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Abstract. We investigate a new approach for evaluating session-based
information retrieval systems, based on Markov chains. In particular, we
develop a new family of evaluation measures, inspired by random walks,
which account for the probability of moving to the next and previous
documents in a result list, to the next query in a session, and to the
end of the session. We leverage this Markov chain to substitute what in
existing measures is a fixed discount linked to the rank of a document or
to the position of a query in a session with a stochastic average time to
reach a document and the probability of actually reaching a given query.
We experimentally compare our new family of measures with existing
measures – namely, session DCG, Cube Test, and Expected Utility –
over the TREC Dynamic Domain track, showing the flexibility of the
proposed measures and the transparency in modeling the user dynamics.
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1 Introduction

Evaluation measures are an intrinsic part of experimental evaluation. Even if a
growing attention is called in the field for developing stronger theoretical foun-
dations [1,2,3,9,12], they are often formulated and justified in a somewhat in-
formal and intuitive way rather then being based on well-founded mathematical
models. Carterette [4] has made a post-hoc attempt to propose a unifying frame-
work which explains modern evaluation measures based on three components: a
browsing model, a model of document utility, and a utility accumulation model.
According to this framework, measures such as RBP [21], DCG [13] or ERR [5]
can be defined as expectations of the utility, total utility, and effort, respectively
over a probabilistic space defined by the chance of a user to browse the next in
rank document in a provided ranking.

When it comes to session search, defining an evaluation measures based on
a rigorous mathematical model becomes an even more challenging task. Session
search involves multiple iterations of searches in order for a user to accomplish
a complex information need, with multiple queries being issued or reformulated



and multiple runs of search results being returned by the search engine and ex-
amined by the user. The difficulty of defining session evaluation measure comes
from the question of how to assess the value of a relevant document not only
along a certain ranking but across rankings of different queries within a ses-
sion, or, in other words, how to mathematically model the dynamics of a user
across the entire search session. Session evaluation measures proposed in the
literature, such as the session Discounted Cumulated Gain (sDCG) [14], the Ex-
pected Utility (EU) [28], the Expected Session measures (esM) [15], or the Cube
Test (CT) [19], typically extend single ranking evaluation measures in an ad-hoc
manner that results in a lack of a sound, clear, and extensible mathematical
framework. In this paper, we focus on the following research question: How can
we mathematically model user dynamics over a multi-query session and inject
them into an effectiveness measure?

To answer this question, we represent queries in a session and documents
within a ranked result list for a query as states in a Markov chain. We then
define an event space of user actions when searching: (a) moving along a ranking
of documents, (b) reformulating her query, and (c) abandoning the search session,
and the probabilities of each one of these actions. Different instantiations of these
probabilities give rise to different transition probabilities among the states of the
Markov chain which allow us to model the different and perhaps complex user
behaviors and paths in scanning the ranked result lists in a session.

Finally, we conduct a experimental evaluation of the Markov Session Mea-
sures (MsM) using three standard Text REtrieval Conference (TREC) collec-
tions developed by the Dynamic Domain Track (DDT) [26,27], based on which
we show the flexibility of MsM in modeling a wide variety user dynamics, as well
as how close MsM is to existing measures in terms of user dynamics.

2 Related Work

Järvelin et al. [14] extended the Discounted Cumulated Gain (DCG) measure
to consider multi-query sessions. The measure – session Discounted Cumulated
Gain (sDCG) – discounts documents that appear lower in the ranked list for
a given query, as well as documents that appear in follow up query reformula-
tions. sDCG underlies a deterministic user model with the user stepping down
the ranked list until a fixed reformulation point and then moving to the next
query in the session until all ranked lists in the session have been scanned. Luo
et al. [19] proposed the Cube Test (CT) which is also based on a determin-
istic user model of browsing a ranked list up to a certain reformulation point
and then continuing to browse the results of the next query. Departed from the
work of Smucker and Clarke [22,23] who defined the Time-Biased Gain (TBG)
measure, Luo et al. inject the time it takes users to read relevant documents
as a discounting factor of the utility of a document. Differently from the afore-
mentioned deterministic user models, both Yang and Lad [28] and Kanoulas et
al. [15] took a probabilistic approach and defined a session measure as an expec-
tation over a set of possible browsing paths. Yang and Lad introduced Expected



Utility (EU) and, to define the probability of a user following a certain path,
they followed the Rank-Biased Precision (RBP) approach [21], replacing RBP’s
stopping condition with a reformulation condition. Kanoulas et al., instead, first
defined a reformulation probability that allows for an early abandonment and
then, for those queries that are being realized, they introduced a stepping-down
probability, similar to RBP. Our approach differs from sDCG and CT by con-
sidering a probabilistic event space of user actions across the states of a Markov
chain, which represent documents in the different ranked lists and positions
within them. Further, it offers a solid mathematic framework that from Yang
and Lad and Kanoulas et al. by avoiding the unreasonable assumptions their
approaches make, but also offering the ability to extend the framework to more
advanced user dynamics.

Markov-based approaches have been previously exploited in IR, for exam-
ple: Markov chains have been used to generate query models [17], for query
expansion [7,20,25], and for document ranking [8], or to address the placement
problem in the case of two dimensional results [6]. Ferrante et al. [10] use Markov
chains to define evaluation measures over a single ranked list. This work is an
extension of their work to session retrieval. However, differently from their work
that depends on the computation of an invariant distribution and which makes
the assumption that there is no absorbing state, our work takes a random walk
approach and assumes the presence of an absorbing state.

Finally, according to a conducted laboratory user study, Liu et al. [18] have
recently suggested some desirable features of a session-based evaluation measure:
(1) the most useful document in a query is the most important; (2) the weighting
function between queries should be normalized; (3) the primacy effect is not
suitable for session evaluation; (4) the recency effect has a stronger influence on
user’s session satisfaction. Our MsM measure addresses some of the requirements
formulated by Liu et al.: (1) because it handles graded relevance and an higher
gain can be assigned to the most useful document; (2) because modelling the
whole session with a single Markov chain seamlessly normalizes scores across
queries; (3) and (4) because by setting appropriate transition probabilities and
discount functions, it is possible to smooth the effect of the first documents
(primacy) and emphasise the importance of latter queries (recency).

3 The Model

Section 3.1 introduces our Markovian model of the user dynamics over a multi-
query session. Section 3.2 exploits this Markovian model to define the Markov
Session Measure (MsM) which can be used to evaluate session-based IR systems.

3.1 Multi-query session dynamics

For a given task, a user can generate a sequence of queries, each of which orig-
inates a ranked list of documents. Given D the whole document corpus and
N ∈ N the length of a run, Dj(N) = {(d1,j , . . . , dN,j) : dn,j ∈ D, dn,j 6=



dm,j for any m 6= n} is the ordered set of documents retrieved by a system
run for the j-th query. The sets Dj(N) for j ∈ N may not be disjoint and
the same document may appear in many queries. Without loss of generality we
assume that every run has the same length N .

Let k ∈ N the number of queries in a session. The whole search session is de-
fined as a matrix of documents, where columns are the the runsD1(N), . . . , Dk(N)
corresponding to each query

d1,1 d1,2 d1,3 . . . d1,k
d2,1 d2,2 d2,3 . . . d2,k
d3,1 d3,2 d3,3 . . . d3,k

...
...

...
. . .

...
dN,1 dN,2 dN,3 . . . dN,k


The user moves among the documents according to some dynamics, that we

assume to be Markovian, i.e. the user decides which document to visit only on
the basis of the last document considered. Moreover, we assume that the user
starts her search from the first document in the first query, i.e. first row and
first column, as typically assumed by any evaluation measure. Then, she moves
among the documents in the first column until she decides to change column,
i.e. to reformulate the query, or to abandon the search session. In case of query
reformulation, she passes to the next result list and, as before, she starts from
from the first document of the subsequent column, i.e. the next query, and so
on until she ends the search.

We define the sequence of positions of the documents visited by the user
as a stochastic process, (Xn = (X1

n, X
2
n))n≥1, where Xn = (i, j) means that

the n-th document visited by the user is di,j , the i-th document of the j-th
column. We assume that this process is a Markov chain on the state space
S = {1, . . . , N}∞ ∪ {(F, j), j ∈ N} where Xn = (F, j) represents the fact that
the user ends his search after visiting n−1 documents and formulating j queries.
The transition matrix of this Markov chain

p(in,jn),(in+1,jn+1) = P[Xn+1 = (in+1, jn+1)|Xn = (in, jn)] ,

undergoes these constraints:

1. p(in,jn),(in+1,jn+1) = 0 if jn+1 6= jn, jn + 1, i.e. the user can either move
within a column of documents or pass to the next one;

2. p(in,jn),(in+1,jn+1) = 0 if in+1 6= 1, i.e. when the user leaves a column, she
goes to the first document of the next one;

3. p(in,jn),(F,jn) > 0 for any in 6= F ;
4. p(F,jn),(F,jn) = 1 for any jn, i.e. the states (F, j)’s are all absorbing.

Example 1. Let us assume that the stochastic process (Xn)n≥1 takes the follow-
ing values:

X1 = (1, 1), X2 = (3, 1), X3 = (1, 2), X4 = (2, 2), X5 = (6, 2),
X6 = (3, 2), X7 = (1, 3), X8 = (3, 3), X9 = (F, 3).



This means that the user performed 3 queries and considered 8 documents before
stopping, as shown in the following graph

(1, 1) (1, 2) (1, 3)

(3, 1)

(2, 2)

(3, 2)

(6, 2)

(3, 3)

(F, 3)

In order to determine how many queries have been issued and how long the
search lasted, we define the following sequence of stopping times. Recall that
the stopping time for a Markov chain (Xn)n≥1 is a random variable T with
values in N ∪ {∞} such that for any n ∈ N the event {T = n} depends only on
{Xm,m ≤ n}. The stopping time

H = inf{n ≥ 1 : X1
n = F}

determines the number of steps done by the process, with the convention that
inf ∅ =∞. It allows us to define the (random) number K of queries performed
during the search

K = X2
H

K is the second component of the process (Xn, n ∈ N) once absorbed in (F, ·).
Then, we define the random times to leave any query as

H1 := inf{n ≥ 1 : X2
n = 2}

H2 := inf{n ≥ 1 : X2
n = 3}

...
HK−1 := inf{n ≥ 1 : X2

n = K − 1}

Thanks to these stopping times, we are able to determine how many documents
of any query have been visited by a user. Indeed, defined H0 = 1, the user has
considered H1 − H0 documents of the first query, H2 − H1 documents of the
second query, H3 − H2 documents of the third query and so on until the last
query, where the number of documents visited is H − HK−1. In the previous
example, we have H = 9, K = 3, H1 = 3, H2 = 7, and the user has visited,
respectively, 2, 4 and 2 documents in the three queries before stopping the search.



By means of these stopping times, we can define the events corresponding to
the end of the search session in any given query. Indeed, if H1 = ∞, it means
that the user never passes to the second query and (F, 1) is the unique absorbing
state, A1 = {ω : H1(ω) =∞} corresponds to the event “the user visits just the
documents in the first query”. Analogously, for any j > 1, we can define the
event Aj = {ω : H1(ω) < ∞, . . . ,Hj−1(ω) < ∞, Hj(ω) = ∞} that the user
ends search after considering the first j queries. The events {Aj , j ∈ N} form a
partition of the underlying probability space.

In the following, these events are used to measure how “often” a random
user visits each query during her search and to obtain, as a consequence, a
weight to be assigned to any query. Moreover, to evaluate the effectiveness of
the search within the queries actually visited by the user, we evaluate how far
(stochastically) any state is, i.e. any document of any query, from the initial
state (1, 1) and discount its relevance proportionally to this “random” distance.

3.2 Evaluation of Multi-query Sessions

As previously discussed, evaluation measures typically apply a deterministic dis-
count of the gain/utility of a document by a function of its rank position. We
replace these deterministic discounts operating a two-step stochastic procedure:

– Given that the search generates k queries, we consider the probabilities that
the search ends in (F, 1), (F, 2), . . . , (F, k), respectively;

– Given that the user does not end her search before the query j, i.e. she visits
the documents of the query j, we compute the discount at each rank position
of the j-th query according to the expected number of steps needed to reach
that rank position starting from (1, 1).

The user can stop her search after considering only the first run, or the first
two runs, or the first three runs and so on. This is equivalent to considering
that the Markov chain is absorbed in (F, 1), or (F, 2) and so on until (F, k).
We are able to evaluate the absorption probabilities in any of these states h =
(h1, . . . , hk) starting from the probabilities of the events A1, . . . , Ak−1 defined
above. Indeed, we have hj = P[Aj ] for any j < k, and hk = 1− h1 − . . .− hk−1.

Let us define πj as the probability that the user visits the query j before
ending the search

πj =

k∑
l=j

hl = 1−
j−1∑
l=1

hl .

To evaluate the “expected distance” from state (1, 1) for the documents in
query j, we define the following family of stopping times for any i ≤ N , since
the search does not end before this query j

H(i,j) = inf{n ≥ 1 : Xn = (i, j)} .

These stopping times allow us to evaluate how long it takes to reach the doc-
ument at depth i in query j, and these values are used to perform the average
inside the columns.



Thus, given that the search does not end before document (i, j), we define
the weight at position (i, j) as

e(i, j) = E(1,1)[H
(i,j)] = E[H(i,j)|X1 = (1, 1)] . (1)

To evaluate the contribution of the j-th query to the multi-session search, we
compute

E(j) =

N∑
i=1

φ(e(i, j)) GT (di,j) (2)

where GT (di,j) ∈ N0 is the gain corresponding to document di,j (0 for not
relevant documents) and the discount function φ is a positive, monotone real
function. Choosing it decreasing we discount the relevance of the documents and
queries far from the top (primacy according to Liu et al. [18]), while choosing it
increasing we give more weight to the relevance of those documents and queries
(recency according to Liu et al.). Examples of the function φ are: reciprocal linear
weight, i.e. φ(x) = 1

x ; reciprocal logarithmic weight, i.e. φ(x) = 1
1+log10(x)

; and,

logarithmic weight, i.e. φ(x) = 1 + log10(x).
Finally, the new Markov Session Measure (MsM) combines the contribution

of the k queries in a search session as

MsM =

k∑
j=1

πjE(j) . (3)

Overall, MsM expresses the expectation of the stochastic time E(j), i.e.
number visited documents, it takes for a user to accumulate gain during the
search, monotonically transformed by a weighting function φ which can put
more emphasis either on the start or the end of the search, weighted by the
probability π of actually continuing to query.

4 Experimental Setup

In this section, we evaluate the behavior of the proposed measure, answering the
following research questions:
RQ1 How doesMsM compare to existing session evaluation measures regarding

the ranking of retrieval systems?
RQ2 Which factors of the user dynamics affect these correlations and to what

extent?

Computation of the MsM Measure We developed an efficient way of com-
puting the MsM measure, avoiding the most general and immediate approach
of using a large block-diagonal matrix, where each sub-matrix would represent
a single query in the session. For space reasons the pseudo-code of the algo-
rithm is omitted here but it is available in the electronic appendix available
as Online Resource 1. Moreover, to further ease the reproducibility of exper-
iments, the source code of the actual implementation is available at: https:

//github.com/ekanou/Markovian-Session-Measures.

https://github.com/ekanou/Markovian-Session-Measures
https://github.com/ekanou/Markovian-Session-Measures


Data Collection To answer RQ1 and RQ2 we ran experiments on the TREC
2015, 2016, and 2017 Dynamic Domain Track (DDT) collection. The search tasks
in DDT focus in domains of special interests, which usually produce complex and
exploratory searches with multiple rounds of user and search engine interactions.
The DDT collection consists of a set of topics, and multi-query sessions corre-
sponding to each topic. In DDT retrieval systems were provided with the first
query, they returned a ranked list of 5 documents, and based on passage anno-
tations in these documents, a jig (user simulation) returned a follow-up query.
IR systems had the chance to decide when to stop providing users with ranked
lists of documents.

Session Evaluation Measures We compare MsM to the normalized [24]
versions of session DCG (sDCG) [14], Expected Utility (EU) [28], and Cube
Test (CT) [19]. Since we are not dealing with diversity, we simplify them by
using a gain function that ignores subtopic relevance.

Model Instantiations. As an exemplification for experimentation purposes,
we consider two user’s models, with two different set of assumptions. The first
model, called Random-Walk model, assumes a user who after considering
a document she decides, according to constant probabilities, to proceed to the
next document (p), to the previous document (q), to stop her search (s), or
to reformulate a new query (r). From the transition matrix point of view, this
model is determined by the following assumptions:

p(i,j),(i+1,j) = p if i 6= F
p(i,j),(i−1,j) = q if i 6= 1
p(i,j),(1,j+1) = r if i 6= F
p(i,j),(F,j) = s if i 6= F
p(F,j),(F,j) = 1 for any j

where p+ q + r + s = 1 and p > 0, q ≥ 0, r > 0 and s > 0.
The second one, called Forward model, is a special case of the first one,

inspired by the RBP philosophy, where the backward probability, q, is set to 0,
i.e. it assumes that the user moves only forward in the ranked list.

Experiments To answer RQ1 we experimented with both the Forward and the
Random-Walk model, using reciprocal log and linear weight, introduced earlier,
while the probabilities p, r, and s were set to values on a grid in [0, 1)3 with a
step of 0.05, under the constraint that p + r + s = 1. Given that the results of
the Forward and Random-walk model were highly correlated, and due to space
limitations, we present results only of the Forward model.

To answer RQ2 we experiment with both the Forward and Random-Walk
model, while we factorize user types by three characteristics: (a) patience, in
terms of the total number of documents they are willing to examine, (b) browsing
pattern in terms of whether they prefer to scan the ranked list or reformulate, and



(c) decisiveness in terms of deciding whether a document is relevant once they
observe it, or moving back to it and re-examining it after they have examined
more documents. We control patience by setting the stopping probability, s, to
three distinct values, 0.01, 0.1, and 0.3; the first type of user will on average view
around 50 documents, the second around 9, and the third around 3, before they
quit their search. We control the browsing pattern by setting the probabilities
of walking down the ranked list, p, and reformulating, r to a set of values, such
that the user either demonstrates a bigger willingness to scan the ranked list,
to reformulate, or to have a balanced behaviour. Last, we control decisiveness
by either not allowing the user to walk backwards, hence setting the backwards
probability, q, to 0, or allowing the user to do so, by setting q to 0.1. 1

5 Results and Analysis

5.1 RQ1 – Correlation Analysis

To answer RQ1, we conduct a correlation analysis using Kendall’s τ [16] among
the rankings of systems produced by the different evaluation measures. Ferro [11]
has shown that, even if the absolute correlation values are different, removing
or not the lower quartile runs produces the same ranking of measures in terms
of correlation; similarly, it was shown that both τ and AP correlation τap [29]
produce the same ranking of measures in terms of correlation. Therefore, we
focus only on Kendall’s τ without removing lower quartile systems.

Figure 1 presents the average Kendall’s τ correlation between different in-
stantiations of MsM measure and sDCG, EU and CT, respectively, on rankings
of systems in DDT. The x-axis in all three plots corresponds to the forward
probability, p, while the y-axis to the reformulation probability, r. The stopping
probability, s, can be infered, given that p+ r + s = 1. The colorbar shows the
actual correlation values.

Figure 1a corresponds to the correlation with sDCG. It can be observed that
the highest correlation is achieved along the secondary diagonal, i.e. when the
stopping probability is 0.05, with the maximum value obtained when p is 0.55,
r is 0.40 and s is 0.05. This shows that the browsing model of sDCG penalizes
documents both lower in the ranking and further in the session queries. Figure 1b
corresponds to the correlation with CT. It can be observed that the highest
correlation is achieved along the x-axis, i.e. when the reformulation probability
is 0.05, with the maximum value obtained when p is 0.10, r is 0.05, and s
is 0.85. As a reminder CT does not penalize documents that appear lower in
the ranking; it only penalizes documents that appear further in the session,
with a reciprocal linear weight of the index of the query in the session. This
is captured by the plot: the high forward probability essentially dictates little
penalization within a ranking, while the low reformulation probability dictates
a high penalization across queries in the session. The overall low correlation

1 Advanced user dynamics that condition probabilities on the relevance of the viewed
document, similar to ERR, are also possible with MsM but are left as future work.



(a) (b)

(c)

Fig. 1: Average Kendall’s τ correlation.

(0.12) however also designates that the penalization model of CT can be hardly
modeled in a probabilistic manner. Figure 1c corresponds to the correlation with
EU. The highest correlation is achieved when p is 0.10, r is 0.20 and s is 0.70.
The plot demonstrates a pattern of high correlations that is in between the high
correlation patterns of sDCG and CT. The high correlation at low reformulation
probabilities also shows that EU expects a user to move forward a ranked list
and reformulate only at the end of it. In conclusion, to some extent, the MsM
measure provides some insights on the implicit user models of existing measures,
even if some of the assumptions made in those measures do not always allow high
correlation scores.

5.2 RQ2 – Analysis of Variance

To answer RQ2, we conduct an Analysis of Variance (ANOVA) of the different
factors that may influence the correlation between MsM and existing session
evaluation measures. For space reasons, we report this analysis in the case of
sDCG and EU, being possible to draw similar conclusions also in the case of
CT.

Table 1 shows the three-way ANOVA for analysing the factors in the MsM
measures which influence the correlation with nsDCGs. The Track factor rep-



Table 1: Analysis of the factors influencing correlation with sDCG.
Source SS DF MS F p ω̂2

〈fact〉
Track 0.1526 2 0.0763 5.3294 0.0083 0.1382

Patience 0.2712 2 0.1356 9.4704 0.0003 0.2388

Browsing 0.4330 2 0.2165 15.1245 < e-4 0.3435

Weight 0.0014 1 0.0014 0.1004 0.7528 –

Error 0.6582 46 0.0143

Total 1.5167 53

Table 2: Analysis of the factors influencing correlation with EU.
Source SS DF MS F p ω̂2

〈fact〉
Track 0.0084 2 0.0042 0.3962 0.6752 –

Patience 0.0255 2 0.0127 1.2022 0.3098 –

Browsing 0.9185 2 0.4593 43.3024 < e-4 0.6104

Weight 0.0057 1 0.0057 0.5333 0.4689 –

Error 0.4879 46 0.0106

Total 1.4459 53

resents the effect of one of the three tracks (DD 2015, 2016, and 2017); the
Patience factor represents the effect of the patience of the user in scanning the
list (impatient, balanced, patient); the Browsing factor represents the attitude
to walk down the list or reformulate new queries (down, balanced, reformulate);
the Weight factor represents the type of discount (linear, log). The ANOVA
analysis shows that the Track, Patience, and Browsing factors are statistically
significant while the Weight one is not; we also conducted an ANOVA analysis
(not reported here for space reason) to test the interaction among these factors
but none of them is significant. The Tukey Honestly Significant Difference (HSD)
test shows that the impatient user is significantly different from the balanced

and patient ones, which are not significantly different from each other, being
the impatient user the lowest one in terms of correlation and the patient

the highest one. The Tukey HSD test also shows that the balanced browsing
pattern is significantly different from the down and reformulate ones, which
are not significantly different from each other, being the reformulate strategy
the lowest one in terms of correlation and the balanced the highest one. The
Strength of Association (SOA) ω2 shows that the Track factor is a medium-size
effect while the Patience and Browsing factors are large-size effects, being the
browsing pattern the most prominent one. Overall, this analysis suggests that
the most prominent motivations of similarity between MsM measures and sDCG
are a balanced browsing pattern and a balanced/patient user, which is the user
model actually implemented in sDCG.

Table 2 shows the three-way ANOVA for analysing the factors in the MsM
measures which influence the correlation with EU. The ANOVA analysis shows
that only the Browsing factor is statistically significant while all the others are



not; we also conducted an ANOVA analysis (not reported here for space reason)
to test the interaction among these factors but none of them is significant. The
Tukey HSD test shows that all the browsing patterns are significantly different,
being the balanced strategy the lowest one in terms of correlation and the down

the highest one. The SOA ω2 shows that the Browsing factor is a large-size effect.
Overall, this analysis suggests that the most prominent motivation of similarity
between MsM measures and EU is a down browsing pattern.

Overall, the ANOVA analysis also highlights that the Track factor, when
significant, is not the most influencing one and this supports the previous ob-
servation about a consistent behaviour of the measures across the tracks and
reporting the correlation values averages across tracks.

6 Conclusions and Future Work

We considered the problem of evaluating multi-query sessions. Differently from
past attempts we provided a mathematical formulation of the user dynamics on
the basis of a Markov chain that allows for a strong theoretical underpinning
of the deduced measure. The measure proposed provides a flexible but at the
same time mathematically sound and intuitive parametrization on the basis of
the expected user behavior. We experimented with different variations of the
measure each making its own assumption regarding (a) the chance of the user
to return to an already seen document in a ranked list; (b) the patience of
the user to move down in a ranked list as opposed to reformulating her query;
and, (c) the patience of the user in the overall use of the information retrieval
system. We showed that the produced measures can indeed capture different
user behaviors, and through a correlation analysis we attempted to provide a
better understanding of existing session measures and the implicit assumptions
in their user models.

What we present in this work is a rather flexible framework to construct
session evaluation measures of interest. A number of future directions could
be explored: (a) identifying the right parameters that will reduce the proposed
MsM to existing session measures, providing a theoretical underpinning of those
measures and better expandability; (b) injecting more advanced user dynamics
in the MsM by e.g. modeling transition probabilities as conditional probabilities
on the relevance of the visited documents; (c) learning parameters using query
logs or leveraging user studies; and, (d) expanding the discrete Markov chain to
a continuous-time Markov chain to naturally incorporate time in the measure.
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13. Järvelin, K., Kekäläinen, J.: Cumulated Gain-Based Evaluation of IR Techniques.
ACM Transactions on Information Systems (TOIS) 20(4), 422–446 (October 2002)

14. Järvelin, K., Price, S.L., Delcambre, L.M.L., Nielsen, M.L.: Discounted cumu-
lated gain based evaluation of multiple-query ir sessions. In: Proceedings of the
IR Research, 30th European Conference on Advances in Information Retrieval.
pp. 4–15. ECIR’08, Springer-Verlag, Berlin, Heidelberg (2008), http://dl.acm.

org/citation.cfm?id=1793274.1793280

15. Kanoulas, E., Carterette, B., Clough, P.D., Sanderson, M.: Evaluating multi-query
sessions. In: Proceedings of the 34th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval. pp. 1053–1062. SIGIR ’11, ACM,
New York, NY, USA (2011), http://doi.acm.org/10.1145/2009916.2010056

16. Kendall, M.G.: Rank correlation methods. Griffin, Oxford, England (1948)

17. Lafferty, J., Zhai, C.: Document Language Models, Query Models, and Risk Min-
imization for Information Retrieval. In: Kraft, D.H., Croft, W.B., Harper, D.J.,
Zobel, J. (eds.) Proc. 24th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SIGIR 2001). pp. 111–119. ACM
Press, New York, USA (2001)

18. Liu, M., Liu, Y., Mao, J., Luo, C., Ma, S.: Towards Designing Better Session
Search Evaluation Metrics. In: Collins-Thompson, K., Mei, Q., Davison, B., Liu,
Y., Yilmaz, E. (eds.) Proc. 41th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2018). pp. 1121–1124.
ACM Press, New York, USA (2018)

19. Luo, J., Wing, C., Yang, H., Hearst, M.: The water filling model and the cube test:
Multi-dimensional evaluation for professional search. In: Proceedings of the 22Nd
ACM International Conference on Information and Knowledge Management. pp.
709–714. CIKM ’13, ACM, New York, NY, USA (2013), http://doi.acm.org/10.
1145/2505515.2523648

20. Maxwell, K.T., Croft, W.B.: Compact Query Term Selection Using Topically Re-
lated Text. In: Jones, G.J.F., Sheridan, P., Kelly, D., de Rijke, M., Sakai, T. (eds.)
Proc. 36th Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR 2013). pp. 583–592. ACM Press, New
York, USA (2013)

21. Moffat, A., Zobel, J.: Rank-biased precision for measurement of retrieval effective-
ness. ACM Trans. Inf. Syst. 27(1), 2:1–2:27 (Dec 2008), http://doi.acm.org/10.
1145/1416950.1416952

22. Smucker, M.D., Clarke, C.L.A.: Stochastic simulation of time-biased gain. In: Pro-
ceedings of the 21st ACM International Conference on Information and Knowl-
edge Management. pp. 2040–2044. CIKM ’12, ACM, New York, NY, USA (2012),
http://doi.acm.org/10.1145/2396761.2398568

23. Smucker, M.D., Clarke, C.L.: Time-based calibration of effectiveness measures. In:
Proceedings of the 35th International ACM SIGIR Conference on Research and
Development in Information Retrieval. pp. 95–104. SIGIR ’12, ACM, New York,
NY, USA (2012), http://doi.acm.org/10.1145/2348283.2348300

24. Tang, Z., Yang, G.H.: Investigating per topic upper bound for session search eval-
uation. In: Proceedings of the ACM SIGIR International Conference on Theory of
Information Retrieval. pp. 185–192. ICTIR ’17, ACM, New York, NY, USA (2017),
http://doi.acm.org/10.1145/3121050.3121069

http://dl.acm.org/citation.cfm?id=1793274.1793280
http://dl.acm.org/citation.cfm?id=1793274.1793280
http://doi.acm.org/10.1145/2009916.2010056
http://doi.acm.org/10.1145/2505515.2523648
http://doi.acm.org/10.1145/2505515.2523648
http://doi.acm.org/10.1145/1416950.1416952
http://doi.acm.org/10.1145/1416950.1416952
http://doi.acm.org/10.1145/2396761.2398568
http://doi.acm.org/10.1145/2348283.2348300
http://doi.acm.org/10.1145/3121050.3121069


25. Yan, X., Gao, G., Su, X., Wei, H., Zhang, X., Lu, Q.: Hidden Markov Model
for Term Weighting in Verbose Queries. In: Catarci, T., Forner, P., Hiemstra,
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A Pseudocode for the Computation of the MsM Measure

Algorithm 1 stems from the observation that, since the random variables in
eq. (1) can take the value ∞ with positive probability, their expectation is equal
to ∞. Nevertheless, in order to measure the “stochastic distance” of the docu-
ment at position (i, j) from that in (1, 1), we can compute the expectation under
the restriction that the search does not end before reaching the target document.
In practice, we can equal to 0 the probability to reach the state F from the states
above (i, j) and normalize the other elements to still have a stochastic matrix.
Therefore, in the algorithm, we can use a single smaller transition matrix P ,
representing the dynamic within a generic query, with N + 2 states: the first N
states represents the N retrieved documents within the query, the F = N + 1
state is the end of the search session, and the Q = N + 2 is the reformulation
to the next query. We then, appropriately, select rows and columns from this
transition matrix P , rescale them into a P̂ matrix ensuring it is stochastic, and
perform the different computations, as discussed in the pseudo-code.



Algorithm 1: Pseudo-code for computing the MsM measure (It con-
tinues on the next page.)

Input: run a N ×K integer matrix where rows are documents, columns are
queries, and each cell contains a natural number representing the
relevance of a document, 0 for not relevant. i is the document index, j
is the query index.

Input: p, q, r, and s, the transition probabilities of, respectively: moving
forward to the next document within a query; moving backward to the
previous document within a query; moving to the next query, i.e.
jumping to the first document of the next query; and, stopping a
search session. We assume p+ q + r + s = 1, p > 0, q ≥ 0, r > 0, and
s > 0.

Output: the MsM measure for the input run.

Data: For the first document of a generic query, there is no backward
transition probability, so we have to rescale the transition probabilities:
p1 = p

p+s+r
, s1 = s

p+s+r
, r1 = r

p+s+r

Data: For the last document of a generic query, there is no forward transition
probability, so we have to rescale the transition probabilities:
qN = q

q+s+r
, sN = s

q+s+r
, rN = r

q+s+r

Data: The transition matrix P of a generic query is a (N + 2)× (N + 2)
stochastic matrix where:

– the leading N ×N principal sub-matrix contains the backward and forward
transitions between the documents within a query, paying attention to the
re-scaled transition probabilities for the first and last document;

– the additional absorbing state F = N + 1 represents the end of a search session;
– the additional absorbing state Q = N + 2 represents the jump to the next query.

P =



1 2 3 0 ··· N−2 N−1 N F Q

1 0 p1 0 0 · · · 0 0 0 s1 r1
2 q 0 p 0 · · · 0 0 0 s r
3 0 q 0 p · · · 0 0 0 s r
...

...
...

...
...

. . .
...

...
...

...
...

N−1 0 0 0 0 · · · q 0 p s r
N 0 0 0 0 · · · 0 qN 0 sN rN
F 0 0 0 0 · · · 0 0 0 1 0
Q 0 0 0 0 · · · 0 0 0 0 1


Data: e is a N × 1 vector, representing the average time to go from document

1 to documents 1, . . . , N , respectively.
Data: eQ is a scalar, representing the average time to move to the next query.
Data: hF is a scalar, representing the probability to go from document 1 to

state F , i.e. end of search session, in the first K − 1 queries.
Data: hFK is a scalar, representing the probability to go from document 1 to

state F , i.e. end of search session, in the K-th query.
Data: h is a 1×K vector, representing the probability to go from document 1

of the first query to the state (F, 1), . . . , (F,K), respectively.
Data: π is a 1×K vector, representing the probability of ending the search

session in query 1, . . . ,K, respectively.
Data: g is a 1×K vector, representing the total gain of each query.

/* the average time to go from document 1 to itself is 0 */

e(1)← 0;



Algorithm 1: Pseudo-code for computing the MsM measure. (Con-
tinued from the previous page and it continues on the next page.)

/* P̂1 is the same matrix as P but where the F and Q state rows

and columns have been removed since, to compute the average time

to move from document 1 to document i, you must assume that

neither the search session has ended nor you have moved to the

next query */

P̂1 ← P (1 : N, 1 : N);

ensure P̂1 is a stochastic matrix, i.e. normalize each row so that it sums up to
1;

for i← 1 to N − 1 do
/* compute the average time to go from each document to document

i+ 1 (Ii is the i× i identity matrix) */

tmp←
(
Ii − P̂1(1 : i, 1 : i)

)−1


1
1
...
1

;

/* we are interested only in the average time to go from

document 1 to document i+ 1 */

e(i+ 1)← tmp(1);

end

/* P̂2 is the same matrix as P but where the F state rows and

columns have been removed since, to compute the average time to

move to the next query, you must assume that the search session

has not ended */

P̂2 ← P ([1 : N Q], [1 : N Q]);

ensure P̂2 is a stochastic matrix, i.e. normalize each row so that it sums up to
1;

/* compute the average time to go from each document to the next

query */

tmp←
(
IN − P̂2(1 : N, 1 : N)

)−1


1
1
...
1

;

/* we are interested only in the average time to go from document 1

to the next query */

eQ ← tmp(1);

/* compute the probability to go from document i to state F in the

first K − 1 queries */

tmp←
(
IN − P (1 : N, 1 : N)

)−1

P (1 : N,F );

/* we are interested only in the probability to go from document 1
to state F in the first K − 1 queries */

hF ← tmp(1);

/* P̂3 is the same matrix as P but where the Q state rows and

columns have been removed since, to compute the probability to

go from document i to state F in the K-th query, there is not

next query */

P̂3 ← P (1 : F, 1 : F );

ensure P̂3 is a stochastic matrix, i.e. normalize each row so that it sums up to
1;



Algorithm 1: Pseudo-code for computing the MsM measure. (Con-
tinued from the previous page, last page.)

/* compute the probability to go from document i to state F in the

K-th query */

tmp←
(
IN − P̂3(1 : N, 1 : N)

)−1

P̂3(1 : N,F );

/* we are interested only in the probability to go from document 1
to state F in the K-th query */

hFK ← tmp(1);

/* compute the probability to go from document 1 (of the first

query) to state F of the j-th query */

for j ← 1 to K − 1 do
h(j)← (1− hF )j−1 · hF ;

end

h(K)← (1− hF )K−1 · hFK ;

/* compute the probability of ending the search session in query j
*/

π(1)← 1;
for j ← 2 to K do

π(j)← 1−
∑j−1

l=1 h(l);
end

/* discount each retrieved document by the average time to get to

it */

for i← 1 to N do
for j ← 1 to K do

E(i, j)← run(i,j)
1+e(i)+eQ

;

/* In case of logarithmic discount, use instead

E(i, j)← run(i,j)
1+log10(1+e(i)+eQ)

;

*/

end

end

/* compute the total gain for each query */

for j ← 1 to K do

g(j)← π(j)
∑N

i=1E(i);
end

/* compute the MsM measure */

MsM ←
∑K

j=1 g(j);
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