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1 INTRODUCTION
Evaluation measures are the basis for quantifying the performance
of IR systems and measurement scales play a central role since
they determine the operations that can be performed with the
measured values and, as a consequence, the statistical analyses that
can be applied. Stevens [4] identifies four major types of scales
with increasing properties: (i) the nominal scale consists of discrete
unordered values, i.e. categories; (ii) the ordinal scale introduces a
natural order among the values; (iii) the interval scale preserves the
equality of intervals or differences; and (iv) the ratio scale preserves
the equality of ratios. For example, mean and variance should be
computed only when relying on interval scales.

We present our formal theory of IR evaluation measures [2],
based on the representational theory of measurement [3, 4], to deter-
mine whether and when IR measures are interval scales.

We found that common set- based retrieval measures – namely
Precision, Recall, and F-measure – always are interval scales in the
case of binary relevance while this does not happen in the multi-
graded relevance case. In the case of rank-based retrieval measures
– namely AP, gRBP, DCG, and ERR – only gRBP is an interval scale
when we choose a specific value of the parameter p and define a
specific total order among systems while all the other IR measures
are not interval scales. We also introduce some brand new set-based
and rank-based IR evaluation measures which ensure to be interval
scales.

Finally, we discuss the outcomes of an extensive evaluation [1],
based on standard TREC collections, to study how our theoretical
findings impact on the experimental ones. In particular, we report
here a correlation analysis to study the relationship among the
above-mentioned state-of-the-art evaluation measures and their
scales.

2 SET-BASED MEASURES
Let us start by introducing an order relation ⪯ on the set of judged
runs R(N). Let r̂ , ŝ ∈ R(N ) such that r̂ , ŝ , and let k be the biggest
relevance degree at which the two runs differ for the first time, i.e.
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k = max{j ≤ c :
��{i : r̂i = aj }

�� , ��{i : ŝi = aj }
��}. We strictly order

any pair of distinct system runs as follows

r̂ ≺ ŝ ⇔
��{i : r̂i = ak }

�� < ��{i : ŝi = ak }
�� . (1)

R(N ) is a totally ordered set with respect to the ordering ⪯

defined by (1). As for any totally order set, R(N ) is a poset consisting
of only one maximal chain (the whole set); therefore it is graded of
rank |R(N )| − 1, where

��R(N )
�� = (N+c

N
)
since it consists of all the N

combinations of c + 1 = |REL| objects with repetition. Since R(N )

is graded of rank |R(N )| − 1, there exists a unique rank function
ρ(r̂ ) : R(N ) −→ N such that ρ(0̂) = 0 and ρ(ŝ) = ρ(r̂ )+ 1 if ŝ covers
r̂ :

ρ(r̂ ) =
N∑
j=1

(
δa(r̂ j ) + N − j

N − j + 1

)
, (2)

where r̂ = {r̂1, . . . , r̂N } ∈ R(N ) with r̂i ⪯ r̂i+1 for any i < N .
The natural distance is then given by ℓ(r̂ , ŝ) = ρ(ŝ) − ρ(r̂ ), for

r̂ , ŝ ∈ R(N ) such that r̂ ⪯ ŝ, and we can define the difference as
∆r̂ ŝ = ℓ(r̂ , ŝ) if r̂ ⪯ ŝ , otherwise ∆r̂ ŝ = −ℓ(ŝ, r̂ ). (R(N ), ⪯d ) is a
difference structure. Thus the rank function is an interval scale and
we are able to define a new interval-scale measure that follows:

Definition 2.1. The Set-Based Total Order (SBTO) measure on
(R(N ), ⪯d ) is:

SBTO(r̂ ) = ρ(r̂ ) =
N∑
j=1

(
δa(r̂ j ) + N − j

N − j + 1

)
. (3)

3 RANK-BASED MEASURES
Top-heaviness is a central property in Information Retrieval (IR),
stating that the higher a system ranks relevant documents the
better it is. If we apply this property at each rank position and we
take to extremes the importance of having a relevant document
ranked higher, we can define a strong top-heaviness property which,
in turn, will induce a total ordering among runs.

Let r̂ , ŝ ∈ R(N ) such that r̂ , ŝ , then there exists k = min{j ≤
N : r̂ [j] , ŝ[j]} < ∞, and we order system runs as follows

r̂ ≺ ŝ ⇔ r̂ [k] ≺ ŝ[k] . (4)

This order prefers a single relevant document ranked higher to
any number of relevant documents, with same relevance degree or
higher, ranked just below it

(û[1], . . . , û[m],a0,ac , . . . ,ac ), ≺ (û[1], . . . , û[m],aj ,a0, . . . ,a0) ,
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Table 1: Correlation analysis among set-based measures.

Binary Relevance – T08

Measure Pair Topic-by-Topic Overall
Precision vs SBTO 1.0000 0.9998
Recall vs SBTO 1.0000 0.8591
F-measure vs SBTO 1.0000 0.9670
Precision vs Recall 1.0000 0.8588
SBTO vs RBTO 0.4358 0.7410

Multi-graded Relevance – T26

Measure Pair Topic-by-Topic Overall
Generalized Precision vs SBTO 0.7325 0.9175
Generalized Recall vs SBTO 0.7325 0.8453
Generalized Precision vs Generalized Recall 1.0000 0.9003
SBTO vs RBTO 0.3895 0.7352

for any 1 ≤ j ≤ c, for any length N ∈ N and anym ∈ {0, 1, . . . ,N −

1}. This is why we call it strong top-heaviness.
R(N ) is totally ordered with respect to ⪯ and is graded of rank

(c + 1)N − 1. Therefore, there is a unique rank function ρ : R(N ) −→

{0, 1, . . . , (c + 1)N − 1} which is given by:

ρ(r̂ ) =
N∑
i=1

δa(r̂ [i])(c + 1)N−i , (5)

where δa is the indicator function.
Let us set δaδaδa(r̂ ) = (δa(r̂ [1]), . . . , δa(r̂ [N ])). If we look at δaδaδa(r̂ )

as a string, the rank function is exactly the conversion in base 10
of the number in base c + 1 identified by δaδaδa(r̂ ) and the ordering
among runs ⪯ corresponds to the ordering ≤ among numbers in
base c + 1.

The natural distance is then given by ℓ(r̂ , ŝ) = ρ(ŝ) − ρ(r̂ ), for
r̂ , ŝ ∈ R(N ) such that r̂ ⪯ ŝ, and we can define the difference
as ∆r̂ ŝ = ℓ(r̂ , ŝ) if r̂ ⪯ ŝ , otherwise ∆r̂ ŝ = −ℓ(ŝ, r̂ ). (R(N ), ⪯d ) is
a difference structure. As done before in the set-based case, an
interval scale measure on (R(N ), ⪯d ) is given by the rank function
itself.

Definition 3.1. The Rank-Based Total Order (RBTO) interval-scale
measure on (R(N ), ⪯d ) is:

RBTO(r̂ ) = ρ(r̂ ) =
N∑
i=1

δa(r̂ [i])(c + 1)N−i (6)

4 EXPERIMENTS
We explore the following research question: “How to scales deter-
mine the relationship among evaluation measures?”, i.e. what is the
relationship between measures which are interval scales, ordinal
scale or which are not on any scale? To this end, we will perform
Kendall’s τ correlation analysis on TREC 08 Ad-hoc (binary judge-
ments) and TREC 26 Core (multi-graded judgments) collections.

Tables 1 and 2 report the correlation analysis in the case of
set-based and rank-based evaluation measures for both binary and
multi-graded relevance.

Note that two interval scale measures order systems in the same
way on the same topic and their correlation must be 1.0. However,
this may be no more true, if you first average performance across

Table 2: Correlation analysis among rank-based measures.

Binary Relevance – T08

Measure Pair Topic-by-Topic Overall
RBP p = 1/2 vs RBTO 1.0000 1.0000
RBP p = 0.2 vs RBTO 0.9985 0.9225
RBP p = 0.8 vs RBTO 0.8553 0.9043
AP vs RBTO 0.6099 0.7439

Multi-graded Relevance – T26

Measure Pair Topic-by-Topic Overall
gRBP p = 1/3 vs RBTO 1.0000 1.0000
gRBP p = 1/3,W3 = [0, 1, 3] vs RBTO 0.9867 0.9618
gRBP p = 0.2 vs RBTO 0.9996 0.9755
gRBP p = 0.8 vs RBTO 0.7420 0.9026
DCG vs RBTO 0.3774 0.6984
ERR vs RBTO 0.9468 0.9502
RBTOW1 = [0, 1, 2] vs RBTOW2 = [0, 2, 4] 1.0000 1.0000
RBTOW1 = [0, 1, 2] vs RBTOW3 = [0, 1, 3] 0.9866 0.9618

all the topics and then compute the correlation, which is the typical
way of computing Kendall’s τ correlation [5].

This can be, for example, observed in Table 1 where Precision,
Recall, F-measure, and SBTO are all transformation of the same
interval scale and thus their topic-by-topic correlation is 1; on
the other hand, their overall correlation, i.e. the traditional one,
is different from 1.0 because of the effect of the recall base when
averaging across topics. This suggest that the difference between
Precision and Recall (τ = 0.85) is not due to them ranking systems
differently but just to the fact that the recall base alters the scale
properties from topic to topic.

Another interesting case is RBP. For p = 1/2 (p = 1/3 in the
multigraded case) it is an interval-scale; for p < 1/2 it is an ordinal
but not interval scale and its correlation starts departing from 1.0;
the effect is much more pronounced for RBP with p > 1/2 which
is neither an ordinal nor an interval scale, suggesting that simply
acting on a parameter of a measure can completely alter its scale
properties.

A final interesting case is RBTO with different weights for the
relevance degrees:W1 = [0, 1, 2] vsW2 = [0, 2, 4] keep the RBTO
on an interval-scale whileW1 = [0, 1, 2] vsW3 = [0, 1, 3] show that
it stops to be an interval-scale. Indeed, our theoretical findings [2]
demonstrate that, in the multi-graded case, the interval-scale prop-
erty is complied with only if the weights of the relevance degrees
are on a ratio scale, which is not the case forW3 = [0, 1, 3].
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