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Despite the bulk of research studying how to more accurately compare the performance of IR systems, less
attention is devoted to better understanding the different factors which play a role in such performance and
how they interact. This is the case of shards, i.e. partitioning a document collection into sub-parts, which
are used for many different purposes, ranging from efficiency to selective search or making test collection
evaluation more accurate. In all these cases there is empirical knowledge supporting the importance of shards
but we lack actual models that allow us to measure the impact of shards on system performance and how
they interact with topics and systems. We use the general linear mixed model framework and present a model
that encompasses the experimental factors of system, topic, shard, and their interaction effects. This detailed
model allows us to more accurately estimate differences between the effect of various factors. We study shards
created by a range of methods used in prior work and better explain observations noted in prior work in
a principled setting and offer new insights. Notably, we discover that the topic*shard interaction effect, in
particular, is a large effect almost globally across all datasets, an observation that, to our knowledge, has not
been measured before.
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1 INTRODUCTION

Information Retrieval (IR) researchers have accumulated empirical knowledge about which retrieval
techniques work best by quantitatively measuring the performance of IR systems as scores [11, 26,
48]. One way of obtaining such scores is to use test collections, which offline, provide a means of
measuring system performance. However, the measurement is beset with noise, of which, topics
are a substantial source. In time, the noise was modeled so as to better understand it and provide a
statistical means to cope.

Models showed that the variance in scores across topics was larger than that measured across
systems. Tague-Sutcliffe and Blustein [55] and Banks et al. [4] studied this phenomenon using
two-way ANalysis Of VAriance (ANOVA) and General Linear Mixed Model (GLMM), which are
complementary ways to model and analyse data. Such statistical processes model scores as a

Authors’ addresses: Nicola Ferro, University of Padua, Italy, ferro@dei.unipd.it; Yubin Kim, UPMC Enterprises, USA,
kimy10@upmec.edu; Mark Sanderson, RMIT University, Australia, mark.sanderson@rmit.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1046-8188/2019/01-ART0 $15.00

https://doi.org/0000001.0000001

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0. Publication date: January 2019.


https://doi.org/0000001.0000001
https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

0:2 N. Ferro, Y. Kim, and M. Sanderson

combination of factors and factor interactions. The models were extended to include a topic*system
interaction [5, 44, 59].

Ferro et al. [16, 17] and Allan et al. [1] explained how comprehensive performance models are a
key element to develop richer explanations of IR system performance. An improved model provides
a stepping stone for developing predictive models, which are able to anticipate the performance of
IR systems in new operational conditions.

A number of developments in IR system research have occurred that may require a re-examination
of the models.

o There is increasing focus in IR on shards: partitions of a collection, often formed for efficiency
reasons [33]. The efficiency arises from the fact that topics can be easier to serve from some
shards than others. This aspect of IR systems is not currently modeled.

e There has also been a recent examination of a novel way to make test collection evaluation
more accurate by sharding [59]. However, the results of the work are perhaps more noisy
than was expected. A statistical model of this approach could perhaps explain the noise.

e Past work has shown that certain retrieval systems perform better on some shards than on
others [50]. While some models have been built to understand that work [19], the models are
simple and open for improvement.

o A track at TREC found that topics thought to be ‘difficult’ were actually difficult on one
collection, but ‘easy’ on another [56]. While this observation is not directly related to shards,
the documents of test collections are often samples of a wider population. That this topic
variation exists suggests the collections may be under sampled. An understanding of this
aspect of topic score variation might be better understood through shards.

All four developments have a common theme: the interaction of large groups of documents
(collections or shards) with other elements of retrieval performance: topics and systems. While
there is an understanding of the importance of shards to search, there is little work measuring that
impact on system performance and no understanding of the impact relative to the other factors of
evaluation schemes. Therefore, this paper presents an investigation of the effects of topics, systems,
and shards on performance and an extension of a statistical model that includes shards.

We conducted an experimental analysis using Text REtrieval Conference (TREC)! collections from
the Adhoc, Web, and Terabyte tracks using a range of document sharding methods. We considered
different types of IR systems: those originally submitted to TREC tracks and our own set of systems,
each optimized to a particular shard; this allowed for accounting for a wide range of IR scenarios:
from adhoc retrieval to distributed and vertical search. The main contributions of the paper are:

e an extended performance model incorporating a shard factor and its interaction with other
factors; coupled with an initial analysis of the extended model’s ability to measure system
performance more accurately than past models;

o a detailed study of the impact of different shard types on system performance, quantifying
and better explaining effects seen in the past;

e a discussion of one component of the model: topic*shard interaction, which is measured to
be one of the biggest effects in system performance. While shards have long been known to
be important to performance, a measure of the effect was not observed before.

The paper is organized as follows: Section 2 conducts a review of the relevant literature on
the topic; Section 3 provides background information on GLMM and ANOVA and on how they
work; Section 4 introduces our methodology; Section 5 describes our experimental setup; Section 6
validates our methodology; Section 7 reports our experimental findings; Section 8 discusses and

Ihttps://trec.nist.gov/
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summarises the observed general trends; finally, Section 9 draws some conclusions and outlooks
for future work.

2 LITERATURE REVIEW

We describe past work examining modeling system scores using ANOVA, the sharding of collections,
and examinations of topic difficulty.

2.1 ANOVA

There has long been an understanding that performance measured on test collections is noisy. In
1968, Salton and Lesk [49] described the use of significance tests in IR evaluation, in part, because
“...it is difficult to draw hard conclusions because the variation in performance between individual
[topics] is large...”.

While known about for many years, the magnitude of topic variation was not measured until
Tague-Sutcliffe and Blustein [55] conducted an ANOVA of TREC-3 adhoc system results (i.e. runs).
The authors compared the variation in performance across topics with that across systems, finding
that the variation in the former was larger than the latter. The results suggested that “...for some
[topics] some [systems] are best and for other [topics] other [systems] are best.” The interaction effects
of systems and topics was not measured directly as only one observation of each topic*system com-
bination existed in the TREC-3 data, while more replicates/observations would have been needed
for each (topic, system) pair to estimate their interaction. Later, still using only one observation of
each topic*system combination, Banks et al. [4] employed methods to approximate the interaction,
suggesting it would be strong and significant.

Bodoff and Li [5] presented results where multiple topic*system measures were generated due
to having > 1 relevance assessment. A topic*system interaction was reported, the magnitude of
which was found to be less than the topic effect, but greater than the system effect. Robertson and
Kanoulas [44] used a simulation to generate topic*system pair replicates and relied on GLMM and
ANOVA to study the interaction, further showing its importance.

The factors used in an ANOVA analysis do not have to be the components of a test collection.
Ferro and Silvello [20, 21] systematically varied the components of an IR system: stop list, stemmer,
ranking model, etc. by using the grid-of-points approach proposed by Ferro and Harman [18]. The
analysis allowed the researchers to understand the relative impact of each system component on
performance.

More recently, Voorhees et al. [59] conducted experiments where the researchers randomly
split TREC collections into shards, thus creating more replicates for each (topic, system) pair and
allowing them to examine topic*system interactions. By modeling the interactions, Voorhees et al.
were able to measure more significant differences between retrieval systems. However, the benefits
of this approach were limited to collections split into two or three shards. Split any further, noise
appeared to dominate measurement.?

2.2 Shards

Shards are a common feature of search engines, many of the popular commercial systems operate
aggregated search across heterogeneous collections. In such systems, topics are directed to particular
shards that are specialized for different domains of data (e.g. maps, news, video, images, etc.) [37, 54].
It is clear that in such search, some shards are better sources of relevant items than others for

2See also work by Yang et al. [60] who used a bootstrapping approach that in effect split document collections into multiple
per-topic shards. The authors used the analysis to consider how accurately differences between retrieval systems were
being measured.
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particular topics. What is less clear is how shards within homogeneous collections interplay with
performance scores. We first examine past work on shard interactions with topics and systems.

Test collections can be split into shards in different ways. For example, sharding is a common
technique in distributed search where shards have been created based on geography, quality, and
random assignment [10]. In federated search, multiple collections or the outputs of multiple search
engines are aggregated. Selective search, which combines the ideas from distributed and federated
search has been examined. Kulkarni and Callan [33] experimented with random, source-based, and
topic-based shards to reduce the computational cost of large-scale search. While an increasingly
common feature, the shards, such as these, have not been modeled in an ANOVA analysis.

Considering shards and retrieval performance, Zhai and Lafferty [62] experimented with different
parameter settings for a retrieval system searching on different shards from a TREC collection. The
shards were defined as source based (i.e. FT, LA Times, FR, etc.), the authors found that there were
notably different parameter settings for each shard. Zhai and Lafferty [63] later incorporated a
collection model into their probabilistic framework. The aim of the model was to capture qualities
of the set of documents being searched. The researchers observed that the greatest influence on
parameter setting for the model seemed to come from topic variation [64]. There were differences
between shards, but not substantial. The incorporation of the collection model did not seem to
bring notable benefits to retrieval performance.

Unaware of the past work of Zhai and Lafferty [62], Sanderson et al. [50] similarly split TREC
adhoc collections into shards based on the source of the documents. The authors examined if
rankings of systems generated from different shards were significantly different from each other. In
contrast to the previous work, the authors found that they were, though the size of the measured
effect was not clear. A followup article showed similar effects even when potentially confounding
factors were removed from experiments [31].

More recently, Goswami et al. [23] tried finding an ideal ranking function that worked across the
widest range of test collections. The authors approximated a form of learning-to-rank by searching
in a space of possible ranking functions up to a maximum length of function complexity. In order
to prevent an explosion of experiments, the authors used a staged process of testing the largest
number of functions on a single test collection then selecting the 1,000 best functions and testing
those functions on a wider range of test collections. The best resulting functions were tested on two
final collections that were held out. In order to maximize the number of test collections available,
the researchers sharded a number of TREC collections using a partitioning similar to Sanderson
et al.’s approach. The results indicated that this process led to a more stable ranking function than
some of the standard functions.

What the work here demonstrates is that across different shards, systems appears to be affected
by the shards themselves. What is not clear, however, is how substantial, practical, or predictable
the effect is in comparison to other effects. As an initial examination of shard effects, Ferro and
Sanderson [19] incorporated shards into an ANOVA model. Studying a limited number of collections,
the authors showed that such effects were present, but that shard*system interactions were minimal.

2.3 Topics Difficulty

The Robust Retrieval track of TREC [56] was formed to determine retrieval approaches that could
improve the consistency of search by focusing on poorly performing topics. Topics measured to be
difficult on one collection were run against a new collection. A result of the track was that °..topics
are not inherently easy or difficult in isolation—the difficulty depends on the interaction between the
information need and information source’. Groups that tried to predict topic difficulty by training on
one collection found prediction on the other collection was ‘Tlargely unsuccessful,. One could view
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the two collections as two shards, drawn from a larger population of documents. The nature of this
topic*shard interaction was not examined.

3 GLMM AND ANOVA

A General Linear Mixed Model (GLMM) [38, 46] explains the variation of a dependent variable
(“Data”) in terms of a controlled variation of independent variables (“Model”) in addition to a
residual uncontrolled variation (“Error”): Data = Model + Error.

The most basic example of GLMM is a simple linear regression, where Y; = fy + f1X; + ¢;, i.e.
the dependent variable Y;, representing the score of the i-th subject, is explained (predicted) in
terms of an intercept fy and an independent variable X; (predictor) times the regression coefficient
B1, i.e. the slope of the regression line, plus a residual error ¢;, not explained by the model, which
follows a Gaussian distribution with mean 0.

In GLMM terms, ANalysis Of VAriance (ANOVA) attempts to explain data (the dependent variable
scores) in terms of the experimental conditions (the model) and an error component. Typically,
ANOVA is used to determine under which experimental condition do dependent variable score
means differ and what proportion of variation in the dependent variable can be attributed to
differences between specific experimental groups or conditions, as defined by the independent
variable(s). An ANOVA can be regarded as a particular type of regression analysis that employs
only categorical predictors.

The previous regression model is expressed in ANOVA terms as Y;; = y + a; + ¢;;, where Y;;
is the i-th subject’s dependent variable score in the j-th experimental condition, the parameter
1 is the grand mean of the experimental condition population means that underlies all subjects’
dependent variable scores, the parameter «; is the effect of the j-th experimental condition and the
random variable ¢;; is the error term, which reflects variation due to any uncontrolled source. The
above regression model corresponds to the ANOVA version once you add as many X;; predictors
and as many levels as there are in the experimental condition aj, e.g., by using dummy coding.

For a given model, the ANOVA table summarizes the outcomes of the ANOVA test indicating,
for each factor, the Sum of Squares (SS), the Degrees of Freedom (DF), the Mean Squares (MS), the F
statistics, and the p-value of that factor, which allows us to determine the significance of that factor.

When it comes to independent variables they can be either fixed effects — i.e., they have precisely
defined levels, and inferences about its effect apply only to those levels — or random effects - i.e.,
they describe a randomly and independently drawn set of levels that represent variation in a clearly
defined wider population. The latter case is a more sophisticated model which, in the estimation of
the variance attributed to the different factors, also accounts for the additional randomness due
sampling of effect levels.

The experimental design determines how you compute the model and how you estimate its
parameters. In particular, it is possible to have an independent measures design where different
subjects participate to different experimental conditions (factors) or a repeated measures design,
where each subject participates to all the experimental conditions (factors).

A final distinction is between crossed/factorial designs, where every level of one factor is measured
in combination with every level of the other factors, and nested designs, where levels of a factor
are grouped within each level of another nesting factor.

3.1 Estimating the Model

Figure 1 shows the experimental layout for the ANOVA model reported in equation (1). This is the
typical IR setting where you have a set of topics and a set of systems which are run against those
topics; in ANOVA terms this is a crossed/factorial repeated measures design. Note that this is the
same model used by Banks et al. [4] and Tague-Sutcliffe and Blustein [55] to analyse TREC data.

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0. Publication date: January 2019.



0:6 N. Ferro, Y. Kim, and M. Sanderson

Systems
al a2 an
Ti| Yy | Yoo | o0 | Yin (M1
Q| 72| Yor | Yoo | -+ | Van |12
g
= Yij |+ [He
Tm| Y1 | Yoo | ¢ | Youn | -

1 M2 Hego fen B

Fig. 1. Two-way ANOVA model for the topic and system effects.

Yij:u--+Ti+aj+€ij (1)
where: p.. is the grand mean; 7; with i = 1,...,m represents the effect of topics; ; with
j=1,...,nrepresents the effect of systems; and, ¢;; is the residual error.

The model of equation (1) has the following estimators:

e grand mean

1
Ao L Y
= o 2
i=1 j=1
e topic marginal mean and topic effect
o1y
fo= 2 2 Vi
J=1
f,' = ﬁi- - ﬁ

‘:)
<
Il
SRS
INgE
=
<

aj = ,u'j - ﬁ

and the prediction error is:

Eij =Yy =Yy =Yy = (i + fij — f1..)

3.2 Assessment of the Model
We can compute the Sum of Squares (SS), Degrees of Freedom (DF), Mean Squares (MS) and F statistics
as follows:
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e total effects

m n
SSTotal - Z (Yl] ﬁ )2
i=1 j=1
dfotal = mn — 1
SSTotal
MStotal =
' dfTotaI

o topic effects

m
SSTopic = Z .

dfTopic =m-1

SSToplc
MSToplc - dfTopu:
FTopic _ MSTOplC
MSError
o system effects
m n n n
SSSystem = Z Ajg =m Aj? = mZ(ﬁ] - ﬁ)z
i=1 j=1 j=1 j=1

deystem =n-1

MSSystem =

FSystem = W
ITor

e error effects

i=1 j=1 i=1 j=1
dfgrror = (m-1)(n-1)
SSError
MSgiror =
o derror

Note that:
SSTotal = SSTopic + SSsystem + SSError
We can then compute the critical value for the F statistics of a factor, i.e. F.,j; = F ( & aer. dfm) ,
and determine its significance if Fr4c; > Ferir; this allows us also to obtain the p-value for that

factor.

3.3 Effect Size
Since the F statistics tend to increase and the p-value tends to decrease as the sample size increases,
we also consider the effect size of a factor, which accounts for the amount of variance explained by
the model, by means of an unbiased estimator [41, 47]:
o2 _ dffact(Ffuct - 1)
{fact) dffact(Ffact - 1) +N

(2)
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where Frq; is the F-statistic and df ¢4, are the degrees of freedom for the factor while N is the
total number of samples. In this way, we are able to assess not only if a factor is significant but also
how much it matters.

The common rule of thumb [46] when classifying C:)%fac " effect size is: 0.14 and above is a large

size effect, 0.06-0.14 is a medium size effect, and 0.01-0.06 is a small size effect. Note, d)z(fact) can be

negative, in such cases it is considered as zero.

4 METHODOLOGY

A typical IR experimental design measures systems against a set of topics applied to a whole
document collection. Inspired by past work [19, 59], our design measures systems against a set of
topics and a set of shards, producing replicates for each topic*system pair.

We use GLMM [46] to provide a model that explains a performance score (dependent variable)
in terms of the factors (independent variables) we are interested in: topic, system, and shard effects
together with their interactions. We use ANOVA to determine when dependent variables differ and
what proportion of variation can be attributed to differences between specific factors. The design is
a crossed factorial repeated measure, since every level of one factor is measured in combination with
every level of the other factors and each subject participates in all experimental factors.

Formally, the model is:

Yije = po.. + 73+ a5 + P+ (1a)ij + (1B)ik + (af)ji +eiji (3)

Main Effects Interaction Effects

where: Y is the effectiveness score of the i-th subject (topic) in the j-th (system) and k-th (shard)
factors; p... is the grand mean; 7; = p;.. — pi... is the effect of the i-th subject, i.e. a topic, where ;..
is the marginal mean of the i-th subject; @; = p.;. — p... is the effect of the j-th factor, i.e. a system,
where p.;. is the marginal mean of the j-th factor; S = p..x — p... is the effect of the k-th factor, i.e.
a shard, where p..x is the marginal mean of the k-th factor; (ra);; is the interaction between topics
and systems; (7 8);x is the interaction between topics and shards; (&), is the interaction between
systems and shards; finally, ¢; ;i is the error committed by the model in predicting Y.

4.1 Assumptions
ANOVA is based on the following assumptions [34]:

e normality of the error terms;
e equal variance (homoskedasticity) of the error terms;
e independence of the error terms, i.e. they are a random sample.

ANOVA is known to be quite robust to violations of the first two assumptions. Ito [27, p. 205]
observes that “the F-test is found to be remarkably insensitive to general nonnormality. In the
commonly occurring case where the group sample sizes are equal, it is not very sensitive to
heterogeneity of variance from group to group”. Similarly, Mendenhall and Sincich [39] note that,
for relatively large samples (e.g. 20 or more observations per factor) ANOVA is robust to violations
of the normality assumption and that it is also robust to unequal variances in the case of balanced
design. On the other hand, violation of the third assumption may severely impact the F-test and
hamper the drawn conclusions as noted, for example, by Scariano and Davenport [53].

IR performance scores are known to violate the first two ANOVA assumptions [11, 55]. Tague-
Sutcliffe and Blustein [55] noted that performance scores did not satisfy the homoskedasticity
assumption and applied a transformation, which is typically used in the case of ratio data, consisting
of taking the arcsine of the square root of the original scores. However, they noted very few
differences in the analysis conducted on the transformed data and they decided to stay with the
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untransformed scores, which are more easily interpretable. Carterette [11] observed that both the
first two assumptions are violated because of performance scores typically being bounded in [0 1];
however Carterette concluded that ANOVA is robust to the kind of violations of normality due to
IR performance scores and that also the violations of homoskedasticity have a fairly limited impact,
in agreement with previous findings of Tague-Sutcliffe and Blustein [55].

In our case, we deal with tens of topics, tens or hundreds of systems, and tens of shards which
are a fairly large sample size when it comes to robustness to violations of the normality assumption.
Moreover, we adopt a balanced design where group sample sizes are equal, as discussed in the
next section, and this limits the impact of violations of homoskedasticity. Finally, when it comes to
violations of the independence, topics, systems, and shards are independent from each other.

4.2 Shards with no relevant documents

When sharding a collection, the relevance judgements (grels) are also sharded. Because only a
subset of documents are judged, some shards may not contain relevant documents for certain
topics. In such cases, the score for all systems on that (topic, shard) pair is undefined. In ANOVA,
missing data leads to an unbalanced design, which are challenging to estimate, e.g. SS may become
dependent on the order in which the factors are entered into the model®. Moreover, as explained in
the previous section, balanced designs are preferable because they are more robust to violations of
the homoskedasticity assumption.

Ferro and Sanderson [19] obtained a balanced design by using only topics for which there were
relevant documents in all shards, which reduced the number of available topics to less than half. The
number of shards Ferro and Sanderson split their collections into was limited to four. As we wish
to create more fine-grained shards, almost no topics were likely to exist with relevant documents
in all shards. Voorhees et al. [59] formed random shards, which were resampled until all shards
had relevant documents for all the topics. However, this is not feasible because most of our shards
are not random and cannot be resampled, until you get at least one relevant document per shard.
For example, when we group Web pages by their Top Level Domain (TLD), we cannot change the
shape of a shard even if it has no relevant document. Moreover, also in the case of Voorhees et al.,
the number of shards was limited to a maximum of five, where it is still likely to find a sample
where all shards have at least one relevant document. However, when we explore different types
of random shards, we consider several tens of shards and it is almost impossible to find a sample
where all shards have at least one relevant document. In addition, the idea itself of resampling
might be questioned because it introduces some bias and departs from randomness, even more
when the number of shards is high and you risk to deterministically look for the configuration of
shards, if any, where there is at least one relevant document per shard.

For these reasons, we decided to simulate a balanced design by substituting the undefined values
with zeros. The effect of this choice was to lower average system effectiveness and to introduce a
bias that topics with substituted zeros are treated the same as ‘real’ zeros, which are assigned to
poor systems not retrieving relevant documents.

We explored five alternatives to substituting zeros for a (topic, shard) pair: substituting the
median value of a system’s overall effectiveness score; substituting the mean score; substituting
the lower quartile of its score; substituting the upper quartile of its score; and, substituting with
ones. We compared the impact of these different substitutions on our measurement scheme. We
found no notable deviations with respect to either previous work or the interpolation alternatives.
We further tested our balanced design comparing it with a reproduction of the balanced design
Ferro and Sanderson used. We compared ANOVA tables from the two designs and found that the

3The literature describes methods to constrain SS, but with no agreement on the best.
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statistical significance of the different effects was unchanged across the two tables. Similarly the
general trends for the effect sizes were the same. Details about the evaluation measures used in the
experiments are provided in Section 5 while details about the validation of our methodology are
provided in Section 6.

Therefore, we use the “zeros” method for obtaining a balanced design.

5 EXPERIMENTAL SETUP

We describe the collections, shards, and measures used. Note, to ease the reproducibility of the
experiments, code can be found at: https://bitbucket.org/frrncl/tois2018-tks/.
We used the following collections from TREC:

e Adhoc track T08 [58]: 528,155 documents of the TIPSTER disks 4-5 corpus minus congres-
sional record; T@8 provides 50 topics, each with binary relevance judgments and a pool depth
of 100 (i.e. the top 100 results from each submitted system run were collected and judged by
relevance assessors); 129 system runs were submitted to T08.

e Web tracks T09 [24] and T10 [25]: 1,692,096 documents of the WT10g Web corpus; T@9 and
T10 provide 50 topics each with graded relevance judgments — i.e. not relevant, relevant,
highly relevant — and a pool depth of 100; 104 and 97 system runs were each submitted to
TQ9 and T10, respectively.

e Terabyte tracks T13 [13], T14 [14], and T15 [8]: 25,205,179 documents of the GOV2 Web
corpus; T13, T14, and T15 provide 50 topics each (note 49 are used in T13) with graded
relevance judgments (three levels) and pool depths of 85, 100 and 50 documents, respectively;
70, 58, and 80 system runs were submitted to T13, T14, and T15, respectively.

T8 is used for validating our methodology, as described in Section 6, while T@9, T10, T13, T14,
and T15 are used for running the experiments, as described in Section 7.

In order to split run systems and pools across shards, we take the original systems and grels over
the whole collection and, for each topic, we keep only the documents present in the given shard,
discarding all the others, which is the same procedure used in [19, 59]. For all the collections, we
discard the runs in the lower quartile of performance in terms of Average Precision (AP) over the
whole collection, to avoid excessive variance due to poorly performing runs.

We used measures for both binary and graded relevance:

e Binary: Average Precision (AP) [7], Precision at k (P@Xk) [9], Rprec [2], and Rank-Biased
Precision (RBP) [40]. We calculated RBP by setting p = 0.8 representing a trade-off between
a persistent and a remitting user. For T@9, T10, T13, T14, and T15, we perform a lenient
mapping of the relevance judgments by considering as relevant both highly relevant and
relevant documents.

e Graded: normalized Discounted Cumulated Gain (nDCG) [29], Expected Reciprocal Rank
(ERR) [12], and Twist [22]. For T@7 we calculate nDCG using binary relevance by setting gain
to 0 for non-relevant documents and to 5 for relevant. For T09, T10, T13, T14, and T15 we
assign a weight of 0 to non-relevant documents, 5 to the relevant, and 10 to highly relevant.
We use a logyg discounting function, which accounts for a reasonably persistent user, i.e. a
user willing to scan at least the first 10 documents in the result list.

For the cut-offs of Precision and nDCG we considered the following values k = 5, 10, 20, 50, 100.
We consider a confidence level & = 0.05 to determine if a factor is statistically significant.

6 VALIDATION OF THE MODEL

First, in Section 6.1, we incrementally build the sophistication of a GLMM model from that used in
past work [4, 55] to our proposed model as detailed in eq. (3), as it is typically done with step-wise
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procedures for GLMM [46] where linear terms are introduced first then followed by interaction
terms. In this way, we create a set of nested models, i.e. models where it is progressively added one
more terms, where the simpler model is called reduced (or restricted) model and the more complex
one is called full (or complete) model.
As suggested by Rutherford [46], we compare this set of nested models using the following
F-statistic
SSerror.R = SSE"""F/ dfError,r = dfError,F

4)

F =
model SSE:mr.F/denor.F

where SSgrror,r @and SSgyror,r are the SS of the error in the reduced and full model, respectively;
similarly, dfgyror R and dfgeror,F are the DF of the error in the reduced and full model. This F-statistic

is compared against the critical value F.,;; = F , and determine its significance
(dermr,R _dermr,F s dermr,F )

if Fryoder > Ferirs this allows us also to obtain the p-value for that model.

Moreover, we validate the normality and homoskedasticity ANOVA assumptions. For the for-
mer, we use the Jarque-Bera normality test [28], which is known to be robust also to lack of
homoskedasticity of the data [61]. For the latter, we use the Levene test [36].

Next, in Section 6.2, we validate the way a balanced design is achieved with respect to previous
results by Ferro and Sanderson [19] on the same datasets. In particular, we compare the approach
of Ferro and Sanderson who keep only the topics for which there is at least one relevant document
in all the shards with respect to our approach to achieve a balanced design by substituting zeros
for the missing data.

Then, in Section 6.3, we validate the way a balanced design is achieved with respect to possible
alternative interpolation values instead of zeros for the missing data.

Finally, in Section 6.4, we validate the choice of discarding the systems in the lower quartile of
performance.

To ease comparability with previous works, e.g. [19], we use the T@8 collection and the TIPSTER_DS
shards, made according to the four TIPSTER sub-corpora by document source, namely Foreign
Broadcast Information Service (TIPFBIS, 130,471 documents); Federal Register (TIPFR, 55,630 doc-
uments); Financial Times (TIPFT, 210,158 documents); and Los Angeles Times (TIPLA, 131,896
documents).

For brevity, we report detailed discussion only with AP but trends for the other measures are
similar. For the same reasons, results on the other experimental collections mentioned in Section 5
are not reported even if they exhibit similar trends.

6.1 Building the model
A classic IR GLMM model considers only the topic (7;) and system (o;) main effects:

Yij =[J..+T,'+(Zj+€ij . (5)

Note that this model is the same as the one by Banks et al. [4] and Tague-Sutcliffe and Blustein
[55] but we apply it on the sharded data while both Banks et al. and Tague-Sutcliffe and Blustein
apply it on the whole corpus instead.

Table 1 shows the ANOVA table for eq. (5). We observe that both the topic and the system effects
are statistically significant: the former is a large effect while the latter is a small effect. We also
note the model of eq. (5) leaves a large share of variance unexplained since the SS of the error
is 946.99 with respect to a total SS of 1524.53, i.e. most variance is unexplained. As expected and
previously discussed in Section 4.1, the Jarque-Bera test show that the normality assumption is not
met; similarly, the Levene test shows that the homoskedasticity assumption is not met for both the
topic and system effect.
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Table 1. Reduced model of eq. (5). Systems up to third quartile (top 75%) of performance. Balanced design
where missing values are forced to zero. p-value of the Jarque-Bera test for normality: 0.001. p-value of the
Levene test for homoskedasticity of Topic effect: 0. p-value of the Levene test for homoskedasticity of System
effect: 2.449e-27.

Source SS DF MS F p-value (Z)zfac t>
Topic 556.8975 49 | 11.3653 | 228.6854 0 0.3675
System 20.6407 95 0.2173 4.3718 | 4.883e-41 0.0164
Error 946.9991 | 19055 0.0497

Total 1524.5373 | 19199

Table 2. Reduced model of eq. (6). Systems up to third quartile (top 75%) of performance. Balanced design
where missing values are forced to zero. p-value of the Jarque-Bera test for normality: 0.001. p-value of the
Levene test for homoskedasticity of Topic effect: 0. p-value of the Levene test for homoskedasticity of System
effect: 8.572e-12. p-value of the Levene test for homoskedasticity of Shard effect: 3.469e-12.

Source SS DF MS F p-value (Z)zfac A
Topic 556.8975 49 | 11.3653 272.9818 0 0.4097
System 20.6407 95 0.2173 5.2186 | 1.26e-54 0.0204
Shard 153.7930 3 | 51.2643 | 1231.3168 0 0.1612
Error 793.2062 | 19052 0.0416

Total 1524.5373 | 19199

We add to the model the shard () main effect:
Yijk :,U~H+Ti+aj+ﬁk+gijk . (6)

Table 2 shows the ANOVA table for eq. (6). The added shard effect is statistically significant,
large size, and bigger than the system effect. As expected, the SS of the topic and system factors are
the same while the SS of the error is reduced by the amount of the SS of the shard factor; similarly,
the DF of the topic and system factors are the same while the DF of the error is slightly decreased
by the amount of the DF of the shard factor. As a consequence, the MS of the error is decreased
since it is given by the ratio between the SS (decreased) and the DF (almost the same). Therefore,
the F-statistics of the topic and system factors are slightly increased, since the F-statistic is given
by the ratio of the MS of the factor (the same) and MS of the error (reduced); this also increases the
effect size of the factor, since (Z)ifac 5 is increasing in the F-statistic.

Therefore, introducing the shard main effect has the positive outcome of increasing the amount
of explained variance and decreasing the error which, in turn, also improves the estimation of the
other factors. This is also supported by the validation of the model of eq. (6) with respect to the one
of eq. (5). The F,,p4¢1 is 1231.31 with respect to a F.,;; = 2.60, thus significantly different from the
previous model with a p-value of 0. However, the SS of the error is still quite large (793.20) with
respect to the total SS (1524.53), indicating that most of the variance is still unexplained. Finally,
the Levene test shows that the homoskedasticity assumption is not met also for the shard effect.

We next add the interaction effects, starting from the system”shard interaction effect ((af);)

Yijk =/1...+Ti+aj+ﬁk+(aﬂ)jk+£,-jk . (7)

Table 3 shows the ANOVA table for eq. (7). We can observe that, in this model, the system*shard
interaction effect is not statistically significant and that it explains just a small portion of the
variance, leaving the error still quite large. The fact that, in the model of eq. (7), the system*shard

interaction effect is not significant may mean that this factor is actually not significant but it may
also be a by-product of the large share of variance still not explained. The fact that this model is
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Table 3. Reduced model of eq. (7). Systems up to third quartile (top 75%) of performance. Balanced design
where missing values are forced to zero. p-value of the Jarque-Bera test for normality: 0.001. p-value of the
Levene test for homoskedasticity of Topic effect: 0. p-value of the Levene test for homoskedasticity of System
effect: 7.143e-08. p-value of the Levene test for homoskedasticity of Shard effect: 1.325e-13.

Source SS DF MS F p-value d)zfac "
Topic 556.8975 49 | 11.3653 271.9507 0 0.4088
System 20.6407 95 0.2173 5.1989 | 2.73e-54 0.0204
Shard 153.7930 3 | 51.2643 | 1226.6660 0 0.1607
System*Shard 8.9032 285 0.0312 0.7475 0.9995 -
Error 784.3029 | 18767 0.0418
Total 1524.5373 | 19199

not able to more satisfactory explain the data is further supported by the validation of the model of
eq. (7) with respect to the one of eq. (6). The F,04.; is 0.74 with respect to a F.,;; = 1.14, thus not
significantly different from the previous model with a p-value of 0.99. Note that this is the model
proposed by Ferro and Sanderson [19].

We add the topic*system effect ((re);;), which is considered a quite prominent effect in the
literature [4, 44, 59]

Yijk :,Uw+Ti+0(j+ﬁk+(7a)ij+(aﬁ)jk+€ijk . (8)

Table 4 shows the ANOVA table for eq. (8). The topic*system interaction effect turns out to
be not statistically significant and this seems to contradict previous findings in the literature.
However, this is mostly a by-product of this reduced model which does not yet explain the data in
a fully satisfactory way, as we will further discuss later on when we will add also the topic*shard
interaction effect. Indeed, the SS of the topic*system effect (115.74) is the third biggest after the SS
of the topic effect (556.89) and the shard effect (153.79). However, the SS of the error is still quite
big (668.55) with respect to the total SS (1524.53), even if the topic*system effect helps in explaining
a good share of variance. At the same time, the topic*system effect is responsible for the highest
DF (4655) and this substantially reduces the DF of the error (14112). As a consequence, despite the
more variance explained, the MS of the error increases instead of descresing, because the decrease
in the SS of the error is counter-balanced by the more marked decrease in its DF. Therefore, the
F-statistics of all the other effects are slightly smaller than in the case of the model without the
topic*system interaction (Table 3) and the same happens for their effect sizes, leading also to a
not significant topic*system interaction. The fact that this model is not able to more satisfactory
explain the data is further supported by the validation of the model of eq. (8) with respect to the
one of eq. (7). The Fp,o4e; is 0.52 with respect to a F,,;; = 1.03, thus not significantly different from
the previous model with a p-value of 1.00.

Finally, Table 5 shows the ANOVA table for the full model of eq. (3) where also the topic*shard
interaction effect is taken into consideration. The topic*shard interaction effect is a large statistically
significant effect. It explains a good share of the variance: SS (488.75) the second biggest after the
topic effect (556.89). This substantially reduces the SS of the error (179.80), which now suggests
that most of the variance is explained by the model, being the total SS 1524.53. The MS of the
error is substantially reduced and this considerably increases the F-statistics of all the other factors
and their effect sizes as well. As a consequence, the system*shard and topic*system interaction
effects are now statistically significant, the former being a small size effect and the latter being a
large size effect, as expected from previous findings in the literature. Overall, this suggests that
the topic*shard interaction effect is not only a remarkably big effect but it may shadow the other
interaction effects if not properly taken into account. These observations are further supported by
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Table 4. Reduced model of eq. (8). Systems up to third quartile (top 75%) of performance. Balanced design
where missing values are forced to zero. p-value of the Jarque-Bera test for normality: 0.001. p-value of the
Levene test for homoskedasticity of Topic effect: 0. p-value of the Levene test for homoskedasticity of System
effect: 4.582e-05. p-value of the Levene test for homoskedasticity of Shard effect: 7.054e-09.

Source SS DF MS F p-value (Z)zfac 5
Topic 556.8975 49 | 11.3653 239.9002 0 0.3788
System 20.6407 95 0.2173 4.5862 | 3.375e-44 0.0174
Shard 153.7930 3 | 51.2643 | 1082.0985 0 0.1445
System*Shard 8.9032 285 0.0312 0.6594 1 -
Topic*System 115.7480 | 4655 | 0.0249 0.5249 1 -
Error 668.5549 | 14112 0.0474
Total 1524.5373 | 19199

Table 5. Full model of eq. (3). Systems up to third quartile (top 75%) of performance. Balanced design where
missing values are forced to zero. p-value of the Jarque-Bera test for normality: 0.001. p-value of the Levene
test for homoskedasticity of Topic effect: 0. p-value of the Levene test for homoskedasticity of System effect:
1.315e-143. p-value of the Levene test for homoskedasticity of Shard effect: 7.544e-06.

Source SS DF MS F p-value d)zfac H
Topic 556.8975 49 | 11.3653 882.7220 0 0.6923
System 20.6407 95 0.2173 16.8751 6.53e-256 0.0728
Shard 153.7930 3 | 51.2643 | 3981.6227 0 0.3835
System*Shard 8.9032 285 0.0312 2.4263 1.594e-34 0.0207
Topic*System 115.7480 4655 0.0249 1.9313 | 1.377e-183 0.1842
Topic*Shard 488.7522 147 3.3248 258.2357 0 0.6632
Error 179.8027 | 13965 0.0129
Total 1524.5373 | 19199

the validation of the full model of eq. (3) with respect to the reduced models. If we compare it to the
immediately previous reduced model of eq. (8), the Fp,oq.; is 258.23 with respect to a F,;; = 1.20,
thus significantly different from the previous model with a p-value of 0. If we compare it to eq. (6),
i.e. the model where only the main effects are considered but not the interaction ones, the Fy,oq4¢;
is 9.36 with respect to a F.,;; = 1.03, thus significantly different from the previous model with a
p-value of 0.

Therefore, the full model in eq. (3) allows us to explain most of the variance and to have a more
accurate estimation of effect size and when they are statistically significant. To the best of our
knowledge, this is the first time that a topic*shard interaction has been explicitly measured in IR
system experiments.

6.2 Validation of the Balanced Design

To further test our design, we reproduce the design of Ferro and Sanderson [19] on the same dataset
they used so as to compare it with our way of achieving a balanced design. Note that the reduced
model of eq. (7) is the same as the model of eq. (2) of Ferro and Sanderson.

Table 6 shows the ANOVA table for the reduced model of eq. (7), computed as in [19], i.e. keeping
only the topics with relevant documents across all the shards (15 out of 50)*.

4Note that the p-values and the &? act) of Table 6 are not exactly the same as those reported in the table of Figure 2(c) of

Ferro and Sanderson [19]. The difference is due to the fact that Ferro and Sanderson use all the runs of T08 while we discard
the lowest quartile performing runs. If we use all the runs, we obtain exactly the same scores as Ferro and Sanderson but we
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Table 6. Reduced model of eq. (7) computed as in Ferro and Sanderson [19]. This table should be compared
to Table 3. Systems up to third quartile (top 75%) of performance. Balanced design obtained by keeping only
the 15 topics which have at least one relevant document in each shard. p-value of the Jarque-Bera test for
normality: 0.001. p-value of the Levene test for homoskedasticity of Topic effect: 0. p-value of the Levene test
for homoskedasticity of System effect: 0.9812. p-value of the Levene test for homoskedasticity of Shard effect:
8.69e-30.

Source SS DF MS F p-value (;)ffac H
Topic 192.8895 14 | 13.7778 | 363.5912 0 0.4685
System 8.8407 95 0.0931 2.4558 3.017e-13 0.0234
Shard 25.3043 3 8.4348 | 222.5905 | 4.247e-136 0.1035
System*Shard 6.0021 285 0.0211 0.5558 1 -
Error 203.1861 | 5362 0.0379
Total 436.2228 | 5759

Comparing Table 6 (Ferro and Sanderson’s way of obtaining a balanced design) to Table 3 (our
way of obtaining a balanced design), we can observe that the statistical significance of the different
effects is unchanged in the two tables as well as the general trends for the effect sizes.

However, differences can be seen in the size of the topic effect which is slightly smaller than
in previous work, possibly due to smaller number of topics (15) used in Table 6 with respect to
50 topics used in Table 3. The system effect is just slightly smaller than in prior work. This is an
expected by-product of using zeros where no relevant documents are found, because this lowers
the average performance of all systems and reduces the performance variance across systems. That
is, the different systems behave more similarly in our new design methodology compared to that of
prior work and less of the variance is explained by system differences, thus producing a smaller
effect size.

The zeros affect the shard effect sizes as well. Our new methodology reports stronger shard effects
than prior work. The newly added zeros created a larger variance in individual shard performances.
In the prior method, shards without relevant documents were excluded from analysis, meaning that
there were fewer shards that mostly produced non-zero accuracy results. In our new methodology,
shards without relevant documents always produce zero effectiveness, increasing both the number
and the range of effectiveness scores produced, thereby increasing the performance variance across
shards. That is, shards behave more differently under our new methodology and thus larger effect
sizes are reported.

Table 7 shows the ANOVA table for the full model of eq. (3), computed as in [19], i.e. keeping
only the topics with relevant documents across all the shards (15 out of 50). Note that Ferro and
Sanderson did not compute this model but we do it to see what happens if we compute our full model
using only the topics with at least one relevant document in each shard instead of interpolating
missing values with zero.

We can see a similar behaviour as the one observed in the previous case: the trends for the
significance and size of the effects are similar between Table 7 and Table 5. We can again observe a
small decrease in the topic effect size, possibly due to using less topics in the Ferro and Sanderson’s
settings; the size of the systems effect size is almost the same, almost negligibly smaller in our
approach, possibly due to the interpolation with zeros; the shard effect size is bigger in our approach,
due to the interpolation with zeros; the interaction effects are bigger in our approach due to the
more topics used with respect to Ferro and Sanderson and to the interpolation with zeros.

prefer to report in Table 6 the scores without considering the lowest quartile runs because this is consistent with all the
other figures reported in this paper.
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Table 7. Full model of eq. (3) computed as in Ferro and Sanderson [19]. This table should be compared to
Table 5. Systems up to third quartile (top 75%) of performance. Balanced design obtained by keeping only
the 15 topics which have at least one relevant document in each shard. p-value of the Jarque-Bera test for
normality: 0.001. p-value of the Levene test for homoskedasticity of Topic effect: 1.46e-144. p-value of the
Levene test for homoskedasticity of System effect: 2.871e-59. p-value of the Levene test for homoskedasticity
of Shard effect: 4.523e-20.

Source SS DF MS F p-value d)ffac H
Topic 192.8895 14 | 13.7778 | 865.9267 0 0.6777
System 8.8407 95 0.0931 5.8488 6.083e-61 0.0740
Shard 25.3043 3 8.4348 | 530.1203 | 6.024e-290 0.2160

System*Shard 6.0021 285 0.0211 1.3236 | 0.0003466 0.0158
Topic*System 33.6924 | 1330 0.0253 1.5921 2.359e-27 0.1203

Topic*Shard 106.0086 42 2.5240 | 158.6325 0 0.5348
Error 63.4852 | 3990 0.0159
Total 436.2228 | 5759

If we compare the full model of eq. (3) to the reduced model of eq. (7), both computed as in Ferro
and Sanderson, the Fy,o4¢; is 6.39 with respect to a F,,;; = 1.07 with a p-value of 0. Therefore, also
in this case, the full model turns out to be able to explain variance significantly better than the
reduced model.

Overall, this analysis confirms that both the shard and the topic*shard effect size and significance
are not a by-product of the choice of interpolating missing values but they are prominent effects
instead. Indeed, they are present also when you restrict yourself only to topics which have relevant
documents across all the shards. At the same time, it also emerges that the size and significance of
the other effects — topics, system, topic*system, and system*shard — are not hampered or severely
distorted by the choice of interpolating missing values.

Overall, the balanced design methodology used by Ferro and Sanderson and that of this paper
both have advantages and drawbacks. The methodology of prior work eliminates undefined data and
thus only work with topics and shards where there is explicit evidence. However, due to eliminating
topics, there is less data overall and the remaining topics may be biased. Our methodology’s use
the full range of available topics and is able to study a wider variety of shard configurations, which
in the prior work were artificially removed somehow biasing the estimation of the shard effect.
However, our methodology cannot distinguish between a true zero effectiveness score and a lack
of relevant documents. The different choices we made to achieve a balanced design produced
differences in the effect sizes reported from prior work, still keeping a reasonable agreement in
terms of general trends and what is statistically significant.

6.3 Validation of Balanced Design wrt Alternative Interpolation Values

As previously explained, we substitute missing data with zeros but it would be possible to resort to
data interpolation techniques to determine alternative values which are smoother than zero.

We explore five alternatives for data interpolation: (i) 1q makes use of the score’s lower quartile
value; (ii) med makes use of the median value of an effectiveness score; (iii) nean makes use of the
score’s mean; and, (iv) uq makes use of the score’s upper quartile value; and, (v) one interpolates
missing values with 1. Since some shards may generate missing relevant documents for all the
topics, we determine these interpolation value across all the topics, all the systems, and all the
shards, i.e. by putting all the available data together.

Tables 8 to 12 show the ANOVA table for the full model of eq. (3) for the 1q, med, mean, ug, and
one interpolation alternatives, respectively.
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Table 8. Full model of eq. (3) with 1q interpolation. This table should be compared to Table 5. Systems up
to third quartile (top 75%) of performance. Balanced design where missing values are forced to the lower
quartile value, balancing value: 0.03243. p-value of the Jarque-Bera test for normality: 0.001. p-value of the
Levene test for homoskedasticity of Topic effect: 0. p-value of the Levene test for homoskedasticity of System
effect: 1.315e-143. p-value of the Levene test for homoskedasticity of Shard effect: 7.544e-06.

Source SS DF MS F p-value (’bgfac 9
Topic 548.3131 49 | 11.1901 869.1152 0 0.6890
System 20.6407 95 0.2173 16.8751 6.53e-256 0.0728
Shard 130.1532 3 | 43.3844 | 3369.6008 0 0.3448
System*Shard 8.9032 285 0.0312 2.4263 1.594e-34 0.0207
Topic*System 115.7480 4655 0.0249 1.9313 | 1.377e-183 0.1842
Topic*Shard 456.2990 147 3.1041 241.0888 0 0.6477
Error 179.8027 | 13965 0.0129
Total 1459.8599 | 19199

Table 9. Full model of eq. (3) with med interpolation. This table should be compared to Table 5. Systems up
to third quartile (top 75%) of performance. Balanced design where missing values are forced to the median
value, balancing value: 0.1801. p-value of the Jarque-Bera test for normality: 0.001. p-value of the Levene
test for homoskedasticity of Topic effect: 0. p-value of the Levene test for homoskedasticity of System effect:
1.315e-143. p-value of the Levene test for homoskedasticity of Shard effect: 7.544e-06.

Source SS DF MS F p-value é)zfac”
Topic 524.0837 49 | 10.6956 830.7098 0 0.6792
System 20.6407 95 0.2173 16.8751 6.53e-256 0.0728
Shard 50.7038 3 | 16.9013 | 1312.6962 0 0.1701
System*Shard 8.9032 285 0.0312 2.4263 1.594e-34 0.0207
Topic*System 115.7480 4655 0.0249 1.9313 | 1.377e-183 0.1842
Topic*Shard 353.1083 147 2.4021 186.5672 0 0.5869
Error 179.8027 | 13965 0.0129
Total 1252.9904 | 19199

Table 10. Full model of eq. (3) with mean interpolation. This table should be compared to Table 5. Systems up
to third quartile (top 75%) of performance. Balanced design where missing values are forced to the mean
value, balancing value: 0.2676. p-value of the Jarque-Bera test for normality: 0.001. p-value of the Levene
test for homoskedasticity of Topic effect: 0. p-value of the Levene test for homoskedasticity of System effect:
1.315e-143. p-value of the Levene test for homoskedasticity of Shard effect: 7.544e-06.

Source SS DF MS F p-value (szfaC 5
Topic 521.2183 49 | 10.6371 | 826.1680 0 0.6780
System 20.6407 95 0.2173 16.8751 6.53e-256 0.0728
Shard 25.4066 3 8.4689 | 657.7632 0 0.0931
System*Shard 8.9032 285 0.0312 2.4263 1.594e-34 0.0207
Topic*System 115.7480 4655 0.0249 1.9313 | 1.377e-183 0.1842
Topic*Shard 326.4212 147 2.2206 | 172.4669 0 0.5676
Error 179.8027 | 13965 0.0129
Total 1198.1406 | 19199

Comparing these tables to Table 5, we can observe that the statistical significance and the trends
in the effect sizes are basically unchanged. As it can be expected, the shard effect is the most affected
by the change in the interpolation strategy. Indeed, it decreases as the interpolation values increase
passing from 1q, to med, and to mean since its variation gets reduced and closer to the central part
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Table 11. Full model of eq. (3) with up interpolation. This table should be compared to Table 5. Systems up
to third quartile (top 75%) of performance. Balanced design where missing values are forced to the upper
quartile value, balancing value: 0.4186. p-value of the Jarque-Bera test for normality: 0.001. p-value of the
Levene test for homoskedasticity of Topic effect: 0. p-value of the Levene test for homoskedasticity of System
effect: 1.315e-143. p-value of the Levene test for homoskedasticity of Shard effect: 7.544e-06.

Source SS DF MS F p-value (;szac "
Topic 536.4064 49 | 10.9471 | 850.2422 0 0.6843
System 20.6407 95 0.2173 16.8751 6.53e-256 0.0728
Shard 19.9587 3 6.6529 | 516.7207 | 1.849e-318 0.0746
System*Shard 8.9032 285 0.0312 2.4263 1.594e-34 0.0207
Topic*System 115.7480 4655 0.0249 1.9313 | 1.377e-183 0.1842
Topic*Shard 340.7818 147 2.3182 | 180.0545 0 0.5782
Error 179.8027 | 13965 0.0129
Total 1222.2415 | 19199

Table 12. Full model of eq. (3) with one interpolation. This table should be compared to Table 5. Systems up
to third quartile (top 75%) of performance. Balanced design where missing values are forced to one. p-value
of the Jarque-Bera test for normality: 0.001. p-value of the Levene test for homoskedasticity of Topic effect: 0.
p-value of the Levene test for homoskedasticity of System effect: 1.315e-143. p-value of the Levene test for
homoskedasticity of Shard effect: 7.544e-06.

Source SS DF MS F p-value d)(zfac 5
Topic 832.7732 49 16.9954 1320.0046 0 0.7710
System 20.6407 95 0.2173 16.8751 6.53e-256 0.0728
Shard 450.2567 3 | 150.0856 | 11656.9168 0 0.6455
System*Shard 8.9032 285 0.0312 2.4263 1.594e-34 0.0207
Topic*System 115.7480 4655 0.0249 1.9313 | 1.377e-183 0.1842
Topic*Shard 1109.7591 147 7.5494 586.3490 0 0.8176
Error 179.8027 | 13965 0.0129
Total 2717.8835 | 19199

of the score distribution; it then increases again with uq and one. The topic effect tends to very
slightly decrease moving from 1q, to med, and to mean while it increases back with uq and one,
even if these changes are not appreciably different. The topic*shard interaction effect follows a
similar pattern, slightly decreasing and then increasing, and it confirms to be one of the most
prominent effects under all circumstances, i.e. whatever interpolation value is chosen or even when
you perform no interpolation at all and keep only topics with at least one relevant document in
each shard.

The system, system*shard, and topic*system are exactly the same across all these tables. Indeed,
when a shard causes a topic to not have any relevant document, this affects all the systems in the
same way since all of them will miss that effectiveness score. Whatever interpolation values you
choose - zero, med, mean, or 1q - this will cause a shift in the system marginal means which is the
same for all the systems; then, the SS of these effects are basically computed as the square of the
data points minus these marginal means and so they are the same because the SS re-absorb these
fixed shifts equal for all the systems. On the other hand, these missing data are not spread in the
same way for topics and shards and so the interpolation values do not produce a fixed equal shift
for all the topics and shards; this is why the SS where topics and shards are involved change across
the tables.
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Table 13. Full model of eq. (3) where all systems used. This table should be compared to Table 5. Balanced
design where missing values are forced to zero. p-value of the Jarque-Bera test for normality: 0.001. p-value of
the Levene test for homoskedasticity of Topic effect: 0. p-value of the Levene test for homoskedasticity of
System effect: 7.379e-140. p-value of the Levene test for homoskedasticity of Shard effect: 0.001717.

Source SS DF MS F p-value (Z)zfac t>
Topic 543.1558 49 | 11.0848 731.1896 0 0.5810
System 158.3804 128 1.2373 81.6193 0 0.2857
Shard 140.9738 3 | 46.9913 | 3099.6945 0 0.2649
System*Shard 35.8976 384 0.0935 6.1665 | 3.235e-261 0.0714
Topic*System 215.9815 6272 0.0344 2.2715 0 0.2361
Topic*Shard 477.8748 147 3.2508 214.4364 0 0.5488
Error 285.2500 | 18816 0.0152
Total 1857.5140 | 25799

Finally, the one interpolation seems to be the least appropriate one since it over-emphasises
the topic, shard, and topic*shard effects, still keeping the same trends in the of significance and
effect size. Indeed, it turns a possibly frequent situation where a system has no chance to retrieve
any relevant document into the best performance possible, systematically increasing the spread
between existing low/medium performing systems — remember that the median performance is
0.1801 (Table 9) and the mean performance is 0.2676 (Table 10) — and an artificial best possible
performance 1.0. Similar considerations, even if far less marked, can be done for the uq interpolation.

As a general consideration, interpolation might not be the most appropriate technique to apply
in our context anyway. Indeed, interpolation inserts smoothed values where the real information is,
instead, that there are no relevant documents in a shard for a given topic. In a sense, interpolation
could mask reality and smooth the shard effect too much, as we have seen happening in Tables 9
to 8 as the interpolation values increase. Indeed, our context is very different from other cases
where interpolation is somehow intrinsic. Consider, for example, a time series where you miss
some data points but there is some sort of continuity - e.g. if the temperature is 30 degrees and
after 2 hours is 20 degrees, it is reasonable to assume that after 1 hour it should be something
like 25 degrees. Instead, in our context, there is no a-priori “sensible” value for a topic without
relevant documents and thus, among the possible interpolation values, a zero might be the least
worst approximation of what is truly happening, especially if you consider that for some measures,
like AP, no value is possible in absence of relevant documents but for other measures, like P@k,
you may consider 0 as the real value to be used.

6.4 Validation of Discarding the Lower Quartile Systems

In this section, we validate the choice of using systems up to the third quartile of performance by
reporting the application of the full model of eq. (3) when using all the systems (Table 13), system
up to the second quartile (Table 14), and systems in the top quartile (Table 15). These tables should
be compare to Table 5 where systems up to the third quartile are used.

In general, you can note how the trends in terms of significance and size of the effects are are
similar to those observed in the previous cases. However, as it can be expected, reducing the number
of systems considered, moving from the fourth to the first quartile, reduces the variation in this
factor and, consequently, its effect size; in turn, this gives room to the other effects to become
relatively bigger.

Therefore, we will use systems up to the third quartile, since this does not hamper to observed
trends and, when conducting analyses, it is usually preferred to remove low performing systems
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Table 14. Full model of eq. (3) where systems up to second quartile (top 50%)/median of performance are
used. This table should be compared to Table 5. Balanced design where missing values are forced to zero.
p-value of the Jarque-Bera test for normality: 0.001. p-value of the Levene test for homoskedasticity of Topic
effect: 0. p-value of the Levene test for homoskedasticity of System effect: 1.601e-139. p-value of the Levene
test for homoskedasticity of Shard effect: 0.000197.

Source SS DF MS F p-value (;szac "
Topic 387.0483 49 7.8989 609.8103 0 0.6998
System 7.9881 63 0.1268 9.7887 | 2.196e-88 0.0415
Shard 121.5241 3 | 40.5080 | 3127.2797 0 0.4229
System*Shard 4.7255 189 0.0250 1.9302 | 6.454e-13 0.0135
Topic*System 73.7020 3087 0.0239 1.8432 | 1.78e-105 0.1690
Topic*Shard 348.6851 147 2.3720 183.1225 0 0.6765
Error 119.9588 9261 0.0130
Total 1063.6318 | 12799

Table 15. Full model of eq. (3) where systems up to first quartile (top 25%) of performance are used. This
table should be compared to Table 5. Balanced design where missing values are forced to zero. p-value of
the Jarque-Bera test for normality: 0.001. p-value of the Levene test for homoskedasticity of Topic effect:
3.204e-205. p-value of the Levene test for homoskedasticity of System effect: 6.589e-99. p-value of the Levene
test for homoskedasticity of Shard effect: 0.009965.

Source SS DF MS F p-value ‘Z)ffac 5
Topic 190.1945 49 3.8815 264.6120 0 0.6687
System 3.0925 31 0.0998 6.8008 | 7.158e-28 0.0273
Shard 72.6746 3 | 24.2249 | 1651.4653 0 0.4362
System*Shard 2.4459 93 0.0263 1.7930 | 5.717e-06 0.0114
Topic*System 41.2468 | 1519 0.0272 1.8511 9.11e-54 0.1681
Topic*Shard 179.0731 147 1.2182 83.0464 0 0.6533
Error 66.8454 | 4557 0.0147
Total 555.5728 | 6399

to avoid outliers and an excess of variance, as done for example in [3, 45, 57], which may over-
emphasise some effects instead.

Overall, according to the outcomes of this thorough validation section, since we have not observed
remarkable deviations with respect to either previous work or interpolation alternatives, all further
experiments in the paper will use the new “zeros” method for achieving a balanced design and
systems up to the third quartile of performance.

7 EXAMINING SHARD EFFECTS

With a richer GLMM model and balanced experimental design, we now focus on a wide range
of shards in order to better understand the shard effects noted in the past [19, 31, 51]. We apply
our model to shards created by various ways of partitioning a collection that have been employed
in past work. We have already examined shards split on publication source in Section 6. We now
examine shards created by partitioning the collection by the Top Level Domain (TLD) of the URL of
a web page (Section 7.1), shards created by clustering the document collection by topic (Section 7.2),
and shards created by splitting on document type (Section 7.3).
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Table 16. WT10g datasets split based on their TLD on T@9 and T10 for various measures. In the left column,
there are uneven size shards; in the right column, there are even size shards. For each effect, its effect size H?
is reported. Insignificant effects are in gray; small effects, light blue; medium, blue; and large, dark blue.

Measure T09 - WT10g_TLD T09 - WT10g_TLD_EVEN
é)prc) (Z)fSys) é)zshr (Z)(zSys”Shr) (Z)(szc*Sys> é)fSys) (Z)(zshr) d)(zSys*Shr) Cb(szc"Sys)

AP 0.08| 0.01 0.03 0.03 0.03| 0.07 <le-2 0.10

R-prec 0.06| 0.01 0.02 0.01| 0.04 =

RBP 0.14| 0.01 0.06 0.03| 0.11 <le-2

nDCG 0.12| 0.01 0.05 0.03| 0.13 <le-2

ERR 0.09| 0.01 0.03 0.02| 0.09 <le-2

Twist 0.07| 0.01 0.03 0.02| 0.05 <le-2

P@5 0.11| 0.01 0.05 0.03| 0.09 <le-2

P@10 0.13| 0.01 0.05 0.03| 0.11 <le-2

P@20 0.14| 0.01 0.06 0.03| 0.12 <le-2

P@50 0.13| 0.01 0.06 0.02| 0.11 <le-2

P@100 0.13| 0.01 0.06 0.02| 0.11 <le-2

nDCG@5 0.07| 0.01 0.03 0.03| 0.07 <le-2

nDCG@10 0.08| 0.01 0.03 0.04| 0.09 <le-2

nDCG@20 0.09| 0.01 0.03 0.04| 0.11 <le-2

nDCG@50 0.11| 0.01 0.04 0.04| 0.13 <le-2

nDCG@100| 0.12| 0.01 0.05 0.04| 0.13 <le-2

Measure T10 - WT10g_TLD T10 - WT10g_TLD_EVEN
aA)(ZTpc) é)(ASys) aA)(ZShr) d)(&Sys*Shr) d)(szc*Sys) d)(&Shr) d)(ZSys*Shr) d)(szc*Sys) aA)(zT c*Shr)

AP 0.09| <le-2 0.02 0.02 0.01| 0.09 <le-2 0.09

R-prec 0.07| <le-2 0.01 0.01| 0.06 <le-2 0.06

RBP 0.01 0.04 <le-2 0.13

nDCG 0.13| 0.01 0.02 0.01 0.11

ERR 0.12| <le-2 0.02 0.01| 0.12 <le-2 0.07

Twist 0.08| <1le-2 0.01 0.01| 0.06 <le-2 0.05

P@5 0.01 0.03 0.02| 0.11 <le-2 0.10

P@10 0.01 0.04 0.01 0.12

P@20 0.01 0.04 0.01 0.11

P@50 <le-2 0.04 0.01 0.09

P@100 <le-2 0.03 <le-2 0.07

nDCG@5 0.08| <1le-2 0.02 <le-2 0.07

nDCG@10 0.08| 0.01 0.02 0.02| 0.10 <le-2 0.09

nDCG@20 0.10| 0.01 0.02 0.01 0.10

nDCG@50 0.11| 0.01 0.03 0.01 0.11

nDCG@100| 0.12| 0.01 0.03 0.01 0.11

7.1 Sharding by Top Level Domain

The WT10g dataset is composed of web documents, which can be sharded by their by the TLD of
their URL [33, 51]: all documents with a URL ending in .org are placed in one shard, all with . gov
are placed in another, etc. for a total of 59 shards. Table 16 on the left shows the results of this shard
organization.

The strongest overall effect in WT10g_TLD is the topic*shard interaction, indicating that certain
topic*shard combinations produce higher variance in effectiveness than others. This is expected,
since the organization of the documents by TLD produce loosely topic-related shards. For example,
queries related to politics might be best served by the . gov shard. The strength of the topic*shard
interaction is a global trend which we discuss further in Section 8.
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Table 17. WT10g datasets split randomly with different sizes on T@9 and T10 for various measures. In the left
column, there are randomly split and unevenly sized shards; in the right column, there are randomly split
and unevenly sized shards. For each effect, its effect size & is reported. Insignificant effects are in gray; small
effects, light blue; medium, blue; and large, dark blue.

Measure T09 WTIOg RANDOM UNEVEN T09 WTlOg_RANDOM EVEN
6Z)(ZTpc) ) (Sys) (Shr) (Sys*Shr) (Tpc*Sys) w(zshr) o
AP 0.13| 0.01 0.02 0.04| 0.03
R-prec 0.10| 0.01 0.02 0.02| 0.02
RBP 0.02 0.07 0.07| 0.03
nDCG 0.02 0.04 0.05| 0.05
ERR 0.01 0.04 0.04| 0.04
Twist 0.01 0.02 0.02| 0.02
P@5 0.01 0.05 0.05| 0.03
P@10 0.01 0.07 0.07| 0.03
P@20 0.01 0.08 0.07| 0.04
P@50 0.01 0.09 0.07| 0.04
P@100 0.01 0.08 0.07| 0.04
nDCG@5 0.12| 0.01 0.03 0.04| 0.03
nDCG@10 0.13| 0.01 0.03 0.06| 0.04
nDCG@20 0.02 0.04 0.06| 0.05
nDCG@50 0.02 0.04 0.05| 0.05
nDCG@100 0.02 0.04 0.05| 0.05
Measure T10 - WT10g_RANDOM_UNEVEN T10 - WTlOg_RANDOM EVEN
> (ZSys) (Z)(ZSys*Shr) 0 (Z)?Sys) (Z)(ZShr)
AP 0.01 0.01 0.02| 0.03
R-prec <le-2 0.01 0.01] 0.01
RBP 0.01 0.05 0.04| 0.04
nDCG 0.01 0.02 0.03| 0.05
ERR 0.01 0.02 0.02| 0.03
Twist 0.01 0.01 0.01| 0.02
P@5 0.01 0.04 0.03| 0.03
P@10 0.01 0.05 0.04| 0.04
P@20 0.01 0.05 0.05| 0.06
P@50 0.01 0.05 0.06| 0.06
P@100 0.01 0.04 0.05| 0.06
nDCG@5 0.01 0.02 0.02| 0.03
nDCG@10 0.01 0.02 0.03| 0.03
nDCG@20 0.01 0.02 0.04| 0.04
nDCG@50 0.01 0.03 0.04| 0.04
nDCG@100 0.01 0.03 0.04| 0.04

The WT10g_TLD shards produce small system”shard and topic*system interaction effects and
a large shard effect. The system*shard interaction indicates that certain systems are somewhat
better suited for searching certain shards than other systems. The large shard effect indicates that
regardless of topic or system, there are a few shards that produce the highest effectiveness and that
most relevant documents across all topics appear in a few shards. This effect is stronger than the
topic effect.

It is tempting to declare that organizing documents by TLD is an ideal way to sort web documents
for applications such as selective search, where the goal is to minimize the number of shards accessed
per query for efficiency reasons. However, a confounding factor exists in the WT10g_TLD shards;
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the shard sizes are uneven. 48% of documents are in the . com shard and the top three TLDs (. com,
.edu, and .org) contain 71% of all documents.

To better understand the effects of shard sizes, we created and examined three other shard sets,
each with 59 shards: WT10g_TLD_EVEN (Table 16 on the right), WT10g_RANDOM_UNEVEN (Table 17
on the left), and WT10g_RANDOM_EVEN (Table 17 on the right). In WT10g_TLD_EVEN, the documents
were ordered by TLD, but the shard boundaries were drawn such that each shard would contain the
same number of documents; i.e. the . com shard was split into multiple shards, whereas smaller TLD
shards were merged. In WT10g_RANDOM_UNEVEN, documents are randomly assigned to shards, where
shard sizes are the same as WT10g_TLD; i.e. the shard sizes are skewed. In WT10g_RANDOM_EVEN
documents are randomly assigned to shards of equal size.

Comparing WT10g_TLD_EVEN to WT10g_RANDOM_EVEN, we see that moving from TLD organ-
ised shards to the randomly organised shards results in the increase in the topic, system, and
topic*system effects. In contrast, the shard effect in randomly organized shards drops from a com-
bination of medium and large effects to small effects. The system*shard effects drop from small
to insignificant. Therefore, organizing shards by TLD produces some shard effect, and our work
confirms the observations of Sanderson et al. [51] and Kulkarni and Callan [33] with more concrete
measurements.

Comparing WT10g_TLD with WT10g_RANDOM_UNEVEN, there is little difference in the measured
effect size: shard effects are large; the system*shard effect is mostly small. The lack of change between
WT10g_TLD and WT1@g_RANDOM_UNEVEN indicates that shards heavily skewed in size create a shard
effect independent of the internal organization of their constituent documents. The undesirability
of size skewed shards have been noted previously for efficiency reasons [32]. However, our results
suggest that they may also impede drawing accurate conclusions about the effectiveness of sharding
methodologies. Therefore, when using size-skewed shards to evaluate the retrieval accuracy of a
novel method as was the case in Puppin et al. [43] and Pobelte and Baeza-Yates [42], we recommend
that a careful analysis should done to separate the shard effects caused by the size of the shard as
opposed to the contents of the shard.

Figure 2 shows the main effect plots for the topic effects (Figure 2a and Figure 2b), system
(effects Figure 2c and Figure 2d), and shard effects (Figure 2e and Figure 2f) using AP on T09 for
the WT10g_TLD and WT10g_TLD_EVEN sharding schemes; the figure reports the marginal mean of
AP for each of these effects. Figure 3 instead shows the interaction effect plots for the topic*system
effects (Figure 3a and Figure 3b), topic*shard effects (Figure 3c and Figure 3d), and system*shard
effects (Figure 3e and Figure 3f). An interaction effects plot displays the levels of one factor on the
X axis and has a separate line for the marginal means of each level of the other factor on the Y
axis. For example, in Figure 3b each step of the X axis corresponds to one of the 50 topics used
in T@9; each line corresponds to one of the 104 system runs submitted to T@9; and, the Y axis is
the marginal mean of AP for each system with respect to each topic. An interaction effects plot
allows us to understand whether the effect of one factor depends on the level of the other factor.
Indeed, two parallel lines indicate that no interaction occurred, whereas nonparallel lines indicate
an interaction between factors; the more nonparallel the lines are, the greater the strength of the
interaction. For example, in Figure 3b, we highlighted one of the system runs with a thick black
line: you can note how, as expected, the performance of the system varies from topic to topic,
being more effective for some topics and less for others; moreover, the line corresponding to the
highlighted system crosses several times the lines corresponding to other systems and this is an
indication of interaction.

Figures 2 and 3 allow us to appreciate some of the phenomena described above by visually
inspecting the underlying analysed data. Note that T10, random sharding schemes, and other
measure are omitted from Figures 2 and 3 for brevity but trends are similar.
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Fig. 2. Main effects plots using AP on T@9 for different TLD sharding schemes. T10, other random shard schemes, and
other measure are omitted for brevity but trends are similar.

From Figure 2 we can observe that uneven size shards (on the left) tend to depress the topic
and system effect while even size shards (on the right) have the opposite outcome. This behaviour
comes from the fact that, when using uneven shards, there are several shards without any relevant
documents and this lowers the overall performance across both topics and systems; on the other
hand, even size shards are typically characterized by a more even distribution of relevant documents
across shards, allowing topics and systems to have more chances for performing better. Moreover,
uneven size shards happen to concentrate the shard effect only in few shards, the biggest ones,
while even size shards exhibit a shard effect more distributed across all the shards. Also in this
case, this behaviour reflects the concentration of relevant documents only in few shards which
achieve higher performance with respect to evenly spreading relevant documents across shards
and achieving a more uniform distribution of performance.
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Fig. 3. Interaction effects plots using AP on T@9 for different TLD and sharding schemes. T10, other random
shard schemes, and other measures are omitted for brevity but trends are similar.

From Figure 3 we can observe how much bigger the topic*shard interaction effect is with respect
to the others, as shown by the “very messy” set of lines which keep crossing each other (Figure 3¢
and Figure 3d). On the other hand, the system*shard interaction effect is the weakest one with
lines which follow a more regular pattern and tend to be more parallel, being characterized by
less crossing among the lines (Figure 3e and Figure 3f). Finally, the topic*system interaction effect
falls between the two (Figure 3a and Figure 3b), being consistent with previous findings in the
literature about the size of this effect. As in the previous case of Figure 2, we note how uneven
shard sizes happen to concentrate the interaction within fewer shards, the biggest ones containing
most of the relevant documents, while even shard sizes happen to distribute it across all the shards.
Finally, we note how even shard sizes substantially increase the topic*system interaction with
respect to the case of uneven shard sizes. Indeed, since even size shards typically exhibit a more
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even distribution of relevant documents across shards, there are more cases, i.e. shards, where a
system can be good (or not) at retrieving relevant documents for a given topic and this boosts the
topic*system interaction effect.

7.2 Sharding by topic cluster

Selective search is a distributed search architecture which uses topically focused shards to improve
the efficiency of large-scale search. Dai et al. [15] present a query-log biased clustering method
for creating shards for selective search. The clusters are initially seeded with topics from the AOL
query log and during clustering, terms common in the query log are favoured by the similarity
metric, creating shards with a strong topic skew. We use the 199 shards of the Gov2 dataset created
by [15] and apply our analysis (GOV2_199). The results are presented in Table 18 on the left. Across
the three years of TREC submissions, one can see a large shard and topic*shard effect. These results
corroborate and encapsulate several observations about selective search shards made in prior work
[32, 33].

The strength of the topic*shard interaction confirms the purpose of the selective search shards,
which were designed specifically to represent different topics. Indeed, the topic*shard interaction
effects are the most prominent and make up the greatest majority of the total variance in GOV2_199
than any other experiment. The single-factor shard effect also quantifies an observation made in
prior work: topic imbalances exist in queries and certain selective search shards are globally more
popular than others [32].

Given the specialized nature of the shards in selective search, we wondered if we could design
systems specialized to each shard that would produce better rankings, and thus producing larger
system*shard effects.

Therefore, we created fifty “systems” where each system performs RM3 query expansion [35] on
given test collection topics with a particular shard. In RM3 query expansion is a pseudo relevance
feedback algorithm. The initial query is submitted to a search index and the top retrieved documents
are used to generate expansion terms that are likely to co-occur with the initial query. The expansion
terms and initial query are then interpolated for the final retrieval.

In our experiments, each “system” created expanded queries from the given topic, where expan-
sion terms were generated from the top retrieved documents from a particular shard. 50 expansion
terms were generated from the top 10 documents, and the new and expanded queries were weighed
equally (0.5). In essence, this creates systems that were tuned to one particular shard. These shard-
specific systems are then used to retrieve documents from all shards and these result lists are used
in analyses, in lieu of the TREC submitted systems®.

Table 18 on the right presents the results for the fifty shard-specific systems. These simple,
shard-tuned systems also produced small system*shard interactions. Our findings support that of
Jones et al. [30], which attempted to create customised relevance scoring functions for shards but
did not find accuracy gains. While this does not mean creating systems that are tuned for individual
shards are impossible, it clearly requires more careful methods.

Note that this choice, which represents what actually happens in practice when you rely on shards for selective search,
somehow departs from the independence assumption behind ANOVA, since some systems are specifically target to some
shards. As explained by Scariano and Davenport, this violation of the ANOVA assumption may impact on the outcomes of
the F-test. While from the results reported in Table 18 on the right this seems to not actually change the general trends
observed also in the other experiments, it is left for future work to investigate the extent this violations may have impacted
on the results.
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Table 18. Selective search shards and system alternatives on GOV2 for T13, T14, and T15. In the left column,
there are selective search shards with original TREC systems. In the right column, there are selective search
shards with fifty different shard-specific systems created through RM3 query expansion with shard language
models. For each effect, its effect size & is reported. Insignificant effects are in gray; small effects, light blue;
medium, blue; and large, dark blue.

Measure T13 - GOV2_199 T13_199s - GOV2_199
A ~7Z ~7Z ~Z A7 A7 ~Z ~Z A7 A7 ~7Z
Drtpe) | “(sys) | ©(shry | P (sys*shr) | “(Tpe*sys) | “(Tpe*shr) Disys) | “(shry | “(sys*shr) | “(Tpe*sys) | “(Tpc*shr)
AP 0.05] 0.01 0.02 0.01 <le-2 <le-2 0.01
R-prec 0.03| <le-2 0.01 0.01 <le-2 <le-2 <le-2
RBP 0.07| 0.01 0.02 0.01 <le-2 <le-2 0.01

nDCG 0.07| 0.01 0.03 0.02 <le-2 0.01 0.01
ERR 0.06| <le-2 0.01 0.01 <le-2 <le-2 <le-2
Twist 0.04| <le-2 0.01 0.01 <le-2 <le-2 <le-2
P@5 0.06| 0.01 0.02 0.01 <le-2 <le-2 <le-2
P@10 0.07| 0.01 0.02 0.01 <le-2 <le-2 <le-2
P@20 0.07| 0.01 0.03 0.01 <le-2 <le-2 0.01
P@50 0.06| 0.01 0.02 0.01 <le-2 <le-2 0.01
P@100 0.06| <le-2 0.02 0.01 <le-2 <le-2 0.01
nDCG@5 0.04| 0.01 0.01 0.01 <le-2 <le-2 <le-2

0.02 0.01
0.02 0.01
0.02 0.01

<le-2 <le-2 <le-2
<le-2 <le-2 <le-2
<le-2 0.01 0.01

nDCG@10 0.05| 0.01
nDCG@20 0.05| 0.01
nDCG@50 0.07| 0.01

nDCG@100| 0.07| 0.01 0.02 0.01 <le-2 0.01 0.01
Measure T14 - GOV2_199 T14_199s - GOV2_199
d)(Tpc) d)(‘Sys) d)zShr d)(‘Sys’Shr) é)(‘Tpc*Sys) é)‘Sys) &‘Shr (Z)fSys*Shr) (Z)(lTpc"Sys)
AP 0.08| <le-2 0.01 0.01 <le-2 <le-2 <le-2
R-prec 0.05| <le-2 <le-2 0.01 <le-2 <le-2 <le-2
RBP 0.11| <le-2 0.01 0.01 <le-2 <le-2 0.01
nDCG 0.01 0.02 0.02 <le-2 0.01 0.01
ERR 0.08| <le-2 0.01 0.01 <le-2 = <le-2
Twist 0.05| <le-2 <le-2 0.01 <le-2 - <le-2
P@5 0.08| <le-2 0.01 0.01 <le-2 <le-2 <le-2
P@10 0.09| <le-2 0.01 0.01 <le-2 <le-2 <le-2
P@20 0.10| <le-2 0.01 0.01 <le-2 <le-2 <le-2
P@50 0.11| <le-2 0.01 0.01 <le-2 <le-2 <le-2
P@100 0.10| <le-2 0.01 0.01 <le-2 0.01 <le-2
nDCG@5 0.06| <le-2 0.01 0.01 <le-2 <le-2 <le-2
nDCG@10 0.08| 0.01 0.01 0.01 <le-2 <le-2 <le-2
nDCG@20 0.10/ 0.01 0.02 0.01 <le-2 <le-2 0.01
nDCG@50 0.13| 0.01 0.02 0.02 <le-2 <le-2 0.01
nDCG@100| 0.14| 0.01 0.02 0.02 <le-2 0.01 0.01
Measure T15 - GOV2_199 T15_199s - GOV2_199
(b(Tpc) d)(‘Sys) oAJZShr d)(‘Sys‘Shr) d)(‘Tpc*Sys) (Z)fSys) d)‘ShI (Z)(Sys’shr) (Z)(Tpc*Sys)
AP 0.08| <le-2 <le-2 0.01 <le-2 <le-2 0.01
R-prec 0.05| <le-2 <le-2 0.01 <le-2 <le-2 <le-2
RBP 0.11| <le-2 <le-2 0.01 <le-2 - <le-2
nDCG <le-2 0.01 0.02 <le-2 <le-2 0.01
ERR 0.09| <le-2 <le-2 0.01 <le-2 - <le-2
Twist 0.06| <le-2 <le-2 0.01 <le-2 - <le-2
P@5 0.08| <le-2 <le-2 0.01 <le-2 - <le-2
P@10 0.10| <le-2 <le-2 0.01 <le-2 <le-2 <le-2
P@20 0.10| <le-2 <le-2 0.01 <le-2 <le-2 <le-2
P@50 0.10| <le-2 <le-2 0.01 <le-2 <le-2 <le-2
P@100 0.11| <le-2 0.01 0.01 <le-2 <le-2 <le-2
nDCG@5 0.07| <le-2 <le-2 0.01 <le-2 - <le-2

nDCG@10 | 0.08] <le-2
nDCG@20 | 0.10] <le-2
nDCG@50 | 0.12] 0.01

nDCG@100 | 0:34] 0.01
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Table 19. PDF and not PDF split shards on GOV2 for T13, T14, and T15. For each effect, its effect size & is
reported. Insignificant effects are in gray; small effects, light blue; medium, blue; and large, dark blue.

Measure T13 - GOV2_PDF_NOTPDF

nDCG@100

Measure T14 - GOV2_PDF_NOTPDF
) Vi

«w

nDCG@100

Measure T15 - GOV2_PDF_NOTPDF
A2 A2 A2
Disysy | “(shr) | “(Sys*Shr)

AP 0.13| <1e-2 0.01

R-prec

0.09| 0.01
0.09

nDCG@100
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7.3 Sharding by document type

Sanderson et al. [51] created and analyzed shards based on document type: PDF and non-PDF
documents. We applied our model to these shards (GOV2_PDF_NOTPDF) for a more in-depth analysis.
The results are presented in Table 19. In the case of the GOV2_199 shards in Section 7.2, we saw no
notable change in effects across the three years of running the TREC track. However, this is not
necessarily unexpected as the development of systems across the three years occurred before the
sharding took place. In contrast, the study of GOV2_PDF_NOTPDF does examine a sharding in place
as the systems were developed over the three years.

In contrast to prior experiments, a medium/large system effect is present, especially in T13, where
there is also a large system*shard interaction. In subsequent years of the track, the system*shard
interaction becomes much smaller. The shard effect is small or not significant, especially in T14.
Overall, this suggests that these two documents types similarly contributed to system effectiveness
(small size/not significant shard effect) but the systems behaved quite differently (large system*shard
interaction), some were more effective on PDF documents® and others on non-PDF documents.
These results enrich the findings of Sanderson et al. [51], who found that system rankings on PDF
documents were not predictive of rankings on non-PDF. In addition, the decreasing system*shard
interaction effect over subsequent years confirms the data in Table 4 of Sanderson et al., which
showed some evidence that the non-predictive effect was stronger in T13 than later years.

8 DISCUSSION

In addition to observations specific to particular shards, our experiments revealed several global
trends spanning across the datasets.

8.1 Extended Performance Model

In section 6 the extended performance model was validated. Extending the model with a shard,
system”shard, and topic*shard factor reduced the level of error when compared to past models [5, 44,
59]. It would appear that the extended model has the potential to ensure that the differences between
retrieval systems can be measured more accurately. There was some suggestion of this potential
when Ferro and Sanderson [19] examined the number of statistically significant differences between
systems using a simpler version of the performance model. However, a detailed examination of this
topic will be left for future work.

8.2 Impact of Skewed Shards

In many of the collections experimented on, much of the system*shard effect seems to be explained
by the skewed nature of the shards that were formed. It is worth considering this finding when
examining past results. Zhai and Lafferty [62] found that notably different parameter settings were
needed to optimise a system on shards in their experiments. The skewed size of those shards was
not discussed by those researchers. Similarly, Goswami et al. [23] did not consider the impact of
skew in their results.

8.3 Impact of Convergence of Adopted Techniques in System Development

The system and system”shard interaction effects decreased sharply from T13 to subsequent years
in GOV2_PDF_NOTPDF. We speculate this is because the first iterations of a TREC track have a wider
variety of systems and in later years see a convergence of system effectiveness, as the best strategies
from earlier years are propagated through the community and as later systems are trained on
earlier track results. This effect is shown in Figure 4, which presents a histogram of MAP scores of

®Note, the ‘PDF documents’ were composed only of text, which was extracted from the original PDF documents [13].
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Fig. 4. Distribution of MAP scores for submitted systems in TREC Terabyte tracks using the GOV2 corpus.

runs submitted to the TREC Terabyte track. More subtle versions of the trend can be observed in
the tables reported here for other shard sets. In later iterations of the track, smaller system effects
and system*shard interaction effects are reported. To the best of our knowledge, this is the first
time that results from ANOVA appear to track changes over the iterations of an evaluation track.

With the exception of T13 in GOV2_PDF_NOTPDF seen above, minimal system*shard interaction
effects were reported. Jones et al. [30] attempted to build an aggregated system of relevance scoring
methods customised to each shard, but found no benefit from taking such an approach. The reason
for this difficulty is now explained by our results. The small system*shard interaction effect indicates
that while some form of interaction is taking place, exploiting it for the benefit of overall search
effectiveness is likely to be hard and would involve using very different approaches from standard
techniques.

While the authors would have welcomed the opportunity to explore this form of shard further,
we know of no other test collection on which we could experiment. The Gov2 collection appears to
be the only collection we know of that is composed of documents that are notably different in type
but that can be relevant to information needs of similar intent.

8.4 Impact of Random Shards

Large topic*shard interaction effects are present across every experiment and were the dominant
factor of our measurments, especially in GOV2_199, which were designed to be topic-focused. To
our surprise, the topic*shard interaction effect was also strong in randomly organized shards as
well (Tables 16 and 17). To investigate further, we created four additional evenly-sized, randomly
organized shard sets containing n = {25, 10, 5, 2} shards, presented in Table 20.

As the number of shards decreases, the topic*shard interaction effects become overshadowed by
the other larger effects such as the topic effect. However, even in two randomly created shards, the
topic*shard interaction effect is a major factor in variance; this is due to the sparsity of relevance
data and the fact that not all relevant documents are created equal. While the relevant documents
are distributed fairly evenly in these random shards, some are easier to find for the submitted
systems and are ranked higher, creating a skew in the actual scores in metrics such as MAP. Case
in point, when the factors are compared across different metrics, rank-sensitive metrics such as
AP, nDCG show topic*shard effects being comparatively stronger than other factors, where as
rank insensitive metrics such as P@100 show a comparatively weaker topic*shard effect. E.g. in
WT10g_RANDOM_5, the topic, system, and topic*shard effect sizes for AP are 0.52, 0.17 and 0.60
respectively, where as for P@100 they are 0.95, 0.41 and 0.84 respectively.

We speculate that the limits in effectiveness of the methodology described by Voorhees et al.
[59] may be due to the topic*shard effects not being taken into account in that work.
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Table 20. Effect of different number of shards, split randomly into 2, 5, 10 and 25 evenly sized shards, on
WT10g and T@9. T10 is omitted for brevity but trends are similar. For each effect, its effect size &? is reported.
Insignificant effects are in gray; small effects, light blue; medium, blue; and large, dark blue.

Measure T09 - WT10g_RANDOM_2 T09 - WT10g_RANDOM_5

Measure T09 - WT10g_RANDOM_10 T09 - WT10g_RANDOM_25

o2 a‘)f

A2 A2

D(shry | “(sys*shr)
AP b 0.03
R-prec y 0.02

Sys*Shr)

nDCG@5
nDCG@10
nDCG@20
nDCG@50
nDCG@100

8.5 Impact of Measure Cut-off and Shard Size

When experimenting with different rank cut-offs for precision and nDCG, the effect sizes across
all factors increase (or stay almost constant) as the deeper ranks are considered, as visualized in
Figure 5. This is consistent with the knowledge that shallow metrics are noisy [52]; at shallower
ranks, more of the variance is attributed to error. At deeper ranks, the error decreases as noise is
reduced and the effect of the factors are more clearly visible. E.g. in WT10g_RANDOM_EVEN, MS,,, of
P@5 is 0.0044 vs. <0.0001 of P@100, more than two orders of magnitude in difference.

Figure 6 shows how the effect size for the different factors varies as the cut-off of nDCG increases
and the type of random shards changes; on the left, there are different types of shards; on the right,
there are different numbers of random even shards. The figure is based on the data of Tables 16
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Fig. 5. Effect sizes for different document cut-off values on T10 with WT10g_TLD shards.

and 17 for the different types of shards on the left, and Table 20 for the different number of random
even shards on the right. The figure shows the case T09 and WT10g for nDCG but similar trends
can be observed also for precision at different cut-offs and in the case T10 of WT10g. Note that the
figure does not show system™shard interaction, because it is often not significant.

As general trends, we can confirm that increasing the document cut-off values increases the effect
size. We can also observe that, in the case of random even shards (right part of Figure 6), increasing
the size of the shards, i.e. decreasing their number, increases the size of the effects. Finally, even
size shards (left part of Figure 6) tend to increase the effect size with respect to uneven size shards,
apart from the Shard effect which is lowered. All these trends can be attributed to variations in
the distribution of relevant document in the different cases. When you increase the cut-off of an
evaluation measure, you give it the possibility of “seeing” more relevant documents, i.e. those that
are retrieved in lower parts of the ranking, and this enhances the different effects. When you have
even shards, decreasing their numbers allows for more relevant documents in the same shards;
this reduces the shard effect and gives room for enhancing the other effects. This phenomenon
is further highlighted by the difference between uneven and even shards: in the former case the
shard effect is very pronounced due to the skewed distribution of relevant documents concentrated
in few shards; in the latter case, the even distribution of relevant documents across shards reduces
the shard effect.

There are a few exceptions to these general trends: the shard effect increases for uneven shard
sizes and decreases for even ones; moreover, in the case of even size shards, it increases as the
number of shards increases, i.e. when the size of the shards decreases. This suggests that, in both
cases, smaller size shards impact more on system performance because, probably, there are fewer
systems able to perform well on smaller shards.

The other exception is the topic*shard interaction effect, which confirms to be one of the most
prominent effects in all the cases. It increases more as the shard size decreases, in the case of random
even shards, and it is more sensitive to the document cut-off than to the type of shards (even or
uneven size). Overall, this further supports the importance of the topic*shards effect which seems
not to be just a by product of the skewness/size of the shards but rather a more intrinsic form of
interaction between topics and shards under different circumstances.
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Fig. 6. Effect sizes for nDCG at document cut-offs (5, 10, 20, 50, 100) on T@9 and WT10g; left: different types of shards (TLD,
TLD_EVEN, RANDOM_UNEVEN, RANDOM_EVEN); right: different number of random even shards (2, 5, 10, 25, 59).
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Table 21. Overall summary of the effect sizes across all the tracks and evaluation measures. Each cell reports
the number of times an event happens and, within parenthesis, its ratio with respect to the total cases.

Factor Not Significant | Small Size | Medium Size | Large Size Total
Topic 0(0.00%) | 13(3.69%) 65 (18.47%) | 274 (77.84%) | 352 (100.00%)
System 0(0.00%) | 194 (55.11%) 76 (21.59%) | 82 (23.30%) | 352 (100.00%)
Shard 11 (3.12%) | 176 (50.00%) 34 (9.66%) | 131 (37.22%) | 352 (100.00%)
System*Shard 127 (36.08%) | 202 (57.39%) 14 (3.98%) 9(2.56%) | 352 (100.00%)
Topic*System 0(0.00%) | 104 (29.55%) 47 (13.35%) | 201 (57.10%) | 352 (100.00%)
Topic*Shard 0 (0.00%) 0 (0.00%) 2(0.57%) | 350 (99.43%) | 352 (100.00%)

8.6 Overall Trends

Table 21 is based on the data reported in Tables 16, 17, 18 on the left’, 19, and 20 plus the different
types of random even and uneven shards on T10, which are the same setting as those of Table 20
where we did not report T10 results just for space reasons. Table 21 summarizes, across all the
tracks and evaluation measures, how many times each effect is not significant, small size, medium
size, and large size.

We can observe as the topic*shard interaction effect is almost always a large-size effect followed
by the topic effect, which so far was deemed the biggest effect [49, 55], followed by the shard
effect itself. To the best of our knowledge, a topic*shard interaction has not been measured before,
however, we speculate that the impact of its effect has been observed in past results. Voorhees
[56] described experiments with the robust track where topics that were thought to be ‘hard’ were
re-run on another collection. Some of those presumed hard topics were found to be not hard, just
topics that had few relevant documents in the original collection. This appears to be an instantiation
of the topic*shard effect. However, including that effect in a model of performance scores has not
been proposed before.

It is important to note that the three of the major effects described here depend only on the
experimental collection and how it is designed and they do not involve IR systems. The system
effect is a small size effect two thirds of the times while the remaining third is evenly split between
medium and large size. The scale of the former effects relative to the effects that measure the impact
of systems shows how challenging it is to measure changes in retrieval effectiveness.

The topic*system interaction effect is, roughly, half of the time a large size and half of the time a
small size. This is an important effect, as also suggested by previous work [4, 44, 59], and by far
the most prominent effect involving IR systems, even if no more one of the biggest effects. The
system”shard interaction effect is most of the times a small size effect and in a quarter of the cases
it is even not statistically significant. As previously discussed, this supports the previous findings
about the difficulty in developing systems customized for shards [30].

9 CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the development of richer and more explanatory models of IR
system performance, a research theme whose urgency has been recently prompted [1, 16]. The
contributions of this work are threefold.

First, we developed a GLMM model accounting for effects of topics, systems, and shards as well
as all their interactions. We incrementally built the model and showed that it substantially reduces
the size of the error, increasing confidence in the effects seen. That is, our model explains most of

"The right side of Table 18 contains the “fifty” systems optimised for the 199 shards which, as discussed in Section 7.2, may
violate the independence assumption of ANOVA. Even if the behaviour of the effect sizes using those systems follows the
overall trends, we have not counted them in Table 21 to avoid any possible bias.
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the variance in the accuracy of systems and creates accurate estimations of the size and significance
of effects. We validated our choices for a balanced design by comparing it to Ferro and Sanderson
[19] and exploring alternative interpolation methods.

Second, we conducted an extensive and systematic investigation over several TREC collections
and across many evaluation measures to get an understanding of how the effects vary and what
influences them. By applying our model to various types of shard used in prior work, we quantified
and better explained effects described in the past. A shard effect appears to be caused by a number
of factors: heavily skewed shards have a large shard effect due to their sizes alone; topical clustering
of shards cause large effects; domain ordering cause medium to large effects; finally, document
types cause weak effects at best. While the number of topics needed in a test collection is a richly
studied area, see e.g. Buckley and Voorhees [6] or Sakai [48], the potential sparsity of relevance
data is less examined. Our results suggest that one must be careful when designing experiments
that partition collections randomly, since the even or uneven distribution of documents across the
shards as well as the shard size have an impact on the observed results. Notably, our results explain
the observations of Voorhees et al. [59], where large differences were found between two different
sets of evenly-sized random shards, which were expected to be just representative replicates of the
whole collections.

Finally, we are the first to note the strength of topic*shard interactions compared to other factors
of variance in a principled setting. This not only suggests that one has to take care when splitting
test collections for experimental purposes but also that the way in which experimental collections
are designed, in terms of topics and documents, can greatly affect the outcomes of measurements,
as also discussed above. Indeed, even if we do not explicitly split them, our document collections
are intrinsically made up of different parts — obvious examples are sport, economics, politics in
newspapers or different subjects in a digital library catalog. Such was the size of the topic*shard
effect, we suggest that it should be a primary concern in test collection design, as the topic factor
alone is, since it can greatly affect the observed system performance, even if it is a factor completely
external to the examined systems.

Future work will concern further investigation on how the distribution of relevant documents
across topics and shards affects the different factors we have studied in this paper and how this
should be taken into consideration while designing experimental collections.

Moreover, a future application of our approach can be the study of what happens in a multilingual
setting. Indeed, evaluation campaigns such as CLEF, NTCIR, and FIRE always strived to develop
topics able to retrieve documents across collections in multiple languages and this was a major
challenge. Our methods could thus help in interpreting performance of multilingual IR systems.
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