ : Equation (15) for single score granularity and Equation (16) for topic score
granularity, Equation (23) to normalize the accuracy;

– AP Correlation: Equation (18) for single score granularity and Equation (19) for topic
score granularity, Equation (24) to normalize the accuracy;
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ALGORITHM 1: How to estimate assessor accuracy ak for the single score granularity.
Data: rkt ground-truth generated by the k-th assessor; rph ground-truth generated by the h-th random assessor of level p ,

where h ∈ {1, . . . , H } and p ∈ {uni, und, ovr}; m(·) performance measure
Result: ak single score granularity accuracy for the k-th assessor;

/* Compute the performance measure Mk for the k-th assessor and Mp
h for each random assessors */

Mk ← compute m(·) on rkt ;
Mp
h ← compute m(·) on rph , ∀ h ∈ {1, . . . , H } and ∀ p ∈ {uni, und, ovr};

/* Compute the Gap Gp
k,h with respect to each random assessor: h ∈ {1, . . . , H } and p ∈ {uni, und, ovr}

*/
for h ∈ {1, . . . , H } do

if measure level then
if frobenius norm then

Gp
k,h =

����Mk −M
p
h

����
F ∀ p ∈ {uni, und, ovr};

(Gp
k,h )

′ = 1 −
Gp
k,h√
|S |

∀ p ∈ {uni, und, ovr}

else if RMSE then
Gp
k,h = RMSE

(
Mk (·, S ) −M

p
h (·, S )

) ∀ p ∈ {uni, und, ovr};
(Gp

k,h )
′ = 1 −Gp

k,h ∀ p ∈ {uni, und, ovr};
end

else if distribution level then
Gp
k,h = DKL

(
Mk (:)

����Mp
h (:)

) ∀ p ∈ {uni, und, ovr};

(Gp
k,h )

′ = e−βG
p
k,h ∀ p ∈ {uni, und, ovr};

else if ranking level then
if Kendall’s Tau then

Gp
k,h = τ

(
Mk (·, S ) −M

p
h (·, S )

) ∀ p ∈ {uni, und, ovr};
(Gp

k,h )
′ =

��Gp
k,h

�� ∀ p ∈ {uni, und, ovr};
else if AP Correlation then

Gp
k,h = τap

(
Mk (·, S ), M

p
h (·, S )

) ∀ r ∈ {uni, und, ovr};
(Gp

k,h )
′ =

��Gp
k,h

�� ∀ p ∈ {uni, und, ovr};
end

end
end

/* Aggregate the Gap with respect to the random assessor replicates */

(Gp
k )
′ ← mean

(
(Gp

k,h )
′
) ∀ p ∈ {uni, und, ovr};

/* Compute the weight ak */

if minimal dissimilarity then
wk = min

( (
Gund
k

)′
,
(
Guni
k

)′
,
(
Govr
k

)′) ;

else if minimal squared dissimilarity then

wk = min

(( (
Gund
k

)′)2
,
(
Guni
k

)′)2
,
(
Govr
k

)′)2
)
;

else if minimal equi-dissimilarity then
wk =

(
Gund
k

)′
+

(
Guni
k

)′
+

(
Govr
k

)′;
end
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ALGORITHM 2: How to estimate assessor accuracy ak for the topic-by-topic score granularity.
Data: rkt ground-truth generated by the k-th assessor; rph ground-truth generated by the h-th random assessor of level p ,

where h ∈ {1, . . . , H } and p ∈ {uni, und, ovr}; m(·) performance measure
Result: ak vector of length |T | containing the topic score granularity accuracy for the k-th assessor;

/* Compute the performance measure Mk for the k-th assessor and Mp
h for each random assessors */

Mk ← compute m(·) on rkt ;
Mp
h ← compute m(·) on rph , ∀ h ∈ {1, . . . , H } and ∀ p ∈ {uni, und, ovr};

/* Compute the Gap Gp
k,h (t ) with respect to each random assessor: h ∈ {1, . . . , H } and

p ∈ {uni, und, ovr} */

for t ∈ {1, . . . , |T | } do
for h ∈ {1, . . . , H } do

if measure level then
if frobenius norm then

Gp
k,h (t ) =

����Mk (t, ·) −M
p
h (t, ·)

����
F ∀ p ∈ {uni, und, ovr};

(Gp
k,h (t ))

′ = 1 −
Gp
k,h (t )√
|T |·|S |

∀ p ∈ {uni, und, ovr}

else if RMSE then
Gp
k,h (t ) = RMSE

(
Mk (t, ·) −M

p
h (t, ·)

) ∀ p ∈ {uni, und, ovr};
(Gp

k,h (t ))
′ = 1 −Gp

k,h (t ) ∀ r ∈ {uni, und, ovr};
end

else if distribution level then
Gp
k,h (t ) = DKL

(
Mk (t, ·)

����Mp
h (t, ·)

) ∀ p ∈ {uni, und, ovr};

(Gp
k,h (t ))

′ = e−βG
p
k,h (t ) ∀ p ∈ {uni, und, ovr};

else if ranking level then
if Kendall’s Tau then

Gp
k,h (t ) = τ

(
Mk (t, ·), M

p
h (t, ·)

) ∀ p ∈ {uni, und, ovr};
(Gp

k,h (t ))
′ =

��Gp
k,h (t )

�� ∀ p ∈ {uni, und, ovr};
else if AP Correlation then

Gp
k,h (t ) = τap

(
Mk (t, ·), M

p
h (t, ·)

) ∀ r ∈ {uni, und, ovr};
(Gp

k,h (t ))
′ =

��Gp
k,h (t )

�� ∀ p ∈ {uni, und, ovr};
end

end
end

end

/* Aggregate the Gap with respect to the random assessor replicates */

(Gp
k (t ))

′ ← mean
(
(Gp

k,h (t ))
′
) ∀ p ∈ {uni, und, ovr} and ∀ t ∈ {1, . . . , |T | };

/* Compute the weight wk */

for t ∈ {1, . . . , |T | } do
if minimal dissimilarity then

wk (t ) = min
( (
Gund
k (t )

)′
,
(
Guni
k (t )

)′
,
(
Govr
k (t )

)′) ;

else if minimal squared dissimilarity then

wk (t ) = min

(( (
Gund
k (t )

)′)2
,
(
Guni
k (t )

)′)2
,
(
Govr
k (t )

)′)2
)
;

else if minimal equi-dissimilarity then
wk (t ) =

(
Gund
k (t )

)′
+

(
Guni
k (t )

)′
+

(
Govr
k (t )

)′;
end

end
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Finally, the normalized Gap iss averaged over the H replicates of each random assessors class and
the weight of the crowd assessorWk is computed with respect to one of the following methods:

• Minimal Dissimilarity: Equation (25);
• Minimal Squared Dissimilarity: Equation (26);
• Minimal Equi-Dissimilarity: Equation (27).

5 EXPERIMENTAL SETUP
5.1 Crowd Assessors Collection
We use the TREC 21, 2012, Crowdsourcing [63] data sets developed in the Text Relevance Assessing
Task (TRAT). The TRAT required participating groups to simulate the relevance assessing role of
the NIST for 10 of the TREC 08, 1999, Ad-hoc topics [70], using binary relevance. Participating
groups had to submit a binary relevance judgment for every document in the judging pools of the
ten topics. The 10 topics selected were: 411, 416, 417, 420, 427, 432, 438, 445, 446, and 447. In total 33
pools were submitted to TRAT; we excluded two of them (INFLB2012 and Orc2Stage) because, for
some topics, they did not assess any document as relevant; indeed, this prevents the computation
of some evaluation measures because you lack the information about the recall base. Therefore, we
actually used 31 out the 33 submitted pools for TRAT.

In TRAT, the majority vote of the submitted pools was compared to the NIST relevance judgments;
when the majority vote di�ered from the NIST judgment, TRAT organizers adjudicated the �nal
relevance judgment for a document. The TRAT adjudicated pool constitutes the gold standard for
our experimentation.

5.2 Evaluation Measures
When it comes to measures for evaluating the e�ectiveness of the di�erent approaches, we adopt
two criteria used in the TREC 22, 2013, Crowdsourcing track [64]:

• rank correlation: we use AP correlation [78] to compare the ranking of the systems produced
for a given performance measure m(·) computed over the gold standard with respect to
the ranking produced for the same performance measure computed over the ground-truth
generated by one of the approaches under examination;
• score accuracy: in addition to correctly ranking systems, it is important that the performance

scores are as accurate as possible. To this end, for a given performance measure m(·), we
use the RMSE between the performance measure computed over the gold standard and the
one computed over the ground-truth created by one of the approaches under examination.

Note that the above use of AP correlation and RMSE is not related to their use as gaps between
assessors, explained in Section 4; here they are used as evaluation measures for comparing the
di�erent algorithms and methods under examination. Moreover, we do not adopt some of the
evaluation measures used in the TREC Crowdsourcing tracks, such as the Logistic Average Misclas-
si�cation (LAM) rate [12] and the Area Under the ROC Curve (AUC) [15], because these measures
speci�cally deal with classi�cation tasks and basically compare the assigned relevance labels, but
this does not apply to our case because AWARE does not generate relevance labels.

5.3 Performance Measures
When it comes to the assessor measures Mk and M

p
h , we consider the following performance

measures:
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• Average Precision (AP) [6] represents the “gold standard” measure in IR, known to be stable
and informative, with a natural top-heavy bias and an underlying theoretical basis as
approximation of the area under the precision/recall curve [56];
• Normalized Discounted Cumulated Gain (nDCG) [28] is the normalized version of the widely-

known DCG which discounts the gain provided by each relevant retrieved document
proportionally to the rank at which it is retrieved. nDCG is de�ned for graded relevance
judgments and we use nDCG@20, which is calculated up to rank position 20.
• Expected Reciprocal Rank (ERR) [10] is a measure de�ned for graded relevance judgments

and it is particularly top-heavy since it highly penalizes systems placing not-relevant
documents in high positions. We use ERR@20.

5.4 Systems
Two TREC Adhoc tracks used these 10 topics over the years: the TREC 08, 1999, Ad-hoc track [70]
(labeled T08), which contains 129 runs and from which these topics were selected; and, the TREC 13,
2004, Robust track [69] (labeled T13), which contains 110 runs and whose goal was to speci�cally
experiment against hard topics.

Both T08 and T13 adopt a corpus of about 528K news documents, i.e. disk 4 and 5 of the TIPSTER
collection minus the Congressional Record.

5.5 Parameters Setup
For nDCG we use a log base b = 2 and gains 0 and 5 for not relevant and relevant documents,
respectively. For ERR we use gains 0 and 5 for not relevant and relevant documents, respectively.

We generate H = 1, 000 replicates of the random assessors in each class – uniform, underesti-
mating and overestimating assessors.

Let l = 31 be the total number of available crowd assessors and k < l the number of assessors we
are merging using the AWARE framework or other approaches. For each of the above evaluation
measures, we experimented all the k = 2, 3, . . . , 30. For each value of k , there are

(31
k

)
= 31!

k !(31−k )!
possible ways of choosing the k assessors to be merged; we randomly sampled 1,000 k-tuples out
of the

(31
k

)
possible ones. The evaluation measures we report – AP correlation and RMSE – are

averaged over these 1,000 samples.
For the computation of AP correlation in the case of ties, we sample and average over 100

randomly generated orderings.
For the KDE of a performance measure in equation (10), we use 100 equally spaced values x in

the range [0, 1], a Gaussian kernel K(·), and a bandwidth b = 0.015.
For the normalization of the KLD in equation (22), we set β = 1.
For the EM algorithms we set a limit of 1,000 iterations and a tolerance of 10−3.
All the experiments were developed using the MATlab Toolkit for Evaluation of information

Retrieval Systems (MATTERS) library7 and their source code is publicly available8 to favour repro-
ducibility.

5.6 Experiments
We experiment all the combinations of factors for the estimation of a crowd assessor accuracy, as
described in Section 4:

• granularity: whether, for a crowd assessor, we compute a single accuracy (sgl) or a separate
accuracy for each topic (tpc);

7http://matters.dei.unipd.it/
8https://bitbucket.org/frrncl/tois-aware
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• gap: how we compute the “di�erence” between a crowd and a random assessor (fro, rmse,
kld, tau, or apc);
• weight: how we turn a “di�erence” between a crowd and a random assessor into a �nal

accuracy estimation (md, msd, or med).
The combination of these three factors gives raise to 30 di�erent approaches for estimating a

crowd assessor accuracy. We introduce the following notation to facilitate the comprehension of
the main characteristics of an estimator from its name:

<granularity>_<gap>_<weight>

So, for example, the tag sgl_apc_med indicates a single crowd assessor accuracy ak for all the
topics using AP correlation as “di�erence” between crowd and random assessors and the minimal
equi-dissimilarity weighting criterion.

We consider three baselines, representing the state-of-the-art: the MV algorithm, labeled mv, and
two variants of the EM algorithm: emmv, i.e. EM seeded by the pool generated by the MV algorithm,
and emneu, i.e. EM initialized using the worker confusion matrix, as explained in Section 2.

Finally, we experiment also a fourth baseline labeled uni, representing AWARE in absence of
any information, i.e. using uniform accuracies for all the merged crowd assessors, as done in the
toy example of Section 3.

We conduct the following experiments:
• a factorial analysis to isolate the contributions of di�erent factors – k-tuple size, the

performance measure under consideration, and the considered systems (Section 6). This
analysis allows us to understand: (i) which approaches perform best across a wide range of
in�uencing factors, net their e�ects; (ii) how these factors interact with each other;
• a break-down of the contribution of the di�erent components of the AWARE estimators

– namely granularity, gap, and weight (Section 7). This analysis allows us to dig into the
AWARE estimators themselves and better understand how they work.

6 FACTORIAL ANALYSIS OF KTUPLE, APPROACH, MEASURE AND SYSTEM
EFFECTS

6.1 Methodology
The goal of this section is to conduct a deep analysis to investigate how the AWARE approaches
and the state-of-the-art baselines behave with respect to di�erent factors, namely the k-tuple
size, the performance measure under consideration, and the considered systems. To this end, we
adopt the following General Linear Mixed Model (GLMM) model for the three-way ANalysis Of
VAriance (ANOVA) with repeated measures [48, 57]:

Yi jkl = µ · · · · + κi + α j + βk + γl︸                        ︷︷                        ︸
Main E�ects

+ αβjk + αγjl + βγkl︸                  ︷︷                  ︸
Interaction E�ects

+ εi jkl︸︷︷︸
Error

(28)

where: Yi jkl is the score of the i-th subject in the j-th, k-th, and l-th factors; µ · · · · is the grand
mean; κi is the e�ect of the i-th subject, i.e. the k-tuple size k = 2, . . . , 30; α j is the e�ect of the j-th
factor, i.e. both the AWARE and the state-of-the-art approaches; βk is the e�ect of the k-th factor,
i.e. the the performance measures under consideration, namely AP, nDCG@20, and ERR@20; and,
γl is the e�ect of the l-th factor, i.e. the systems submitted to the T08 and T13 tracks. We consider
also the interaction e�ects among approaches and performance measures (αβjk ), approaches and
systems (αγjl ), and performance measures and systems (βγkl ). Finally, εi jkl is the error committed
by the model in predicting the score of the i-th subject in the three factors j,k, l .
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For each model, we report the ANOVA table which summarizes the outcomes of the ANOVA test
on the above model indicating, for each factor, the Sum of Squares (SS), the Degrees of Freedom (DF),
the Mean Squares (MS), the F statistics, and the p-value of that factor. In the following, we consider
a con�dence level α = 0.05 to determine if a factor is statistically signi�cant.

We are not only interested in determining whether a factor e�ect is signi�cant, i.e. its p-value
in the ANOVA table is less than 0.05, but also which proportion of the variance is due to it.
Therefore, we need to estimate its e�ect-size measure or Strength of Association (SOA). The SOA is a
“standardized index and estimates a parameter that is independent of sample size and quanti�es
the magnitude of the di�erence between populations or the relationship between explanatory and
response variables” [51, 59]. We use the ω̂2

〈f act 〉 SOA:

ω̂2
〈f act 〉 =

d ff act (Ff act − 1)
d ff act (Ff act − 1) + N

(29)

which is an unbiased estimator of the variance components associated with the sources of variation
in the design, where N is the total number of elements under analysis.

The common rule of thumb [50] when classifying ω̂2
〈f act 〉 e�ect size is: 0.14 and above is a large

e�ect, 0.06–0.14 is a medium e�ect, and 0.01–0.06 is a small e�ect. ω̂2
〈f act 〉 values could happen to

be negative and in such cases they are considered as zero.
In addition to the ANOVA table, we also show both the main e�ects and the interaction e�ects

plots in order to get a better appreciation of the behaviour of the di�erent levels of each factor. In
particular, the main e�ects plot graphs the response mean for each factor level connected by a line.
An interaction e�ects plot displays the levels of one factor on the X axis and has a separate line for
the means of each level of the other factor on the Y axis; it allows us to understand whether the
e�ect of one factor depends on the level of the other factor.

A Type I error occurs when a true null hypothesis is rejected and the signi�cance level α is the
probability of committing a Type I error. When performing multiple comparisons, the probability of
committing a Type I error increases with the number of comparisons and we keep it controlled by
applying the Tukey Honestly Signi�cant Di�erence (HSD) test [25] with a signi�cance level α = 0.05.
Tukey’s method is used in ANOVA to create con�dence intervals for all pairwise di�erences
between factor levels, while controlling the family error rate. Two levels u and v of a factor are
considered signi�cantly di�erent when

|t | =
|µ̂u − µ̂v |√

MSerror
(

1
nu
+ 1

nv

) > 1
√

2
qα,k,N−k (30)

where µ̂u and µ̂v are the marginal means, i.e. the main e�ects, of the two factors; nu and nv are
the sizes of levels u and v ; qα,k,N−k is the upper 100 ∗ (1 − α)th percentile of the studentized range
distribution with parameter k and N − k degrees of freedom; k is the number of levels in the factor
and N is the total number of observations.

In the following, we have a section dedicated to each evaluation measure, i.e. AP correlation and
RMSE.

Note that when we analyse AP correlation, when can use the data as they are, since all the
scores are in the same range [0, 1] and they are measured in the same way. On the other hand,
when we analyse RMSE, even if all the measures are in the range [0, 1] and so also RMSE is,
AP = 0.20 is not exactly the same as ERR@20 = 0.20 because of their di�erent user models and
they typically assume di�erent values in the range [0, 1]. As a consequence, an RMSE 0.15 for AP is
not directly comparable with an RMSE 0.15 for ERR@20. Therefore, we need to apply some kind of
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Table 1. ANOVA table for AP Correlation considering the k-tuple size, approach, measure and systems e�ects.

Source SS DF MS F p-value ω̂2
〈f act 〉

K-tuple Size 3.5161 28 0.1256 580.7705 < 0.0001
Approach 1.2264 33 0.0372 171.8716 < 0.0001 0.4880
Measure 13.0727 2 6.5364 30,230.1290 < 0.0001 0.9109
Systems 1.9857 1 1.9857 9,183.9134 < 0.0001 0.6082
Approach*Measure 2.0701 66 0.0314 145.0584 < 0.0001 0.6164
Approach*Systems 0.3008 33 0.0091 42.1620 < 0.0001 0.1867
Measure*Systems 5.3240 2 2.6620 12,311.4096 < 0.0001 0.8063
Error 1.2433 5,750 0.0002
Total 28.7391 5,915

normalization �rst to make the scores comparable and we normalize them by the maximum value
achieved on the dataset, thus reasoning in term of ratios.

6.2 AP Correlation
Table 1 shows that all the main and interaction e�ects are statistically signi�cant. As far as main
e�ects are concerned, we can see that Measure is a large size e�ect and it explains the largest share
of variance; Systems is a large size e�ect as well and it is the second largest main e�ect; �nally,
also Approach is a large size e�ect but about 2 times smaller than Measure e�ect and 1.25 times
smaller than Systems e�ect. Overall, this supports the intuition that led to the development of
the AWARE framework: performance Measures and Systems e�ects do matter a lot when merging
assessors and they should be taken into the play, instead of optimizing upstream, as also illustrated
in the toy example of Section 1.

When it comes to the interaction e�ects, Approach*Measure is a large size e�ect, about 1.27 times
greater than the Approach e�ect alone, while Approach*Systems is a large size e�ect but less than
half the Approach e�ect alone. These two facts further strengthen the intuition behind AWARE:
not only do Measures and Systems e�ects play an important role alone, they also in�uence and
interact a lot with the Approaches for merging assessors, where Measures have a greater impact
on Approaches than Systems.

Finally, there is also a large size interaction e�ect between Measure and Systems, indicating
that di�erent measures score systems di�erently, but this is less interesting for the purposes of the
present discussion because it is an intrinsic phenomenon of the relationship between performance
measures and systems.

The main e�ects plot in Figure 4 shows the marginal mean contributions of each e�ect together
with their con�dence interval (shaded). Figure 4(a) shows the contributions of the di�erent ap-
proaches across all the conditions and net of their e�ects, thus allowing us to appreciate the best
and most stable approaches in many operational settings. We can see that the AWARE approaches
lie in a somehow stable range of performances, with the only exception of sgl_rmse_msd which is
the worst performing one but still better than emmv and emneu.

As expected, we can observe from in Figure 4(b) that increasing the number of merged assessors
improves the performances; you can also note how the con�dence interval slightly increases as
the k-tuple size increases, denoting a higher variability due to the larger number of (potentially
heterogenous) assessors merged.
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Fig. 4. AP correlation: main e�ects plots for Approach (a), K-tuple Size (b), Measure (c), Systems (d), and
Tukey HSD multiple comparison test for the Approach factor (e).
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Figure 4(c) shows how the di�erent performance measures lead to quite di�erent performances
when it comes to merging assessors and, in particular, nDCG@20 and ERR@20 are more challenging
than AP. Finally, Figure 4(d) highlights how the targeted systems a�ect the performances as well,
with the T13 ones somehow being more di�cult.

The Tukey HSD multiple comparison analysis reported in Figure 4(e) highlights the top group
(dashed blue line), the group of approaches not signi�cantly di�erent from the uni baseline (dashed
bright red line), the group of approaches not signi�cantly di�erent from mv (dashed dark red line),
and the group of approaches not signi�canty di�erent from emmv and emneu (dashed orange line).
We can note how the top group is separated from the others while the uni and mv groups partially
overlaps. In particular, we can see that the approaches signi�cantly better than all the others
are sgl_tau_msd (the top one), sgl_apc_msd, tpc_apc_msd, and sgl_tau_md, suggesting that the
single score granularity is preferable to the topic-by-topic one and that the tau and apc gaps help
to rank systems better. State-of-the-art approaches, namely mv (the best one in this group), emmv,
and emneu are clearly separated from the top group. Finally, the AWARE uni baseline exhibits
better performances than mv, even though it is not signi�cantly di�erent from it. As also shown in
the toy example of Section 3, among the AWARE approaches, uni is the closest to mv, in that they
both merge assessors attributing the same weight to all of them; yet performing this operation on
the measures rather than on the relevance judgments proves to be slightly more e�ective.

Figure 5 shows the interaction plots. We used the following color convention: we selected cool
colors for the proposed models, based on the AWARE framework, and warm colors for state-of-the-
art models, i.e. mv, emmv, emneu and the AWARE uni baseline.

As shown in Figure 5(a), we can see that K-tuple Size has a positive e�ect for all the Approaches.
Figure 5(a) also allows us to understand which approaches perform best for a given number of
crowd assessors, i.e. for a given k-tuple size. AWARE approaches start higher for low k-tuple sizes
while state-of-the-art ones grow faster as the k-tuple size increases. In particular, mv reaches uni
at k = 13 merged assessors and surpasses it from k = 17 onwards, attaining an interaction level
as positive as sgl_tau_msd just from k = 25 merged assessors. On the other hand, the emneu and
emmv methods start to behave better at higher numbers of merged assessors and this is consistent
with previous �ndings in the literature [54, 55].

Being e�ective already at low numbers of merged assessors is a clear advantage of the AWARE
approaches, since this helps in containing the costs and e�ort for creating a pool. Moreover,
when considering the increasingly better performances of the mv method with high numbers of
merged assessors, we have also to remember how the gold standard has been created: TREC 2012
Crowdsourcing organizers took the majority vote of the submitted pools and then adjudicated it
with respect to the NIST pool. Therefore, it is somehow natural that when you use almost all the
crowd assessors, i.e. all the submitted pools, the performances of the majority vote tend to become
the best ones, since you start converging towards what has been used as the gold standard.

When it comes to the interaction between Measures and Approaches (Figure 5(b)), AWARE
approaches react more proportionally to the increasing di�culty of the di�erent performance
measures; indeed, while mv is among the best interacting approaches for AP and the best one for
nDCG@20, it su�ers from a very consistent drop in the case of ERR@20 (and similarly for emmv
and emneu). Finally, in the case of the interaction between Systems and Approaches (Figure 5(c)),
AWARE approaches behave similarly while mv loses more when it comes to the T13 systems.
Again, all of this supports the intuition behind the AWARE approaches about taking into account
performance measures and systems in the merging process.
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(c) System and Approach

Fig. 5. AP correlation: interaction e�ects plots for K-tuple size (a), measure (b) and systems (c).

6.3 RMSE
Table 2 shows how all the main e�ects as well as all the interaction e�ects are statistically signi�cant.
The Measure factor is a large size e�ect with the greatest impact; Approach is a large size e�ect
but, unlike the case of AP correlation, it is almost as important as Measure; �nally, Systems is a
large size e�ect but much smaller than the previous two. Overall, this further supports the intuition
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Table 2. ANOVA table for normalised RMSE considering the k-tuple size, approach, measure and systems
e�ects.

Source SS DF MS F p-value ω̂2
〈f act 〉

K-tuple Size 20.6579 28 0.7378 272.9961 < 0.0001
Approach 32.2530 33 0.9774 361.6465 < 0.0001 0.6680
Measure 56.7010 2 28.3505 10,490.3151 < 0.0001 0.7800
Systems 3.7700 1 3.7700 1,394.9723 < 0.0001 0.1907
Approach*Measure 45.4675 66 0.6889 254.9091 < 0.0001 0.7391
Approach*Systems 2.4886 33 0.0754 27.9039 < 0.0001 0.1305
Measure*System 0.6374 2 0.3187 117.9227 < 0.0001 0.0380
Error 15.5396 5,750 0.0027
Total 177.5149 5,915

behind AWARE, but it also suggests that Approaches are much more prominent for the accurate
estimation of the actual value of a performance measure, (i.e. what is assessed by the RMSE) than
for ranking systems correctly (i.e. what is assessed by AP correlation).

When it comes to the interaction e�ects, we can see that Approach*Measure and Approach*Systems
are both large size e�ects and that the Approach*Measure is the second largest e�ect, a bit bigger
than Approach alone; again, these two facts strengthen the motivations behind AWARE. Finally,
the Measure*Systems factor is a small size e�ect but this is less relevant for our discussion, as
explained in the previous section.

The main e�ects plots in Figure 6 show: (i) that increasing the number of merged assessors has
the expected positive impact, with a greater variability when merging a higher number of (possibly
heterogenous) assessors, see Figure 6(b); (ii) how the di�erent performance measures in�uence the
e�ectiveness, with AP being the most challenging one while nDCG@20 and ERR@20 display a
somewhat similar behavior, see Figure 6(c); (iii) that the targeted systems a�ect the performances
as well, with T08 being somehow more di�cult, see Figure 6(d).

Figure 6(a) shows the main e�ects of the Approach factor: we can see that the AWARE ap-
proaches are quite good, but with a few more exceptions than in the case of AP correlation, namely
sgl_rmse_msd, tpc_fro_msd, and tpc_rmse_msd. The top group, reported in Figure 6(e), consists
of sgl_rmse_med, tpc_rmse_med, tpc_fro_med (the top ones with extremely close performances),
sgl_fro_med, and sgl_kld_md; this suggests that there is more balance between single and topic-
by-topic score granularities and that the gaps operating closer to the assessors measures (fro, rmse,
kld) are more e�ective. State-of-the-art approaches are clearly distinct from the top group and, in
this case, AWARE uni is signi�cantly better than mv and the rest of them, see Figure 6(e).

If we look at the interaction e�ects plots in Figure 7, we can see that K-tuple size has a positive
e�ect for all the Approaches, apart from emmv and emneu, see Figure 7(a). As in the case of AP
correlation, AWARE approaches quickly gain at lower numbers of merged assessors, becoming
more stable as the k-tuple size increases. Unlike the case of AP correlation, mv behaves like AWARE
approaches up to k = 16 merged assessors whereas, afterwards, adding more assessors becomes
even harmful.

When it comes to the Measure*Approach interaction e�ect in Figure 7(b), we can see that emmv
and emneu react badly to it, while mv behaves similarly to the AWARE approaches, even though
many of them bene�t from the Measure e�ect more than mv, which is one of the worst interacting
approach in the case of ERR@20. Finally, for the Systems*Approach interaction e�ect in Figure 7(c),
emmv and emneu are almost insensitive to it and perform badly, while mv behaves better than most
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Fig. 7. AP correlation: interaction e�ects plots considering k-tuple size (a), measure (b) and systems (c).

of the AWARE approaches for T08, but worse than most of them in the case of T13. Overall, these
facts are a further con�rmation of the intuition which led to the development of AWARE.
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7 FACTORIAL ANALYSIS OF AWARE COMPONENTS
7.1 Methodology
The goal of this section is to conduct a break-down analysis to investigate how the di�erent
components of the AWARE accuracy estimators, namely the granularity, gap, and weight, behave at
the net of the other factors, namely the k-tuple size, the performance measure under consideration,
and the considered systems. To this end, we adopt the following GLMM model for the three-way
ANOVA with repeated measures:

Yi jklmn = µ · · · · · · + κi + α j + βk + γl + δm + ζn︸                                        ︷︷                                        ︸
Main E�ects

+ αβjk + αγjl + βγkl︸                  ︷︷                  ︸
Interaction E�ects

+ εi jklmn︸ ︷︷ ︸
Error

(31)

where: Yi jkl is the score of the i-th subject in the j-th, k-th, l-th, m-th, and n-th factors; µ · · · · ·
is the grand mean; κi is the e�ect of the i-th subject, i.e. the ktuple size k = 2, . . . , 30; α j is the
e�ect of the j-th factor, i.e. the granularity either sgl or tpc; βk is the e�ect of the k-th factor,
i.e. the adopted gap, namely fro, rmse, kld, apc, or tau; γl is the e�ect of the k-th factor, i.e. the
adopted weight, namely md, msd, or med; δm is the e�ect of them-th factor, i.e. the the performance
measures under consideration, namely AP, nDCG@20, and ERR@20; and, ζn is the e�ect of the
n-th factor, i.e. the systems submitted to the T08 and T13 tracks. We consider also the interaction
e�ects among granularity and gap (αβjk ), granularity and weight (αγjl ), and gap and weight (βγkl ).
Finally, εi jklmn is the error committed by the model in predicting the score of the i-th subject in
the �ve factors j,k, l ,m,n.

As in the previous section, also in this case we normalize the RMSE score by their maximum
value for each performance measure before proceeding with the analyses.

7.2 AP Correlation
Table 3 con�rms that K-tuple Size, Measure and Systems are signi�cant and large size fac-
tors that a�ect the performances as already observed in the previous section, with Measure and
Systems being the most prominent e�ects. All the interaction e�ects are small size e�ects with
Granularity*Gap and Gap*Weight quite similar in terms of size and Granularity*Weight about
6 times smaller.

When it comes to the break-down of the AWARE components, we can observe that Granularity
is not a signi�cant factor. This can also be noted in: (i) the main e�ects plot in Figure 8(a), where
sgl and tpc are connected by an almost straight line; (ii) the Tukey HSD multiple comparison
analysis in Figure 8(d), which shows that sgl and tpc are not signi�cantly di�erent since their
ranges overlap.

Both the Gap and the Weight factors are signi�cant but small size e�ects, see Figures 8(b) and 8(c),
even though Gap is about 5.8 times Weight in terms of explained variance. In particular, the top
gaps are apc and tau, see Figure 8(e), while med and md are the top weights, see Figure 8(f). Over-
all, this suggests that, in terms of AP correlation, the key ingredient of the AWARE approaches
is the Gap component and this is corroborated also by the top approaches emerging from Fig-
ure 4(e), i.e. sgl_tau_msd (the top one), sgl_apc_msd, sgl_tau_md, and tpc_apc_msd, which are
a combination of the top Gaps and Weights.

When it comes to the interaction between the di�erent AWARE components in Figure 8(g), it
turns out that the apc and fro gaps are almost insensitive to either the sgl or the tpc granularities
and that the tau gap works better with the sgl granularity while the opposite is true for the kld
and rmse gaps. Overall, this suggest that gaps closer to the assessor measures, i.e. rmse and fro,
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Table 3. ANOVA table for AP correlation providing the break-down of AWARE components e�ects.

Source SS DF MS F p-value ω̂2
〈f act 〉

K-tuple Size 2.8154 28 0.1005 80.7404 < 0.0001
Granularity 0.0009 1 0.0009 0.7746 0.3788 0
Gap 0.2049 4 0.0512 41.1420 < 0.0001 0.0298
Weight 0.0369 2 0.0185 14.8185 < 0.0001 0.0053
Measure 9.6331 2 4.8166 3,867.6402 < 0.0001 0.5970
Systems 1.6418 1 1.6418 1,318.3279 < 0.0001 0.2015
Granularity*Gap 0.1373 4 0.0343 27.5633 < 0.0001 0.0199
Granularity*Weight 0.0256 2 0.0128 10.3056 < 0.0001 0.0036
Gap*Weight 0.1263 8 0.0158 12.6764 < 0.0001 0.0176
Error 6.4347 5,167 0.0012
Total 21.0570 5,219
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Table IV. ANOVA table for AP Correlation considering the k-tuple size, approach, measure and systems effects.

Mean ⌧ap Granularity Group
0.6611 tpc X
0.6602 sgl X

Mean ⌧ap Gap Group
0.6687 apc X
0.6645 tau XX
0.6608 kld XX
0.6593 fro X
0.6499 rmse X

Mean ⌧ap Weight Group
0.6630 med X
0.6620 md X
0.6569 msd X
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Fig. 8. AP correlation: main e�ects plots (a), (b), (c), Tukey HSD multiple comparison tests (d), (e), (f), and
interaction plots (g), (h), (i), for τAP considering granularity, gap, and weight.
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bene�t from a pinpoint granularity more than progressively less close ones, as the kld, tau, and
apc gaps are.

As far as Granularity*Weight interaction is concerned in Figure 8(h), it is interesting to note the
di�erence in behavior between the kinds of weighting schemes: the minimal (squared) dissimilarity
ones, i.e. md and msd, bene�t more from tpc than sgl (especially msd) while the opposite is true for
the other weighting scheme, i.e. med.

Finally, the Weight*Gap interaction in Figure 8(i) reveals that all the Gaps are almost insensitive
to the md and med weights while they either gain a lot (apc and tau) or lose a lot (kld, fro, rmse)
with the msd weight. This suggests that the sharpness of the weighting scheme, i.e. minimal squared
dissimilarity, a�ects the gaps more than the di�erence in the kind of weighting schemes, i.e. minimal
dissimilarity vs minimal equi-dissimilarity, and this becomes more and more detrimental as you
choose a gap closer and closer to the assessor measures.

7.3 RMSE
As in the case of AP correlation, Table 4 con�rms that K-tuple Size, Measure and Systems are
signi�cant and large size factors, with the Measures and Systems being quite close in terms of size.

Unlike the case of AP correlation, for RMSE all the AWARE components factors are statistically
signi�cant and, while Granluarity and Gap are small size e�ects, Weight is a medium size e�ect.
The interaction e�ects Granularity*Gap and Granularity*Weight are small size e�ects, while
Gap*Weight is a medium size e�ect, greater than Weight alone.

Looking at the main e�ects and Tukey HSD multiple comparison analyses in Figure 9, we can see
that: sgl granularity is the best, see Figure 9(d); the kld and fro gaps are the top ones, see Figure 9(e),
suggesting that gaps moderately close to assessor measures are preferable to better predict a
performance score; and the med weight is better than both md and msd, see Figure 9(f), indicating
that its balanced distance from all the random assessors works best in predicting performance
scores.

As suggested also by Table 4, the Weight*Gap interaction is the most prominent one: in Figure 9(i)
the rmse and fro gaps lose most with the msd weight while they have a consistent gain with the
med weight; the other gaps are almost insensitive to the weight, apart from a small drop with msd.
This suggests that the closer the gap to the assessor measure, the stronger the interaction with
the weights: a very negative one in the case of the msd weight, which is the sharpest one; a very
positive one in the case of the med weight, which is the most balanced one.

When it comes to the Granularity*Gap interaction in Figure 9(g) gaps tend to improve passing
from the tpc to the sgl granularity, especially fro, although rmse is an exception as slightly gains
with the tpc granularity.

Finally, for the Granularity*Weight interaction in Figure 9(h) med and md are mostly insensitive
to granularity, while msd improves using sgl.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we presented the AWARE framework for robustly combining performance measures
coming from multiple crowd assessors. The idea of AWARE stemmed from the observation of the
potential impact of both performance measures and systems when it comes to correctly labeled/mis-
labeled relevance judgements. Therefore, we proposed a probabilistic framework to take systems
and performance measures into account during the estimation of the crowd assessors accuracies
used to combine them.

We then exempli�ed how to instantiate the proposed stochastic framework by introducing many
unsupervised estimators of the accuracy of crowd assessors.
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Table 4. ANOVA table for RMSE providing the break-down of AWARE components e�ects.

Source SS DF MS F p-value ω̂2
〈f act 〉

K-tuple Size 36.9657 28 1.3202 136.8070 < 0.0001
Granularity 0.4871 1 0.4871 50.4805 < 0.0001 0.0094
Gap 0.7642 4 0.1910 19.7969 < 0.0001 0.0142
Weight 4.8828 2 2.4414 252.9934 < 0.0001 0.0880
Measure 25.0089 2 12.5044 1,295.7805 < 0.0001 0.3316
Systems 18.7670 1 18.7670 1,944.7464 < 0.0001 0.2713
Granularity*Gap 0.3381 4 0.0845 8.7584 < 0.0001 0.0059
Granularity*Weight 0.2805 2 0.1403 14.5350 < 0.0001 0.0052
Gap*Weight 5.8342 8 0.7293 75.5719 < 0.0001 0.1026
Error 49.8622 5,167 0.0097
Total 143.1908 5,219
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Table V. ANOVA table for AP Correlation considering the k-tuple size, approach, measure and systems effects.

Mean RMSE Granularity Group
0.5843 sgl X
0.6036 tpc X

Mean RMSE Gap Group
0.5758 kld X
0.5868 fro XX
0.5967 apc XX
0.5987 tau X
0.6119 rmse X

Mean RMSE Weight Group
0.5642 med X
0.5816 md X
0.6360 msd X
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Fig. 9. RMSE: main e�ects plots (a), (b), (c), Tukey HSD multiple comparison tests (d), (e), (f), and interaction
plots (g), (h), (i), for τAP considering granularity, gap, and weight.
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Finally, we conducted a thorough evaluation on TREC collections, comparing AWARE against
state-of-the-art approaches and studying their in�uencing factors, namely performance measures
and systems. We also investigated the contributions and interactions of the di�erent components
of the AWARE estimators.

The experimentation has provided multiple evidence supporting the intuition behind the AWARE
framework. Moreover, it has shown that AWARE approaches perform better than state-of-the-art
ones in terms of both ranking systems and correctly predicting their performance scores. Finally, it
has provided insights about which estimators work best in which context.

Table 5 summarizes the top AWARE approaches, analyzed in detail in Section 6, as well as the
best AWARE components, namely granularities, gaps and weights, analyzed in Section 7; the table
shows these analyses for both AP correlation, i.e. as far as ranking systems is concerned, and RMSE,
i.e. as far as predicting system performances is concerned.

sgl_tau_msd is the best approach in terms of AP correlation while sgl_rmse_med is the best
approach for RMSE. In general, AWARE approaches outperform the state-of-the-art ones which
are never part of the top group. Moreover, for both AP correlation and RMSE, we can observe that
increasing the number of crowd assessors improve the performances – see Figures 4(b) and 6(b)
– but the AWARE approaches are more e�ective than the state-of-the-art ones for low numbers
of assessors, as shown in Figures 5(a) and 7(a). Therefore, besides better performance, AWARE
provides the additional bene�t of requiring less resources for ground-truth creation.

When it comes to components, in terms of AP correlation, the sgl and tpc granularities are not
signi�cantly di�erent, even if the sgl granularity is predominant among top approaches. This is
due to the interaction among components, analyzed in Figure 8, which boost the performances
for some combinations of components, e.g. the sgl granularity performs best than all the others
when it is combined with the tau gap, as shown in Figure 8(g). As far as gaps are concerned, the
top group is represented by apc and tau while med and md are the weights in the top group. As
before, the fact that top approaches mostly use the msd weight is due to the interaction between
components; indeed, as shown in Figure 8(i), the performance of msd is boosted by the apc and
tau gaps which, at the same time, lower the performance of md and med. The importance of the
interaction e�ects is supported also by the e�ect sizes reported in Table 3, which shows that the
Granularity*Gap and Gap*Weight interactions have size one order of magnitude greater than the
Granularity*Weight interaction.

Table 5. Result Summary for AP Correlation and RMSE.

AP Correlation RMSE

Approach

sgl_tau_msd sgl_rmse_med
sgl_apc_msd tpc_rmse_med
tpc_apc_msd tpc_fro_med
sgl_tau_md sgl_fro_med

sgl_kld_md

Granularity sgl sgl
tpc

Gap apc kld
tau fro

Weight med med
md
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Respectively, for RMSE, the best granularity is sgl which is also the most frequent in the top
group of approaches. The best gaps are kld and fro while med is the top weight. As discussed above,
interaction plays an important role also in this case: indeed, the top approaches are sgl_rmse_med
and tpc_rmse_med because of the strong positive interaction between med and rmse, shown in
Figure 9(i) and supported by the medium e�ect size of the Gap*Weight interaction, which is two
order of magnitude greater than all the other interactions e�ects, as reported in Table 4.

The proposed unsupervised estimators are, in a sense, mono-feature, since they operate on each
performance measure separately. However, the experimentation has shown that the performance
of the proposed estimators varies from measure to measure, e.g. ERR is more challenging than AP
in terms of AP correlation. Therefore, as part of future work, we will investigate multi-feature
estimators, i.e. estimators that take into account multiple performance measures at the same time
to determine the accuracy of a crowd assessor; in this way, we plan to exploit the di�erences among
various evaluation measures to obtain more robust estimators.

Another direction for future work will concern the development of supervised estimators, i.e.
estimators that leverage a gold standard instead of random assessors for determining the accuracy of
a crowd assessor. Also in this case, we can envision both mono-feature and multi-feature estimators,
in the sense explained above.

Finally, it would be interesting to experiment what happens in the case of graded-relevance
judgments. Not only is this a natural setting for nDCG and ERR, it also opens up to other evaluation
measures such asGraded Average Precision (GAP) and its extensions [16, 56] or e�ort-based measures
such as Twist [20].
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