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Several recent studies have explored the interaction effects between topics, systems, corpora, and components

when measuring retrieval effectiveness. However, all of these previous studies assume that a topic or

information need is represented by a single query. In reality, users routinely reformulate queries to satisfy an

information need. In recent years there has been renewed interest in the notion of “query variations” which

are essentially multiple user formulations for an information need. Like many retrieval models, some queries

are highly effective while others are not. This is often an artifact of the collection being searched which

might be more or less sensitive to word choice. Users rarely have perfect knowledge about the underlying

collection, and so finding queries that work is often a trial-and-error process. In this work, we explore the

fundamental problem of system interaction effects between collections, ranking models, and queries. To answer

this important question we formalize the analysis using ANalysis Of VAriance (ANOVA) models to measure

multiple components effects across collections and topics by nesting multiple query variations within each

topic. Our findings show that query formulations have a comparable effect size to the topic factor itself, which

is known to be the factor with the greatest effect size in prior ANOVA studies. Both topic and formulation

have a substantially larger effect size than any other factor, including the ranking algorithms and, surprisingly,

even query expansion. This finding reinforces the importance of further research in understanding the role of

query rewriting in IR related tasks.
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1 INTRODUCTION
The interplay between simple keyword queries and large document collections has challenged

researchers in Information Retrieval (IR) for more than half a century. Document retrieval ranking

models are now both complex and highly effective. However, poorly performing queries, sometimes

referred to as tail queries, continue to surprise and challenge industrial and academic researchers.

Some queries are highly effective, while others perform poorly, and changing the ranking models to

compensate for difficult queries can have negative effects on the performance of queries that were

performing well previously. This notion of query difficulty has received a great deal of attention
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over the years. For example, NIST ran the Robust Track in 2004 and 2005 to reexamine sets of

queries which had performed poorly across all systems evaluated in the Ad hoc track [73, 74]. It is

clear that certain queries challenge even the best performing systems.

A series of recent papers have begun exploring the relationship between query diversity and

information needs [6, 7]. In experimental settings where an information need is clearly defined, a

comprehensive analysis of query formulation is possible. While the idea that information needs

can and should be expressed differently is not a new idea, this important caveat can be lost when

treating every query independently [9]. The distinction between a topic (information need) and a

query can have a profound impact on the effectiveness of retrieval, as well as how IR researchers

typically categorize and compare system performance.

In this paper, we reexamine the idea of query difficulty from the topic perspective, where a topic

can have many different query formulations, and the retrieval system and the underlying document

collection can change. We explore this issue by addressing the following research questions:

RQ1 How does the formulation of an information need impact system performance within corpora?
RQ2 How does the formulation of an information need impact system performance across corpora?
RQ3 How does topic difficulty vary across corpora based on the formulation of an information

need?

RQ1 allows us to investigate the effect size of topics and query formulations with respect to

systems and their components in order to better understand what contributes to topic difficulty, the

magnitude of the effect, and which system components are most affected. This research question

builds on an established body of prior work which studies the interaction between topics and

systems. Here we extend these approaches to include query formulations. RQ2 extends RQ1 by

looking at what happens across corpora and allows us to also explore corpora-specific topic / query

formulations jointly with system components. Replicates are available when queries can be used on

multiple collections, allowing the interactions between query formulations and system components

to be computed using ANOVA for the first time. Without the addition of multiple corpora, this

interaction cannot be observed experimentally. Finally, RQ3 examines the topic difficulty across

multiple corpora.

In order to address RQ1 and RQ2, we develop a set of ANalysis Of VAriance (ANOVA) models

which allow us to break down the overall system performance into topic, query formulation, system,

and corpora effects; we call this a macro-level model. We also break down the system effect by

component and show how each of these interact with topics, query variations, and corpora; we

refer to this level of granularity a micro-level model. A Grid of Points (GoP), i.e. a set of systems

induced using all the combinations of targeted components – stop lists, stemmers, IR models, and

Query Expansion (QE) in our case, is used as the data input into our models.

The across corpora ANOVA models also allow us to partially answer RQ3 as they enable us to

quantify changes in topic difficulty using multiple corpora. In order to investigate this research

question more deeply, we measure variance in arbitrarily ranked topics across corpora. The key idea

is that the likelihood of observing arbitrary rank orderings of topics by effectiveness is analogous

to topic difficulty being an intrinsic property. That is, high volatility in topic ordering suggests that

topic hardness is not absolute. Rather it is an artifact of system / corpora interaction.

We conduct a thorough experimental investigation using three related Text REtrieval Conference
(TREC) collections – Robust 2004, CORE 2017, and CORE 2018 – and a GoP consisting of 224 IR

systems, each ran on all three collections, producing a total of 672 runs. A total of 2 stop lists, 4

stemmers, 7 IR models, and 4 QE techniques were used for our GoP.

Overall, we demonstrate and emphasize the fundamental difference between the notions of query

difficulty and topic difficulty. More specifically, the idea of a single query being difficult is an artifact
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of collection design, but it appears that topic difficulty can reliably be circumvented through careful

query reformulation. This is a promising step in a fundamentally important problem in IR — that

of robust system effectiveness.

The paper is organized as follows: Section 2 introduces related work; Section 4 describes our

approach to answer the above research questions; Section 5 discusses the experimental setup and

the experimental findings; finally, Section 6 draws some conclusions and outlooks for future work.

2 RELATEDWORK
Four key bodies of prior work are most relevant to our own. These include query difficulty, query

representation, query performance prediction, and system component analysis. We also provide

some background on ANOVA.

2.1 Topic difficulty
Query performance, query hardness, query quality and query ambiguity all explore aspects of topic

difficulty. The difficulty of a topic can be based on system performance [5, 22, 24, 56, 71, 81] or

human perception [36]. Topic difficulty affects systems and users. It can also play an important role

in user agreement during relevance assessment [25, 67] andQuery Performance Prediction (QPP) [21].
It is important to emphasize that most prior work uses the terminology query difficulty and topic

difficulty interchangeably, which is not problematic when a single query represents a topic. This is

the most common scenario in IR, but not true in this work and other recent work on query variants.

Topic difficulty is generally defined as the average effectiveness of a set of systems for a topic, more

specifically the “average” average precision (AAP) originally [51]. A similar approach was also used

by Carterette et al. [22] to classify topics into “easy”, “medium” and “hard” for the 2009 million

query track.

Topic difficulty has also proven to be an important factor in IR evaluation. For example, in Mizzaro

[50] the query difficulty is used to develop a "Normalized" version of the well-known Average
Precision (AP) measure, that penalizes and rewards systems whether they perform well or poorly on

easy or hard topics. Note that as in other studies in this field, Mizzaro [50] use the concept of topic

difficulty and query difficulty interchangeably. Additionally, they do not provide any generalized

concept of “topic difficulty”; it is defined based on the performance achieved by the majority of the

systems using a specific formulation of the topic, and on a specific corpus. A deeper analysis of

the relationship between query versus topic difficulty and IR evaluation can be found in [61]. The

ability to predict the difficulty of a topic provides an opportunity to adapt the system to the input

query [3, 53]. Pehcevski et al. [53] develop a topic difficulty classifier that uses textual features of the

topic (such as the length of the title formulation or the narrative representing the topic) to predict

the topic difficulty. This classifier is then used to select the parameters used by the subsequent

entity-ranking model. As in other work, topic difficulty is defined based on the AP achieved by

a set of systems on a specific corpus. There are additional studies on estimating query difficulty

based on linguistic features of the collection [37, 43].

2.2 Query Representation
It has been known for decades that short keyword queries often result in vocabulary mismatches,

as the terms used in the query must exactly match the terms found in relevant documents in the

collection being searched. The vast majority of statistical retrieval models have an implicit term

independence assumption which means that, small reformulations of a query can have a significant

impact on retrieval performance. Stemming and lemmatization can help alleviate this problem for

commonly used terms, but not eliminate it entirely.
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The classic approach to address the vocabulary mismatch challenge is query expansion [18, 44, 57,
60], which is the process of finding terms in the collection that the user did not initially select, but

that are presumably relevant to the information need; true relevance or pseudo-relevance feedback

is the most common way to operationalize query expansion in practice [79]. This is analogous to

typical user behavior where a user reformulates a query for a search engine by adding additional

terms to the original query when the retrieved results are not satisfactory.

There are several early studies on how users independently express an information need as a

query. These “query variations” were explored in the context of TREC retrieval experiments and

were shown to be highly effective when combined through fusion [9, 10, 69]. This line of work

has seen a revival of interest in recent years as more powerful retrieval models and hardware

provide new opportunities to leverage multiple sources of information simultaneously [7, 11–14].

For example, fusing the result lists retrieved in response to query variations was shown to be of

much merit [7, 11]. Using multiple query variations can also improve query expansion as recently

demonstrated by Lu et al. [46]. Interestingly, a recent study shows that, on average, query variations

automatically selected from a query log of a commercial search engine can be as effective as human

created variations [45].

2.3 Query Performance Prediction
The query performance prediction (QPP) task is defined as “estimating retrieval effectiveness

without relevance judgments” [21]. In practice, all previous work on QPP focused on the task of

estimating topic difficulty, with respect to a given fixed retrieval method, where each topic was

represented using a single query [58, 83]. However, recent work shows that the relative prediction

quality of existing predictors can significantly change when varying the queries used to represent

the information needs [28, 83]. Indeed, topic difficulty and query difficulty are in essence two

different concepts which should be carefully distinguished given that a topic (information need)

can be represented using various queries, and retrieval effectiveness is clearly sensitive to the query

terms selected by the user. We re-visit this point below.

2.4 System Component Analysis
A body of related work has explored component analysis to measure the effects of complex systems

on retrieval effectiveness, including factors such as topic composition, collection, and system

components.

Tague-Sutcliffe and Blustein [72] adopted a two-way ANOVA model to decompose the overall

performance into a topic and system effect; they also hypothesized that the topic*system interaction

should be an important factor, but were unable to estimate the effect size as they did not have a

sufficient number of replicates available in their experiments. Banks et al. [8] provided an overview

of methods available to analyze the performance of IR systems, and reexamined the model of

Tague-Sutcliffe and Blustein in order to compare and contrast each of the methods. Banks et al.

also performed an indirect estimation of the size of the topic*system interaction effect, providing

further evidence that it has a large effect size.

Bodoff and Li [15] used multiple relevance judgments to induce the replicates needed to estimate

the topic*system interaction effect. They relied on Generalizability Theory [16, 68], a generalization

of ANOVA, to estimate the topic*system, topic*assessor, and assessor*system interaction with

the goal of improving model accuracy when estimating differences between systems. Similarly,

Robertson and Kanoulas [59] used simulated data to show that an ANOVA model including the

topic*system interaction is better equipped to detect significant differences between systems, and

reaffirm that topic*system interactions consistently have large effect sizes.
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Bailey et al. [6] presented an ANOVA model comprised of topic, system, and query variation

factors and found that query variations also have a large effect size and can be even larger than

topic*system effect sizes. However, query variations and topics were treated as separate factors,

which may be at odds with independence assumptions made by the standard ANOVA model.

Ferro and Silvello [34, 35] decomposed system factors into component effects and their respective

interactions using a Grid of Points (GoP) [30], which is the set of all system configurations possible

when permuting every system component combination being targeted. Their work found that stop

lists have a medium-size effect, stemmers have a small-size effect and IR models have a small to

medium-size effect. Among all of the possible interactions, only the stop list*IR model interaction

was found to be significant, with a medium effect size. Ferro and Silvello used Terrier
1
to generate

the GoP, and more recently Ferro [29] used Lucene
2
to generate a GoP using (almost) identical

components as Ferro and Silvello in order to perform similar experiments. Ferro found that the

stemmer has a large effect size while the stop list has a small effect size, and only the stemmer*IR

model interaction was found to be significant, with a small effect size. This suggests that the subtle

implementation differences between the two systems may influence findings in empirical studies

that measure system component effects.

Sanderson et al. [65] and Jones et al. [39] studied how sub-corpora or shards of a given collection

impact IR effectiveness and how collection size and the choice of documents influenced the way that

evaluation exercises using a single test collection might influence comparisons between retrieval

systems. Both of these studies emphasized the impact of sub-corpora/shards on system performance

but they did not rely on a comprehensive ANOVA model that integrated all of the possible factors

together. Ferro and Sanderson [32] developed such an ANOVA model and found that the shard

factor has a medium-size effect but the shard*system interaction was not significant.

In similar work, Voorhees et al. [77] used sharding to produce the replicates necessary for

estimating topic*system interaction effect sizes. Ferro et al. [31] developed the first exhaustive

model of topics, systems, shards, as well as all their interactions, and ran extensive experiments using

several sharding schemes, including a selection of randomized and deterministic methods. They

found that the topic factor is a large-size effect, the system factor is a small to medium-size effect,

the shard factor is a medium to large-size effect (roughly half of the topic factor), the topic*system

interaction is a large-size effect (roughly one-third of the topic factor), the system*shard interaction

is a small-size effect and the topic*shard interaction is a large-size effect – and may be as large

as the topic effect in certain scenarios. Ferro and Sanderson [33] went on to provide a formal

demonstration of why topic*shard interactions are crucial when determining which systems are

significantly different from others. Faggioli and Ferro [27] compare and analyze how various

ANOVA approaches behave under different conditions. Finally, Zampieri et al. [82] used ANOVA

to model topics, systems and collections (and not sub-corpora or shards as in previous work) and

found results consistent with those mentioned above.

3 BACKGROUND ON ANOVA
A General Linear Mixed Model (GLMM) [47, 63] models variations of a dependent variable (“Data”)

w.r.t. a controlled variation of independent variables (“Model”), in addition to a residual uncontrolled

variation (“Error”): 𝐷𝑎𝑡𝑎 = 𝑀𝑜𝑑𝑒𝑙 + 𝐸𝑟𝑟𝑜𝑟 . The most basic example of GLMM is a simple linear

regression, where 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 . The dependent variable 𝑌𝑖 , representing the score of the

𝑖-th subject, is explained (predicted) in terms of an intercept 𝛽0 and an independent variable 𝑋𝑖

1
http://terrier.org/

2
https://lucene.apache.org/
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(predictor) times the regression coefficient 𝛽1, the slope of the regression line, plus a residual error

𝜀𝑖 , not explained by the model, which follows a zero-mean Gaussian distribution.

ANalysis Of VAriance (ANOVA)when viewed as aGeneral LinearMixedModel (GLMM) attempts to

explain data (the dependent variable scores) in terms of the experimental conditions (the model) and

an error component. Typically, ANOVA is used to determine under which experimental condition

dependent variable score means differ and what proportion of the variance observed for a dependent

variable can be attributed to differences between specific experimental groups or conditions, as

defined by the independent variable(s) being modeled. An ANOVA can be regarded as a type of

regression analysis using only categorical predictors.

The regression model described above is expressed in ANOVA terms as 𝑌𝑖 𝑗 = 𝜇 + 𝛼 𝑗 + 𝜀𝑖 𝑗 , where
𝑌𝑖 𝑗 is the 𝑖-th dependent variable subject score in the 𝑗-th experimental condition, the parameter 𝜇

is the grand mean of the experimental condition population means underlying all of the dependent

variable scores of the subjects, the parameter 𝛼 𝑗 is the effect of the 𝑗-th experimental condition and

the random variable 𝜀𝑖 𝑗 is the error, which reflects any variance caused by an undefined source. The

above regression model corresponds to the ANOVA version once you add as many 𝑋𝑖 𝑗 predictors

and as many levels as there are in the experimental condition 𝛼 𝑗 .

For a given model, the ANOVA table summarizes the outcomes of the ANOVA test indicating,

for each factor, the Sum of Squares (SS), the Degrees of Freedom (DF), the Mean Squares (MS), the F
statistics, and the 𝑝-value of that factor, which allows us to determine the significance of that factor.

For a detailed description on how to estimate GLMM model parameters and assess their statistical

significance using ANOVA, refer to Maxwell and Delaney [47], Rutherford [63].

Independent variables can be fixed effects – i.e., they have precisely defined levels, and inferences

about its effect apply only to those levels or random effects – i.e., they describe a random and

independently drawn set of levels that represent variation for a clearly defined wider population.

The latter case is a more sophisticated model which, in the estimation of the variance attributed

to the different factors, also accounts for the additional randomness due to sampling of effect

levels. The experimental design determines how to compute the model and how to estimate the

parameters. In particular, it is possible to have an independent measures design where different

subjects participate under different experimental conditions (factors) or a repeated measures design,
where each subject participates in all of the experimental conditions (factors). A final distinction is

between crossed/factorial designs, where every level of one factor is measured in combination with

every level of the other factors, and nested designs, where levels of a factor are grouped within

each level of another nesting factor.

3.1 Effect Size
Since the F statistic tends to increase and the 𝑝-value tends to decrease as the sample size increases,

the effect size of a factor is used, and quantifies the magnitude of the variance observed in the model

using an unbiased estimator [52, 64]:

𝜔̂2

⟨𝑓 𝑎𝑐𝑡 ⟩ =
df 𝑓 𝑎𝑐𝑡 (F𝑓 𝑎𝑐𝑡 − 1)

df 𝑓 𝑎𝑐𝑡 (F𝑓 𝑎𝑐𝑡 − 1) + 𝑁
(1)

where F𝑓 𝑎𝑐𝑡 is the F-statistic and df 𝑓 𝑎𝑐𝑡 are the degrees of freedom for the factor while 𝑁 is the

total number of samples. In this way, we are able to assess not only if a factor is significant but its

contribution as well. The common rule of thumb [63] when classifying 𝜔̂2

⟨𝑓 𝑎𝑐𝑡 ⟩ effect size is: 0.14

and above is a large-size effect, 0.06–0.14 is a medium-size effect, and 0.01–0.06 is a small-size effect.
Note, 𝜔̂2

⟨𝑓 𝑎𝑐𝑡 ⟩ can be negative; in such cases it has no contribution.
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3.2 Assumptions
ANOVA is based on the following assumptions [42]:

• Normality of the error terms;

• Equal variance (homoskedasticity) of the error terms;

• Independence of the error terms, i.e. they are a random sample.

ANOVA is known to be quite robust to violations of the first two assumptions. Ito [38, p. 205]

observes that the F-test is remarkably insensitive to non-normality. In commonly occurring cases

where the group sample sizes are equal, it is insensitive to the heterogeneity of variance across

groups. Similarly, Mendenhall and Sincich [49] note that, for relatively large samples (e.g. 20 or

more observations per factor) ANOVA is robust to violations of the normality assumption and

that it is also robust to differences in variances when using a balanced design. On the other hand,

violation of the third assumption can severely impact the F-test and any subsequent conclusions.

This issue is discussed in detail, for example, by Scariano and Davenport [66].

IR performance scores are known to violate the first two ANOVA assumptions [23, 72]. Tague-

Sutcliffe and Blustein [72] noted that performance scores did not satisfy the homoskedasticity

assumption and applied a transformation, which is typically used in the case of ratio data, consisting

of taking the arcsine of the square root of the original scores. However, they only observed small

differences in the analysis conducted on the transformed data and ultimately decided to continue

using the untransformed scores, which are easier to interpret. Carterette [23] observed that both

of the first two assumptions are commonly violated and that performance scores are typically

bounded between [0,1]. However, Carterette concluded that ANOVA is nevertheless resilient to the

kind of violations of normality encountered in IR performance scores and that also the violations

of homoskedasticity have a limited impact, which supports the previous findings of Tague-Sutcliffe

and Blustein [72].

In our case, our model uses topics, queries, component-wise system configurations, and multiple

corpora which can be easily combined to induce the necessary sample size required to ensure that

the model is robust w.r.t. violations of the normality assumption. We have also adopted a balanced

design where group sample sizes are equal (discussed further in the next section), limiting the

impact of any violations of homoskedasticity. Finally, when considering any possible violations of

the independence assumption in topics, query variations can be regarded as independent samples

from a universe of possible queries representing an information need as the queries were gathered

independently using several hundred test subjects. We discuss the relationship between queries

and topics and show how it can be more reliably modeled in the next section.

4 APPROACH
4.1 ANOVA Analysis
In this work we investigate factor effects – namely topics, query variations, systems and their

components, and corpora – as well as the respective interactions between each. We adopt a repeated
cross-measure design since each subject – topics in our case – is tested for every experimental

condition combination – systems, their components, and corpora. In addition, we also treat query

formulations as a nested factor within topics, since each query formulation corresponds only to a

specific information need and are not shared across topics.

As many different factors are under consideration, we consider two different ANOVA models

which are the single-corpus model and the across-corpora model, where the former is applied on

a single corpus of documents and used to address RQ1, while the latter is applied to multiple

corpora in order to address RQ2 and RQ3. For each of these, we distinguish between a macro-level
ANOVA model, which groups related factors, i.e. topics and query variations, system component
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Topic
(Information Need)

System
(Macro-View)

Components  — Stemmers, 
Stop Lists, Ranking Model, 

Query Expansion
(Micro-View)

CorporaQuery Variations

An information need can be represented using multiple query 
formulations.  This can occur when a single user rewrites a 

query in a  search session, or by different  users  independently 
searching for the same thing. 

Fig. 1. Factor groupings used by the ANOVA models proposed in this work. The two high-level groupings
are macro-level and micro-level. The key distinction between the two groupings is that for the micro-level
analysis, each system is decomposed into all possible combinations of component factors such as a stemmer,
stop list, ranker, and query expansion model.

Topic
Query Formulation(Topic)

Sy
st

em

νj(i)

αk

νj(i)

τi

νj(i)

yijk

(a) Single-corpus model (MD1ma).

Topic
Query Formulation(Topic)

Sy
st

em

νj(i)

αk

νj(i)

τi

νj(i)

αk

αk

βp

Corpus

yijkp

(b) Across-corpora model (MD2𝑚𝑎).

Fig. 2. Macro-level ANOVA model design.

configurations, and corpora, and a micro-level ANOVA model, which is a full break-down of

all system factors into their respective contributions – stop list, stemmer, IR model, and query

expansion. Figure 1 shows the relationship between the macro-level and micro-level models used

in this work.
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<num> Number: 656
<title> lead poisoning children
<desc>
How are young children being protected against lead poisoning from
paint and water pipes?
<narr>
Documents describing the extent of the problem, including suits
against manufacturers and product recalls, are relevant. Descriptions
of future plans for lead poisoning abatement projects are also
relevant. Worker problems with lead are not relevant. Other poison
hazards for children are not relevant.

Fig. 3. Topic 656 as defined in the TREC 2004 Robust test collection.

RQ1: Single-corpus ANOVA
The macro-level ANOVA model shown in Figure 2a is used to investigate RQ1 for a single corpus:

𝑦ijk = 𝜇 + 𝜏i + 𝜈 j(i) + 𝛼k + (𝜏𝛼)ik + 𝜀ijk (MD1ma)

where: 𝑦𝑖 𝑗𝑘 is the score of the 𝑖-th topic and 𝑗-th query formulation for the 𝑘-th system; 𝜇 is the

grand mean; 𝜏i is the effect of the 𝑖-th topic; 𝜈 j(i) is the effect of the 𝑗 (𝑖)-th query formulation;

𝛼k is the effect of the 𝑘-th system; (𝜏𝛼)ik is the interaction between topics and systems; finally,

𝜀ijk is the error margin for the model in predicting 𝑦ijk . Note that the query formulation factor

𝜈 j(i) is nested within the 𝑖-th topic since query formulations are specific to each topic. A nested

factor conceptually means that each query formulation can only exist as a “subcomponent” of a

topic, which is the formal description of the information that a searcher intends to retrieve. For

example, Figure 3 shows the full description of topic 656 from the TREC 2004 Robust test collection

as described by Voorhees [73]. Note that NIST by default often provides a query for the topic (the

title) and this is included as one of the many possible query formulations which are nested as a

factor of this topic. Since every query formulation for this topic is not independent, it cannot be
treated as a separate factor as ANOVA factors by default are always assumed to be independent.

So for example, the j-th formulation “child protection laws for lead poisoning” and “lead poisoning

children” are both a possible query formulation for Topic 656, the latter being title formulation

provided by NIST. Considering them as nested factors allows to correctly model the variance since

each formulation contributes only to the variance of a single topic. Nesting does not compare the

j-th formulation of a specific topic against the j-th formulation of another one, which is analogous

to the effect captured between two topics. This has the added benefit of reducing computational

costs while still modeling the topic effect itself.

Model (MD1ma) extends the “classical” two-way ANOVA models of Banks et al. [8], Tague-

Sutcliffe and Blustein [72] to study topic and system factors, as our initial goal is to add a query

variation factor. Our adaptation also extends the model of Bailey et al. [6] so that we are able

observe and measure the topic*system interactions that are produced when using query variants as

replicates for a topic, which is possible when query formulation are nested factors of topics.

As discussed previously, to decompose the component-wise contribution of the system factor 𝛼k ,

we must apply a GoP. The following micro-level ANOVA model addresses RQ1 by breaking down

the component factors for a single corpus:

𝑦ijqrst = 𝜇 + 𝜏i + 𝜈 j(i) + 𝛾q + 𝛿r + 𝜁s + 𝜅t + (𝜏𝛾)iq + (𝜏𝛿)ir + (𝜏𝜁 )is + (𝜏𝜅)it + 𝜀ijqrst (MD1mi)
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where, with respect to model (MD1ma), the system factor 𝛼𝑘 is replaced by its component-wise

decomposition: 𝛾q is the effect of the 𝑞-th stop list; 𝛿r is the effect of the 𝑟 -th stemmer; 𝜁s is the

effect of the 𝑠-th IR model; 𝜅t is the effect of the 𝑡-th query expansion; (𝜏𝛾)iq is the interaction
between topics and stop lists; (𝜏𝛿)ir is the interaction between topics and stemmers; (𝜏𝜁 )is is
the interaction between topics and IR models; (𝜏𝜅)it is the interaction between topics and query

expansion.

Model (MD1mi) extends the model proposed by Ferro and Silvello [34, 35] to decompose the

component effects. The resulting model has a nested query formulation factor as well as capturing

traditional interactions between topics and components. The model also supports query expansion

models as a factor, which was not explored previously by Ferro and Silvello.

RQ2 and RQ3: Across-corpora ANOVA
Amacro-level ANOVAmodel as shown in Figure 2b, is used to investigate RQ2 and RQ3 on multiple

corpora:

𝑦ijkp = 𝜇 +𝜏i +𝜈 j(i) +𝛼k + 𝛽p + (𝜏𝛼)ik + (𝜏𝛽)ip + (𝛼𝜈)kj(i) + (𝛼𝛽)kp + (𝛽𝜈)pj(i) + (𝜏𝛼𝛽p)ikp +𝜀ijkp (MD2𝑚𝑎)

where, with respect to model (MD1ma), it adds: 𝛽p is the effect of the 𝑝-th corpus; (𝜏𝛽)ip is the
interaction between topics and corpora; (𝛼𝜈)kj(i) is the interaction between systems and query

formulations; (𝛼𝛽)kp is the interaction between systems and corpora and; (𝛽𝜈)pj(i) is the interaction
between corpora and query formulations; (𝜏𝛼𝛽𝑝 )ikp is the interaction between topics, systems, and

corpora.

Model (MD2𝑚𝑎) is a combination of several models that have been used recently [31–33, 77, 82],

and also extends the model by Zampieri et al. [82] in order to cover all of the new interactions that

are created when nesting query formulations. The models of Ferro et al. [31], Ferro and Sanderson

[32, 33], Voorhees et al. [77] were also extended so that the query formulations can be included in

addition to all of the resulting cross-factor interactions.

A micro-level ANOVA model is used to address RQ2 and RQ3 by breaking down the system

factor component-wise:

𝑦ijpqrst =𝜇 + 𝜏i + 𝜈 j(i) + 𝛽p + 𝛾q + 𝛿r + 𝜁s + 𝜅t + (𝜏𝛽)ip + (𝛽𝜈)pj(i) + (𝜏𝛾)iq + (𝜏𝛿)ir+
(𝜏𝜁 )is + (𝜏𝜅)it + (𝛽𝛾)pq + (𝛽𝛿)pr + (𝛽𝜁 )ps + (𝛽𝜅)pt + (𝛾𝜈)qj(i) + (𝛿𝜈)rj(i)+
(𝜁𝜈)sj(i) + (𝜅𝜈)tj(i) + (𝜏𝛽𝛾)ipq + (𝜏𝛽𝛿)ipr + (𝜏𝛽𝜁 )ips + (𝜏𝛽𝜅)ipt + (𝛽𝛾𝜈)pqj(i)+
(𝛽𝛿𝜈)prj(i) + (𝛽𝜁𝜈)psj(i) + (𝛽𝜅𝜈)ptj(i) + 𝜀ijpqrst

(MD2𝑚𝑖 )

where, with respect to model (MD2𝑚𝑎) and (MD1mi): (𝛽𝛾)pq is the interaction between corpora

and stop lists; (𝛽𝛿)pr is the interaction between corpora and stemmers; (𝛽𝜁 )ps is the interaction
between corpora and IR models; (𝛽𝜅)pt is the interaction between corpora and query expansion;

(𝛾𝜈)qj(i) is the interaction between stop lists and query formulations; (𝛿𝜈)rj(i) is the interaction
between stemmers and query formulations; (𝜁𝜈)sj(i) is the interaction between IR models and query

formulations; (𝜅𝜈)tj(i) is the interaction between query expansion and query formulations; (𝜏𝛽𝛾)ipq
is the interaction between topics, corpora, and stop lists; (𝜏𝛽𝛿)ipr is the interaction between topics,

corpora, and stemmers; (𝜏𝛽𝜁 )ips is the interaction between topics, corpora, and IR models; (𝜏𝛽𝜅)ipt
is the interaction between topics, corpora, and query expansion; (𝛽𝛾𝜈)pqj(i) is the interaction

between corpora, stop lists, and query formulations; (𝛽𝛿𝜈)prj(i) is the interaction between corpora,

stemmers, and query formulations; (𝛽𝜁𝜈)psj(i) is the interaction between corpora, IR models, and

query formulations; (𝛽𝜅𝜈)ptj(i) is the interaction between corpora, query expansion.
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Model (MD2𝑚𝑖 ) extends the models proposed by Ferro and Silvello [34, 35], Zampieri et al. [82]

to account for topics, query formulations and corpora interactions between all of the system

components.

4.2 RQ3: Topic Difficulty via the Lenses of Topic Ranking
In order to gain a deeper insight into the notion of topic difficulty and further investigate RQ3, we

also consider the following question: to what extent can we find a system 𝛼𝑘 whose performance

on a corpus 𝛽𝑝 results in an arbitrarily chosen ranking of topics 𝜏𝑖? If we (often) succeed in finding

a system that induces the desired ranking of topics, it means that the topic itself cannot be thought

of as always easy or difficult, since it can appear at any position with respect to other topics within

the ranking.

That is, the key insight here is that if “topic difficulty” in a system effectiveness sense is fixed,

the estimator will converge towards a stable topic-wise ordering for all system configurations.

However, if the estimator diverges from a fixed ordering as more samples are examined, topic

difficulty is not idempotent. The more volatile the orderings, the more likely a (system, corpus)

pair can be found, and topics can arbitrarily be hard or easy.

More formally, let 𝐶 be the number of corpora, 𝑇 the number of topics, 𝑉 the number of query

formulations per topic, and 𝑆 be the number of systems. A random permutation [𝜏1, 𝜏2, . . . , 𝜏𝑇 ]
of topics is then selected and set as the expected rank ordering of the topics in the set. Then, all

possible permutations within the test data are inspected to see if a match for the target rank

ordering of topics exists. More specifically, for each (system, corpus) pair and all query formulations

𝜈 𝑗 (𝑖) available for each topic, the query formulations [𝜈 𝑗 (1) , 𝜈 𝑗 ′ (2) , . . . , 𝜈 𝑗 ′′ (𝑇 ) ] are selected when the

performance of system 𝛼𝑘 on corpus 𝛽𝑝 induces the requested ranking of topics.

As shown in Figure 4a on the left, for each system 𝛼𝑘 on a corpus 𝛽𝑝 , there are 𝑉
𝑇
possible

combinations of query reformulations and zero or more of them may induce the expected topic

ordering. Therefore, in the worst case, a total of 𝐶 · 𝑆 ·𝑉𝑇 topic-wise rankings must be inspected

in order to determine if exact or partial match solution exists. This process is then repeated for 𝑃

random permutations, which is not computationally tractable in practice for even moderately sized

test sets.

Therefore, we propose a greedy algorithm with quartic complexity O(𝐶 · 𝑆 ·𝑇 ·𝑉 ) in the worst

case. The pseudo-code for our greedy algorithm is shown in Figure 5. When at least one ranking of

topics exists which exactly matches the expected ordering, the algorithm is guaranteed to find a

solution. When no such ranking exists, the algorithm finds a sub-optimal ranking that is “close

enough” to the one requested, but a better (although not exactly matching) ranking may still exist.

So in this sense, our algorithm provides a lower bound for the case of topic rankings which do

not exactly match the requested one, and is suitable for our purposes since exact matches provide

empirical evidence for our hypothesis that not true topic ordering can actually exist, and therefore

solutions further away from exact are conservative estimates.

Figures 4b-4d demonstrate the algorithm in action. Assume that the random permutation calls

for the following topic ranking: 𝜏1 ≥ 𝜏2 ≥ 𝜏3 ≥ 𝜏4 ≥ 𝜏5. So, a (system, corpus) pair is fixed and, in

Figure 4, each “bar” corresponds to a topic, where the bar represents the range of performance of

the query formulations for that topic, and each gray dot on the bar is the true performance – AP in

our case – of system 𝛼𝑘 on corpus 𝛽𝑝 for formulation 𝜈 𝑗 (𝑖) .
Next, the algorithm attempts to find the requested ordering by iterating over topics from this

targeted ordering. The basic idea is that the maximum of a topic must be greater than or equal to

the minimum of the next topic. This holds in the easiest cases, as the one shown in Figure 4b, and

can even lead to topic orders which never change in certain corner cases. For example, a poor query
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(c) Another exact match ranking.
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νj(4)
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(d) A partial match ranking: all the formulations for
topic 𝜏3 have higher AP than for topic 𝜏2.

Fig. 4. Ranking topics by their performance.

formulation for an “easy” topic might still perform worse than the best known query formulation

for a “difficult” topic, suggesting that it is not hard to show that a topic is either easy or difficult

depending on the goal. However, as we will show in the experimental section, the patterns observed

in the collections available tend to be much more complex.

Moreover, the simple max-min strategy described above really just ensures a relative ordering

among topics, but not an overall ordering starting from 𝜏1. Indeed, it is also possible for 𝜏1 ≥ 𝜏𝑖 ,
𝜏𝑖 ≥ 𝜏𝑖+1 and 𝜏𝑖+1 ≥ 𝜏1 to occur. Therefore, in each iteration, the maximum allowed value (sup in

Figure 4) is updated by choosing sup as the maximum of the performance of the formulations of

the next topic which are less than or equal to the current sup. This choice accommodates more

complex cases, such as the one shown in Figure 4c, which still induces the desired ordering.

Finally, the requested ranking may be impossible, as shown by the red 𝜏3 in Figure 4d. In this

case, we must choose as new sup which is the minimum performance of the formulations of the

non-compliant topic, and the algorithm attempts the ranking selection process again.
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Fig. 5. Pseudocode for the greedy search algorithm.

Data: T : list of topics; B: set of corpora; A: set of systems; P: sample of all possible

permutations of topics;V = {V(𝜏i)∀𝜏i ∈ T } whereV(𝜏) is a set of query
reformulations for topic 𝜏 ; AP tensor containing AP scores for each triple (corpus,

system, query);

globalCorr ← 0;

for 𝜋 ∈ P do
bestCorr ← −1;
for 𝛽 ∈ B, 𝛼 ∈ A do

𝜏 ← 𝜋 [1];
sup← max (AP [𝛽, 𝛼,V(𝜏) ]);
/* The list sortedAP contains the topic AP score mapping of the
query reformulations that induce the ordering with the highest
correlation 𝜋. */
sortedAP ← [sup];
for 𝜏 ∈ 𝜋 [2 : 𝑒𝑛𝑑] do

if ∃𝜈𝑖 (𝜏) s.t. AP [𝛽, 𝛼, 𝜈𝑖 (𝜏) ] ≤ sup then
sup← max (AP [𝛽, 𝛼, {𝜈𝑖 (𝜏)∀𝜈𝑖 (𝜏) ∈ V(𝜏) s.t. 𝜈𝑖 (𝜏) ≤ sup}])

else
sup← min (AP [𝛽, 𝛼,V(𝜏) ]);

sup ⊕ sortedAP ;

bestCorr ← max (bestCorr,Kendall (𝜋, sortedAP));
globalCorr ⊕ bestCorr

|P |

Sincewe can have both exactmatches and partial matches, we compute Kendall’s tau correlation [40]

between the ranking of topics requested by the given permutation and the one we have found

for a given (system, corpus) pair. Kendall’s tau is 1 when we find an exact match and less than 1

otherwise. Finally, for each permutation, we record the maximum Kendall’s tau across all of the

(system, corpus) pairs to indicate the extent to which we have been able to find the request ranking

of topics.

Note that we have adopted the use of Kendall’s tau correlation coefficient, which weights the

same a swap at any rank position, and not a more top-heavy correlation coefficient, like AP

correlation [80], because our goal is to study the extent to which topics can be “arbitrarily” easy or

difficult, and thus we are equally interested in swaps at any position in the ranking.

5 EXPERIMENTS
5.1 Experimental Setup

Data and Methods. We used the following collections: TREC Robust 2004 Ad Hoc [73], TREC

Common CORE 2017 [1], and TREC Common CORE 2018 [2] for our experiments. The Robust Ad

Hoc track used Disk 4 and 5 of the TIPSTER corpus minus the Congressional Record sub-collection

and contains approximately 528K documents; the TREC 2017 Common CORE track used the New
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Table 1. Summary statistics of the collections used. The column ‘Shared’ contains statistics on topics which
overlap in all three collections.

CORE 2017 CORE 2018 Robust 2004 Shared

# of documents 1, 855.658 595, 037 528, 155 -

# of topics 50 50 250 25

total # of formulations per corpus 1286 625 3402 625

avg # of formulations per topic 25.72 25.0 13.61 25.0

min # of formulations per topic 20 20 9 20

max # of formulations per topic 53 40 53 40

avg # of words per formulation 4.8 4.7 5.3 4.7

min # of words per formulation 1 1 1 1

max # of words per formulation. 15 11 17 11

York Times Annotated Corpus which contains over 1.8 million articles; finally, the TREC Common

CORE 2018 track used the Washington Post corpus, roughly containing 600K news articles.

A large seed set of human curated query formulations originally developed using the TREC

Robust 2004 Ad Hoc search collection were used in our experiments [11]
3
. These were further

enriched with query reformulations extracted from a Bing search log and mapped to the original

249 topic descriptions [45].

In 2017 and 2018, TREC ran the CORE track which reused many of the original topics from the

2004 Robust exercise. There are 50 overlapping topics in CORE 2017 and 25 overlapping topics

in 2018. To provide comparable results across multiple corpora, we use only the subset of topics

which overlap in all three of the corpora. Thus, in the following experiments, we considered 625

query formulations for the 25 overlapping topics and not all of the 3,402 variations available for the

249 topics in Robust 2004. Note that one of the original Robust topics has no relevant documents in

QREL judgments created by NIST, and is therefore omitted from consideration. All of the collections

use graded relevance judgments, with the 3 grades being: not relevant, relevant, and highly relevant;

we mapped to binary relevance judgments by using a lenient approach, i.e. everything above not

relevant is considered as relevant since Average Precision (AP) is used for all evaluation comparisons

in this work [19]. Table 1 provides additional statistical information on the collections used.

As discussed in Section 2, previous work has simulated various collection effects by splitting a

collection into shards or sub-collections [31, 32, 82]. The TREC CORE tasks were ran in 2017/2018

and reused topics originally created for the TREC Ad Hoc tasks between 2002 and 2005. Thus, they

allow us to compare system performance across multiple corpora using the same set of topics and

identical system configurations. This allows us to compute the effect of the collection, without

simulating it and ensures that the system component factors can be the same for every collection

being used. The underlying collection was composed primarily of news articles in all three TREC

campaigns, but changed from the original Newswire collection in 2004 to the New York Times

collection in 2017 and then to the Washington Post collection in 2018.

For all experiments, we used a modified version of the Terrier Search engine (version 5.1) to

create our GoP. The modifications were required in order to maximize the diversity of components

(stemmers and ranking models) available for our experimental setup. Based on a few preliminary

runs for multiple system configurations on each collection, we selected 9 retrieval ranking models

and 3 query expansion models (plus the no query expansion), which are described in Table 2.

3
http://culpepper.io/publications/robust-uqv.txt.gz
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Table 2. Terrier Retrieval and Query Expansion Models.

Model Description

BM25 Okapi BM25.

DPH The parameter-free hyper-geometric divergence from randomness (DFR)

model using Popper’s normalization.

Hiemstra_LM Hiemstra’s language model.

In_expB2 Inverse expected document frequency model for randomness, the ratio of

two Bernoulli’s processes for first normalisation, and Normalisation 2 for

term frequency normalisation.

Js_KLs A weighted combination of Jeffreys divergence and Kullback Leibler

divergence.

TF_IDF The TF×IDF weighting function, using Robertson’s TF and the IDF of Sparck
Jones.

PL2 Poisson estimation for randomness, Laplace succession for first

normalisation, and Normalisation 2 for term frequency normalisation .

TF_IDF_DRF Same as above with a pBiL DFR term dependency model [54] enabled and a

window size of 5.

Hiemstra_LM_DRF Same as above with a pBiL DFR term dependency model [54] enabled and a

window size of 5.

BA The approximation of the binomial distribution using the Kullback-Leibler

divergence to induce the weighted query terms during expansion.

Bo1 The Bose-Einstein 1 DFR expansion technique.

KL Kullback-Leibler divergence based query expansion.

Moreover, runs were built using 4 different stemmers: Krovetz, Porter, S-Stemmer, and Lovins.

Finally, we doubled the number of available runs by either keeping or removing the stop words.

Stemmers, Retrieval Models, and Query Expansion Models have been chosen to maximize the

variety in our system configurations, in terms of overall effectiveness and the documents retrieved.

The total number of available configurations was 288, which have been applied on each corpus,

giving us a total of 864 runs. To aid reproducibility in the future, data and runs are publicly

available.
4

5.2 Validation of the Experimental Setup
We perform a preliminary inspection of our dataset in order to verify that our GoP has a performance

distribution comparable to typical runs submitted to TREC and that query formulations are not

skewed or biased in any specific way.

5.2.1 Validation of the Grid of Points. We now investigate how close the performance distribution

of the original systems submitted to that TREC track is to the performance distribution of the GoP

systems on the same track. To quantify this “closeness” we use the Kullback-Leibler Divergence
(KLD) [41] between the two performance distributions. In order to compute the KLD, we need the

Probability Density Function (PDF) of the performance distributions, which we estimate by using a

Kernel Density Estimation (KDE) [78] approach.

4
https://github.com/jsc/anova-query_formulations

ACM Transactions on Information Systems, Vol. XX, No. YY, Article ZZZ. Publication date: February 2021.

https://github.com/jsc/anova-query_formulations


ZZZ:16 J. S. Culpepper, G. Faggioli, N. Ferro, and O. Kurland

0 0.2 0.4 0.6 0.8 1

AP

0

1

2

3

4

5

6

P
ro

b
a
b
ili

ty
 D

e
n
si

ty
 F

u
n
ct

io
n

KLD = 0.0208

GoP Runs
Original TREC Runs

(a) Robust 2004, using only the title query formulation
for GoP runs.
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(b) Robust 2004, using all the query formulations for
GoP runs.
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(c) CORE 2017, using only the title query formulation
for GoP runs.
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(d) CORE 2017, using all the query formulations for
GoP runs.
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(e) CORE 2018, using only the title query formulation
for GoP runs.
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Fig. 6. Comparison between AP score distribution of GoP runs and the original TREC runs. A small divergence
between the original scores distributions and the scores achieved using the GoP can be observed in all six
plots.
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Given a vector 𝑋 of𝑚 elements, the KDE estimation of the PDF is given by

ˆ𝑓𝑋 (𝑥) =
1

𝑚𝑏

𝑚∑
𝑖=1

𝐾

(
𝑥 − 𝑋𝑖
𝑏

)
(2)

where 𝑋𝑖 is the 𝑖-th component of the array, 𝑏 is the bandwidth or window width and is greater

than 0; 𝐾 (·) is the kernel satisfying
∫ +∞
−∞ 𝐾 (𝑥)𝑑𝑥 = 1. In this work, we use a Gaussian kernel with

bandwidth 𝑏 = 0.015.

Given two𝑚 element vectors 𝑋 and 𝑌 , the KLD between the PDFs is given by

𝐷𝐾𝐿
(
𝑋
����𝑌 )

=
∑
𝑥

ln

(
ˆ𝑓𝑋 (𝑥)
ˆ𝑓𝑌 (𝑥)

)
ˆ𝑓𝑋 (𝑥) (3)

Note that 𝐷𝐾𝐿 is not symmetric and so, in general, 𝐷𝐾𝐿
(
𝑋
����𝑌 )

≠ 𝐷𝐾𝐿
(
𝑌
����𝑋 )

.

As initially proposed by Burnham and Anderson [20], 𝐷𝐾𝐿 ∈ [0, +∞) denotes the information

lost when 𝑌 is used to approximate 𝑋 ; in our context, it denotes the information lost when the GoP

systems are used to “approximate” an original set of systems submitted to a TREC track. Therefore,

0 means that there is no loss of information and, in our context, that the original systems and the

GoP ones are considered the same; +∞ means that there is a full loss of information and, in our

context, that the original systems and the GoP ones have no similarity.

Note that the TREC runs may have used the title, the description, and/or the narrative of a topic,

as well as manual formulations for that topic, but generally the title is the most commonly used

field. Therefore, we have chosen to compare TREC runs to our GoP runs using only the title of a

topic, as shown in Figure 6 on the left. Moreover, to validate that the other query formulations do

not introduce any specific bias, in Figure 6 on the right, we compare the original TREC runs with

respect to our GoP using all the query formulations and verify that the distributions have a similar

composition.

In all of the comparisons in Figure 6, the estimated distributions are very similar and KLD is

small. This indicates that our data mimics the behavior of the original TREC runs. Moreover, in the

case when all the query formulations are used, the distributions are still very close, suggesting that

the query formulation did not distort the outcomes.

5.2.2 Validation of the Query Formulations. In the boxplot [48] shown in Figures 7, 8, we consider

the performance of each query reformulation across all GoP systems; for each topic, there is a box

corresponding to each corpus; the performance of the title query is highlighted with a diamond. In

Figure 7 on the left we use, as aggregation statistics, the average of AP, also referred to as Average
Average Precision (AAP) by Mizzaro and Robertson [51]; in Figure 8 on the right we use the median

of AP as aggregation statistics.

From Figures 7, 8, we can see that there is no topic for which all the reformulations perform

similarly on all corpora. Indeed, the performance distribution of the topics vary widely when

using the query formulations and are even less predictable when changing the underlying corpus.

However, the topics 442 and 690 do have similar distributions across all corpora, suggesting that

their easiness or difficulty is more stable than the others. Overall, this provides some visual intuition

of how unstable topic effectiveness is when the corpora and the query formulation varies.

In general, the query formulations appear to be high quality. More concretely, in both figures,

the red diamond indicates either the AAP or the median AP achieved by the title formulation

for the specific TREC topic over all systems, and we can observe that even though the title

formulation is often in the top quartile of possible outcomes, there are many cases where the

title formulation performs poorly compared to many of the reformulations, and may even be the

worst performing one. It is also interesting to observe that, even though a query formulation might
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Fig. 7. Distribution of the Average AP of the different query formulations over all GoP systems. For each topic,

there is a box corresponding to each corpus; the performance of the title query is denoted with a diamond.
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Fig. 8. Distribution of the Median AP of the different query formulations over all the GoP systems. For each

topic, there is a box corresponding to each corpus; the performance of the title query is denoted with a

diamond.
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Table 3. A summary of the effect sizes for factors in MD1ma for all three collections. Blue represents the
size of the factor, where dark blue is large and light blue is medium. For all three corpora, observe that the
majority of the factors have a large size effect. The only medium size factor in two collections (Robust 2004
and CORE 2018) is the System. Furthermore, observe that the Topic*System interaction has a large size effect,
which indicates that system configuration and topic performance are correlated, and supports the hypothesis
that the “topic difficulty” is linked to the system used and not the query formulation.

Robust 2004 CORE 2017 CORE 2018

Topic 0.7639 0.8215 0.7834

Formulations (Topic) 0.6941 0.6833 0.6038

System 0.1080 0.2193 0.1445

Topic*System 0.3385 0.3510 0.4386

perform particularly well on a one corpus, often it does not perform equally well on another one.

For example, in the case of topic 378 the title formulation is the best performing formulation on

the CORE 2017 corpus but it falls in the lowest quartile in the CORE 2018 corpus and is one of the

worst formulations in Robust 2004. Given that all three collections are essentially news documents,

it is somewhat surprising that the performance is so volatile given that the same components and

ranking functions are being used. That is, the search engine is fixed, but the query and documents

searched are not.

Now consider the possible outcomes of the greedy algorithm discussed in Section 4.2 and the

different cases shown in Figure 4, Figure 4b, which were the easiest case, and where the minimum

of a topic is below the maximum of another topic respectively. Figures 7 and 8 clearly show that

this rarely happens in our experiments. Instead we typically observe the more complex patterns

exhibited in Figure 4c and 4d. As a consequence, the corner case where a really poor query

formulation for an “easy” topic performs more poorly than a very good query formulation for a

“difficult” topic, which would correspond to a very large bar (the easy topic) whose bottom is below

the top of a very narrow bar (the difficult topic), was not observed in these experiments.

5.3 RQ1: Effect Size ofQuery Formulation within Corpora
5.3.1 Macro-Level ANOVA. Due to the large number permutations and the memory constraints

imposed by the underlying ANOVA model, we randomly sample 18 query formulations for each

topic in the following analysis.

Table 3 provide a summary of the effect size for each factor, for model (MD1ma) using each

corpus, where we observe similar performance trends across all three. Table 4, Table 5, and Table 6

contains the complete ANOVA statistics for model MD1ma respectively on Robust 2004, CORE 2017,

and CORE 2018.

All factors were found to be statistically significant. Consistently with the previous findings

of Tague-Sutcliffe and Blustein [72], the topic factor has a large-size effect size, and it is indeed

the largest effect for this configuration. We can also clearly see that query formulations also have

a large effect size in our experiments – approaching the topic effect size – suggesting that query

formulations strongly influence topic difficulty. In prior work, Bailey et al. [6] also observed that

query formulation had an effect in an ANOVA analysis, but their ANOVA used a different nesting

of factors than ours and was based on just two systems; this may have had an impact on their

reported topic effect, which was a medium-effect size and differs from all other previous literature

where topic effect consistently has a high-effect size.
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Table 4. Model (MD1ma) on track Robust 2004 for AP. The letter in the column "effect size" indicates whether

the effect is large (L) or medium (M). On Robust 2004 the effect size of all factors is large, except for the

System factor, which has a medium size effect. The topic (information need) and its formulations are the

most prominent effect, followed by the interaction between the topic and the system. A large effect for the

interaction indicates that some systems are better for specific topics while, for other systems, its the other

way around.

Source SS DF MS F p-value 𝜔̂2

⟨𝑓 𝑎𝑐𝑡 ⟩ effect size

Topic 1389.69 24 57.90 17471.22 <1e-6 0.7639 L

Formulations (Topic) 976.17 425 2.30 693.03 <1e-6 0.6941 L

System 52.97 287 0.18 55.69 <1e-6 0.1080 M

Topic*System 242.63 6888 0.04 10.63 <1e-6 0.3385 L

Error 404.26 121975 <1e-2

Total 3065.72 129599

Table 5. Model (MD1ma) on track CORE 2017 for AP. The letter in the column “effect size” indicates if the
effect is large (L). For CORE 2017, all factors have a large size effect. The topic (information need) has an
effect that is 3.68 times larger than the system effect. The topic formulation on the other hand has an effect
much larger than the system effect. The interaction effect is again very large.

Source SS DF MS F p-value 𝜔̂2

⟨𝑓 𝑎𝑐𝑡 ⟩ effect size

Topic 2073.88 24 86.41 24852.00 <1e-6 0.8215 L

Formulations (Topic) 973.70 425 2.29 658.91 <1e-6 0.6833 L

System 127.59 287 0.44 127.86 <1e-6 0.2193 L

Topic*System 267.65 6888 0.04 11.18 <1e-6 0.3510 L

Error 424.11 121975 <1e-2

Total 3866.94 129599

Table 6. Model (MD1ma) on track CORE 2018 for AP. The letter in the column "effect size" indicates whether

the effect is large (L) or medium (M). On CORE 2018 Effects sizes are close to the one observed for the Robust

collection. We have very large effects for the topic and its formulations, a medium-large effect for the system

and a large effect for the interaction between the system and the topic. Compared to the Robust, we observe

an even larger effect for the interaction.

Source SS DF MS F p-value 𝜔̂2

⟨𝑓 𝑎𝑐𝑡 ⟩ effect size

Topic 2371.78 24 98.82 19532.05 <1e-6 0.7834 L

Formulations (Topic) 1001.38 425 2.36 465.69 <1e-6 0.6038 L

System 112.21 287 0.39 77.28 <1e-6 0.1445 M

Topic*System 547.15 6888 0.08 15.70 <1e-6 0.4386 L

Error 617.14 121975 0.01

Total 4649.67 129599

The system factor has a medium to large-size effect and on CORE 2017 almost double the size of

Robust 2004 and CORE 2018. This suggests that the interaction between system and corpus can

play a role, as will be investigated in subsequent analyses.
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Table 7. A summary of effect sizes for factors when using MD1mi on the three collections. The shade of blue
indicates the factor size – large being dark blue, and medium or small as lighter shades of blue. The white cells
are the factors with significant but negligible effects sizes. The stoplist factor on the Robust 2004 collection
is not significant. Observe that the topic and the formulation, as well as all of the micro-components have
smaller effects than a system treated as a whole. The two most prominent effects in a system are the Retrieval
Model and theQuery Expansion Model. It is interesting to note that theQuery Expansion Model has different
effect sizes that depend on the corpus. Furthermore, the majority of the interactions between the Topic and
the various components have medium to large effect sizes. Stopping versus not stopping has a negligible
effect, both alone and in interaction with the Topic.

Robust 2004 CORE 2017 CORE 2018

Topic 0.7560 0.8116 0.7743

Formulation 0.6848 0.6687 0.5910

Stoplist 0.0007 0.0020 0.0013

Stemmer 0.0043 0.0024 0.0060

Model 0.0661 0.0728 0.0197

Query Expansion 0.0232 0.1377 0.1114

Topic*Stoplist 0.0073 0.0026 0.0033

Topic*Stemmer 0.0709 0.0355 0.0673

Topic*Model 0.2158 0.2356 0.1677

Topic*Query Exp. 0.3153 0.1029 0.2958

Another interesting observation in our analysis is the topic*system interaction effect size in

Table 3, which is large, and confirms an important supposition of Banks et al. [8], who were only

able to provide a rough estimate for the topic*system interaction. While Banks et al. [8] suspected

that topic*system interactions should be large, they were not able to actually confirm it due to

an insufficient number of replicates in their experimental setup. More recently, Ferro et al. [31]

and Voorhees et al. [77], who used collection shards to obtain the necessary replicates required to

estimate the topic*system interaction effect size, found that it does indeed have a large-size effect.

In our configuration, the replicates necessary to estimate this effect are provided by different query

formulations which, to the best of our knowledge, have not been used for this purpose in previous

work. This further confirms the prominence of the existence of this effect when using our proposed

experimental design.

Overall, query formulation has the second largest effect, with nearly 1.5 times the size of the

topic*system interaction which has historically been a point of emphasis in similar performance

comparisons. This provides important evidence that query formulation is crucial in retrieval

effectiveness, and has deeper implications in rethinking the way many IR experiments currently

formalize query / topic difficulty. Topic difficulty for query performance prediction can be viewed at

an abstract level as an attempt to predict topic*system interactions, and indeed the quality of these

methods are often measured using a Kendall tau of the ordering of topics by effectiveness for any

given set of topics. This is only possible if certain topics consistently perform better than others,

and having a mix of “easy”, “medium”, and “difficult” tends to provide the most desirable signal.

But what if there were no difficult topics? Do such scenarios exist given our ability to reformulate

queries based on a collection and the surprisingly large factor size observed? We will explore this

intriguing question in more detail in Sections 5.4 and 5.5.

5.3.2 Micro-Level ANOVA. In order to better understand the impact of query formulation at the

component level, we have also performed a detailed component-wise ANOVA analysis using
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model (MD1mi), whose results are reported in Table 7. Additional statistics and details we used

to create the summary table are also included here in the ANOVA tables for the model MD1mi
on Robust 2004 (Table 8), CORE 2017 (Table 9), and CORE 2018 (Table 10). See these tables for

additional information.

Table 8. Model (MD1mi) on track Robust 2004 for AP. The letter in the column "effect size" indicates whether

the effect is large (L), medium (M), small (S) or not significant (-). Between parentheses significant yet almost

negligible effects. Among the different factors, only the Topic and the formulations have a large effect. The

Retrieval model has a medium effect while both the Stemmer and Query Expansion model have a small size

effect. Even though significant, removing or not the stopwords and the stemmer have a very small effect.

Although the interaction between topics and components is always significant, we observe variations on the

different effect sizes. We observe a large interaction only with the Retrieval model. The interactions between

the topic and either the Query Expansion model and the Stemmer have medium size effects.

Source SS DF MS F p-value 𝜔̂2

⟨𝑓 𝑎𝑐𝑡 ⟩ effect size

Topic 1389.69 24 57.90 16729.19 <1e-6 0.7560 L

Form. (Topic) 976.17 425 2.30 663.59 <1e-6 0.6848 L

Stoplist 0.33 1 0.33 93.92 <1e-6 0.0007 (S)

Stemmer 1.94 3 0.65 186.54 <1e-6 0.0043 (S)

Model 31.77 8 3.97 1147.20 <1e-6 0.0661 M

Query Expansion 10.78 3 3.59 1038.29 <1e-6 0.0234 S

Topic*Stoplist 3.38 24 0.14 40.65 <1e-6 0.0073 (S)

Topic*Stemmer 34.50 72 0.48 138.44 <1e-6 0.0709 M

Topic*Model 124.10 192 0.65 186.74 <1e-6 0.2158 L

topic*Query Exp. 47.35 72 0.66 189.98 <1e-6 0.0950 M

Error 445.72 128775 <1e-2

Total 3065.72 129599

Table 9. Model (MD1mi) on track CORE 2017 for AP. The letter in the column "effect size" indicates whether
the effect is large (L), medium (M) or small (S). Between parentheses significant yet almost negligible effects.
In the case of CORE 2017, we observe that the factors with large size effects are the topic, the formulations,
and theQuery Expansion Model. Even though large size, theQuery Expansion model has an effect that is
6 time smaller than the topic and 5 times smaller than the formulations. Both stoplists and stemmers are
significant, yet have a negligible effect. The Retrieval model has a medium size effect. As previously observed,
all the interactions between the topic and the components are significant.

Source SS DF MS F p-value 𝜔̂2

⟨𝑓 𝑎𝑐𝑡 ⟩ effect size

Topic 2073.88 24 86.41 23256.87 <1e-6 0.8116 L

Form. (Topic) 973.70 425 2.29 616.62 <1e-6 0.6687 L

Stoplist 0.97 1 0.97 261.72 <1e-6 0.0020 (S)

Stemmer 1.18 3 0.39 106.14 <1e-6 0.0024 (S)

Model 37.84 8 4.73 1273.00 <1e-6 0.0728 M

Query Expansion 76.96 3 25.65 6902.16 <1e-6 0.1377 M

Topic*Stoplist 1.34 24 0.06 15.02 <1e-6 0.0026 (S)

Topic*Stemmer 17.99 72 0.25 67.24 <1e-6 0.0355 S

Topic*Model 149.14 192 0.78 209.06 <1e-6 0.2356 L

Topic*Query Exp. 55.49 72 0.77 207.42 <1e-6 0.1029 M

Error 478.47 128775 <1e-2

Total 3866.94 129599

Again, the results are consistent across all the three collections. Stop lists and stemmers have

a small-size effect – stop lists were not even significant on Robust 2004 – which was not true in
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Table 10. Model (MD1mi) on track CORE 2018 using AP. The letter in the column “effect size” indicates whether

the effect is large (L), medium (M) or small (S). In the case of CORE 2018, the only factors with large size effects

are the topic and the formulations. Both stoplists and stemmers are significant, but have a negligible effect

size. The Retrieval model has a small effect on system performance, and Query Expansion has a medium size

effect. As previously observed, all of the interactions between the topic and the components are significant,

but the interaction between stoplists and topics have a negligible effect sizes, and interaction between the

retrieval and query expansion models are large.

Source SS DF MS F p-value 𝜔̂2

⟨𝑓 𝑎𝑐𝑡 ⟩ effect size

Topic 2371.78 24 98.82 18524.14 <1e-6 0.7743 L

Form. (Topic) 1001.38 425 2.36 441.66 <1e-6 0.5910 L

Stoplist 0.93 1 0.93 174.16 <1e-6 0.0013 (S)

Stemmer 4.16 3 1.39 259.65 <1e-6 0.0060 (S)

Model 13.92 8 1.74 326.08 <1e-6 0.0197 S

Query Expansion 86.67 3 28.89 5415.26 <1e-6 0.1114 M

Topic*Stoplist 2.41 24 0.10 18.81 <1e-6 0.0033 (S)

Topic*Stemmer 50.25 72 0.70 130.83 <1e-6 0.0673 M

Topic*Model 140.35 192 0.73 137.02 <1e-6 0.1677 L

Topic*Query Exp. 290.82 72 4.04 757.14 <1e-6 0.2958 L

Error 687.00 128775 0.01

Total 4649.67 129599

experiments ran by Ferro and Silvello [34, 35], who both reported a medium-size effect for these

factors. We also found, consistent with previous work, that the IR model factor has a small to

medium-size effect at the micro-level. These results are aligned with Zampieri et al. [82] who also

observed that stemmers and IR models have a small-size effect, albeit two orders of magnitude

larger in our configuration.

Query expansion on the other hand has a small-size to medium-size effect and is the largest

among all system component factors for CORE 2017 and CORE 2018, which differ from Zampieri

et al. [82] who observed a very small small-size effect for this factor. Note that we have incorporated

query formulations in our comparison, and the combination of query reformulations and query

expansion is the most likely contributor to differences in effect sizes we have observed. We revisit

this hypothesis in the next section as we will be in a better position to measure it directly in our

final model configuration.

As previously discussed, we were also able to reliably estimate the interaction effect sizes between

topics and system components for the first time. In particular, topic*query expansion interaction

has a notably large-size effect, followed by the topic*IR model interaction. The interaction with

stemmers had a small to medium-size effect while stop lists had a very small-size effect. Note that

low IDF terms are dropped when query expansion is enabled as stop words tend to have a negative

impact on system effectiveness when they are not removed. In summary, our findings indicate

that query expansion and IR models are the components most affected by topics, and this could

provide useful hints when debugging and diagnosing which system components to target in order

to improve performance.

5.4 RQ2 and RQ3: Effect Size ofQuery Formulation across Corpora
In this section, we expand our analysis using Models (MD2𝑚𝑎) and (MD2𝑚𝑖 ) which can be used to

measure cross collection effects, and address RQ2 and RQ3. Note that the computational complexity

of these two models in our current configuration is substantial, and therefore the analysis was

carried using only the two best performing stemmers – Porter and Krovetz based on our initial

analysis. For the same reason, we also limit ourselves to 15 query formulations for each topic.
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Table 11. Model (MD2𝑚𝑎) for the Robust 2014, CORE 2017, and CORE 2018 tracks and AP. The letter in
the column “effect size” indicates whether the effect is large (L), medium (M) or small (S). Observe that the
majority of the factors have large/medium effect sizes. The corpus has a medium size effect. The interaction
size between the corpus factor and the topic or formulations are of particular interest – both of which are
large. This is further empirical evidence that topic difficulty is not a result of th information need: searching
for a piece of information in specific corpora or using different formulations on different corpora can result in
very different performance. Furthermore, this suggests that we are likely to find a specific formulation for
which we achieve better (or worse) performance for any topic on any corpus with less effort than would be
required when attempting to achieve similar performance differences by changing only the ranker.

Source SS DF MS F p-value 𝜔̂2

⟨𝑓 𝑎𝑐𝑡 ⟩ effect size

Total 3799.35 125999

Topic 1544.69 24 64.36 22370.77 0 0.7682 L

Formulation (Topic) 804.82 350 2.30 799.25 0 0.6330 L

System 87.80 143 0.61 213.41 0 0.1579 L

Corpus 33.04 2 16.52 5742.72 0 0.0662 M

System*Topic 216.04 3432 0.06 21.88 0 0.3067 L

System*Form. 240.36 50050 0.00 1.67 0 0.1713 L

System*Corpus 28.57 286 0.10 34.72 0 0.0562 S

Topic*Corpus 960.75 48 20.01 6956.96 0 0.6733 L

Form.*Corpus 527.09 700 0.75 261.72 0 0.5298 L

Topic*System*Corpus 214.42 6864 0.03 10.86 0 0.2946 L

Error 287.99 100100 0.00

Total 4945.58 161999

5.4.1 Macro-Level ANOVA. Table 11 shows the results for model (MD2𝑚𝑎) using all three corpora

– Robust 2004, CORE 2017 and CORE 2018. All the factors are again statistically significant.

We can observe that the topic factor has, as always, a large-size effect even across corpora and

that the system factor becomes a moderately large-size effect, being bigger than in the single corpus

case (see Table 3); the corpus factor has a medium-size effect. Overall, these results support similar

findings reported by Ferro and Sanderson [32] while Zampieri et al. [82] reported that both systems

and corpora had a very small-size effects. We also note that the query formulation factor has a

remarkably large-size effect, even across corpora, observed here for the first time, suggesting it is a

key contributor to topic difficulty.

The topic*system interaction has a noticeably large-size effect but half the size of the query

formulation factor alone, and roughly two-thirds of the effect observed in the single corpus case; in

addition, the query formulation*system interaction is a medium (almost large) size effect. Overall,

this suggests that the multiple corpora further amplify the impact of query formulations, which

was already very large. Note that the size of the topic*system interaction reaffirms similar findings

from Ferro et al. [31], Zampieri et al. [82].

The topic*corpus interaction also has a large-size effect, the second biggest effect, which is

aligned with the findings of Ferro et al. [31], Zampieri et al. [82]. Moreover, both the query

formulation*corpus interaction and the topic*system*corpus interaction, observed here for the first

time, are clearly important large-size effects.

Finally, we note that the system*corpus interaction is a medium-size effect, in contrast to previous

results by Zampieri et al. [82] and Ferro et al. [31] who found it to have a small-size effect. This
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Fig. 9. Interaction effects between topics and corpora (on the left), where each line is a single topic. The
Marginal AP is the average over all possible system configurations for either a topic considered as the
combination of all its formulations (left), or a single topic formulation (right). Topic 321 in blue (‘women in
parliaments’), is almost always difficult; topic 350 in red (‘health and computer terminals), almost
always medium; and topic 397 in green (‘automobile recalls’), always easy. On the right, for each of
these three topics, the interaction between query formulations and corpora are demonstrated. The black
line was the original formulation corresponding to the TREC title query. The red, yellow, and green bands
correspond to the hard, medium, and easy query performance ranges.

behavior could be attributed to the presence of query reformulations in our model which increase

the variance in performance for systems on different corpora.

Overall, these findings provide further evidence supporting the possibility that difficult topics do

not actually exist in any absolute sense. We will further investigate this notion in Section 5.5 where

the algorithm described in Section 4.2 leverages the large-size of the above interaction effects to

show that it is actually possible to find any desired ranking of topics, providing further evidence

that difficulty can not be confidently attributed to a particular topic.

Figure 9 provides a visualization of the volatility of topic difficult as collection and query

formulation change. The red, yellow, and green bands in the figure correspond to the hard, medium,

and easy query performance ranges, according to the traditional definition proposed in [22], where

the 38% of the worst-performing queries have been considered hard, the 30% medium-performing

queries have been defined medium, while the upper 30% of queries are the easy ones. On the left of

Figure 9 we can see the plot of the topic*corpus interaction factor and we can observe that topics

can be easy, medium or hard depending on the corpus. We also highlight specific topics that exhibit

consistent effectiveness trends across collections: Hard (topic 321 in blue), Medium (topic 350 in

red), and Easy (topic 397 in green). On the right, we expand all formulations*corpus interactions
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for each of those highlighted topics, with the original TREC title query shown in black as a point

of reference. We can see that regardless of whether a topic is classified as easy, medium, or hard,

we can generally find at least one query reformulation for that topic in any of the three regions

across the corpora.

5.4.2 Micro-Level ANOVA. Table 12 shows the results for model (MD2𝑚𝑖 ) on the Robust 2004,

CORE 2017 and CORE 2018 corpora. All the factors are again statistically significant.

Table 12. Model (MD2𝑚𝑖 ) on the CORE 2018, CORE 2017 and Robust 2014 tracks using AP. The letter in the
column “effect size” indicates whether the effect is large (L), medium (M) or small (S). For single factors,
observe a similar overall behaviour to Model (MD1mi). Overall, observe that the interactions including query
formulations often have large effect sizes, indicating that using different formulations in combination with
various components can induce dramatically different results. Furthermore, observe that several interactions
of system components and the corpus have small or negligible effect sizes, indicating that the performance of
these components are very similar in all of the corpora.

Source SS DF MS F p-value 𝜔̂2

⟨𝑓 𝑎𝑐𝑡 ⟩ effect size

Topic 1544.69 24 64.36 41853.88 <1e-6 0.8611 L

Formulations (Topic) 804.82 350 2.30 1495.32 <1e-6 0.7635 L

Stoplist 0.91 1 0.91 590.04 <1e-6 0.0036 (S)

Stemmer 0.02 1 0.02 15.46 <1e-6 0.0001 (S)

Model 19.64 8 2.45 1596.40 <1e-6 0.0730 M

Query Expansion 59.29 3 19.76 12851.05 <1e-6 0.1922 L

Corpus 33.04 2 16.52 10744.16 <1e-6 0.1171 M

Topic*Stoplist 1.14 24 0.05 30.83 <1e-6 0.0044 (S)

Topic*Stemmer 3.97 24 0.17 107.63 <1e-6 0.0156 S

Topic*Model 116.03 192 0.60 392.99 <1e-6 0.3172 L

Topic*Query Exp. 68.95 72 0.96 622.70 <1e-6 0.2165 L

Topic*Corpus 960.75 48 20.02 13015.90 <1e-6 0.7941 L

Form.*Stoplist 4.56 350 0.01 8.48 <1e-6 0.0159 S

Form.*Stemmer 18.23 350 0.05 33.86 <1e-6 0.0663 M

Form.*Model 84.64 2800 0.03 19.66 <1e-6 0.2438 L

Form.*Query Exp. 66.51 1050 0.06 41.19 <1e-6 0.2067 L

Form.*Corpus 527.09 700 0.75 489.66 <1e-6 0.6786 L

Corpus*Stoplist 0.05 2 0.03 17.41 <1e-6 0.0002 (S)

Corpus*Stemmer 0.16 2 0.08 52.31 <1e-6 0.0006 (S)

Corpus*Model 14.82 16 0.93 602.27 <1e-6 0.0561 S

Corpus*Query Exp. 11.55 6 1.93 1251.98 <1e-6 0.0443 S

Topic*Corpus*Stoplist 2.02 48 0.04 27.42 <1e-6 0.0078 (S)

Topic*Corpus*Stemmer 4.93 48 0.10 66.80 <1e-6 0.0191 S

Topic*Corpus*Model 76.70 384 0.20 129.88 <1e-6 0.2340 L

Topic*Corpus*Query Exp. 105.31 144 0.73 475.58 <1e-6 0.2967 L

Form.*Corpus*Stoplist 4.08 700 0.01 3.79 <1e-6 0.0119 S

Form.*Corpus*Stemmer 16.78 700 0.02 15.58 <1e-6 0.0593 S

Form.*Corpus*Model 104.42 5600 0.09 12.13 <1e-6 0.2778 L

Form.*Corpus*Query Exp. 65.57 2100 0.03 20.30 <1e-6 0.2001 L

Error 224.90 146250 0.00

Total 4945.58 161999

Table 12 shows the break-down by system factor for Table 11 by component contribution. As

observed for the single-corpus case (see Table 7), the most important components are the IR model
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Table 13. Ranking of topics analysis over 10,000 forward and backward permutations, 20,000 overall
permutations. Observe that overall there is agreement between permutations of topics and rankings of
formulations based on the relative performance. The corpus that is the easiest to target and find a given rank
was CORE 2018, followed by Robust. The latter is an interesting outcome as several of the queries included
in the Robust collection were known to be “hard” topics in previous TREC tracks. This finding provides
additional evidence to the importance of the magnitude of the effect size of query formulations across corpora.
Conversely, the ratio of exact rankings is small, indicating that the formulation task is rarely effortless.

Overall Statistics
Fwd Perms Bck Perms All Perms

Ratio of exact rankings 2.06 2.18 2.12

Best Kendall’s tau 0.8588±0.0017 0.8579±0.0017 0.8583±0.0012

Robust 2004
Fwd Perms Bck Perms All Perms

Ratio of exact rankings 0.65 0.91 0.78

Best Kendall’s tau 0.8053±0.0021 0.8030±0.0022 0.8041±0.0015

CORE 2017
Fwd Perms Bck Perms All Perms

Ratio of exact rankings 0.55 0.43 0.49

Best Kendall’s tau 0.7040±0.0032 0.7002±0.0032 0.7021±0.0023

CORE 2018
Fwd Perms Bck Perms All Perms

Ratio of exact rankings 0.93 0.88 0.91

Best Kendall’s tau 0.7977±0.0023 0.7958±0.0023 0.7967±0.0016

and query expansion, as well as their interaction with topics, while stop list and stemmers and

their interaction with topics have small-size effects. However, while the single-corpus case showed

that the topic*query expansion interaction is almost twice the size of the topic*model interaction,

in the multiple-corpora case the opposite is true, and now the topic*model interaction are roughly

1.5 times the size of the topic*query expansion interaction. This could possibly due to IR models

being a sort of “filter” with respect to corpora, whose impact change from corpus to corpus.

We can also observe, for the first time, the interaction between components and query formulations:

the interaction with IR model and query expansion components have a large-size effect, almost the

same size in this case, while the interaction with stemmers is now a medium-size effect, suggesting

that the “clustering” induced by a stemmer can have an important impact on query reformulations.

These trends are also confirmed by the third order interactions, i.e. topic * <component> * corpus

and formulations * <component> * corpus.

Finally, when interpreting the component and corpora interaction, themost important components

are, again, IR models and query expansion which have strong, large-size effects, with query

expansion being roughly 1.3 times larger than IR models, while the interaction with stop lists and

stemmers are negligible in size, indicating a very consistent behavior across corpora. This finding

differs from that of Zampieri et al. [82] who found that the corpus*query expansion interaction had

a negligible effect size. This also suggests that components of an IR systemmay indirectly contribute

to topic difficulty as IR models and query expansion are clearly also sensitive to variations in topics

and query formulations.

5.5 Topic Difficulty
Given these findings, we are finally in a position to revisit the fundamental tenet in IR that has

been explored from many different angles in the past – the notion of topic difficulty.
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Table 13 summarizes the outcomes of the topic ranking analysis using 10,000 permutations. For

each permutation we considered both the forward and backward (or reverse) permutation. Thus,

20,000 total permutations were evaluated. We observed that in 2.12% of all permutations (slightly

less forward than backward ones), it was possible to exactly match the permuted ranking of topics

targeted
5
, while on the other permutations we have a mean Kendall’s tau of 0.85, indicating that

the queries selected to induce the desired topic rankings were consistently close to the arbitrary

target ordering. Given that these results represent a lower bound, they provide strong evidence that

ordering topics by relative effectiveness is not intrinsically difficult, and in fact can be “arbitrarily”

easy or difficult across many different corpora and system combinations.

Table 13 also shows what happens when we restrict ourselves to using only a single collection

to find the requested ranking of topics, which is a somewhat harder case. All of the collections

exhibited similar behavior in terms of exact match ratio – 0.78% for Robust 2004, 0.49% for CORE

2017 and 0.91% for CORE 2018 – indicating that it is more difficult to find an exact solution for

a random topic ordering on a single collection. On CORE 2018 this ratio was slightly higher,

suggesting that in this case it is easier to find the requested ranking. When comparing the Kendall’s

tau results, Robust 2004 and CORE 2018 perform similarly while CORE 2017 was slightly worse,

but in every case, there is a clear indication that it is possible to find topic orderings similar to the

requested one, even on a single corpus.

Figure 10a is a visualization of the raw data which is summarized in Table 13. The Figure shows

what happens when results are aggregated across all corpora as well as the outcome when each

corpus is treated independently; the figure uses all available system configurations in our test set,

i.e. we did not restrict our greedy algorithm only to the best configurations. Each permutation on

the X-axis is plotted against the best Kendall’s tau. We can clearly see that, regardless of corpora

used, the Kendall’s tau values tend to cluster above 0.6, suggesting that, for every permutation

probed, it is quite possible to find at least one system which produces a similar ranking of topics

being inspected. For the single corpora case, there is a higher likelihood of not finding a close

mapping to the permutation being probed, but remains possible for many cases.

Figure 10b shows the mean Kendall’s tau across the systems for each permutation. A very similar

behavior can be observed across the different corpora, with values tending to below 0.5, again with

a larger spread when only a single corpus is targeted. This suggests that the average behavior of

systems is very noisy and that it is much more difficult to obtain a requested ranking of topics from

a whole set of systems.

In Figure 10c each line represents a system for which the best Kendall’s tau across all the

permutations was computed. We can see strong evidence once again that nearly every system can

find a solution for at least one permutation on each corpus, albeit with high variance in a few cases.

There appears to often be more than one system which is able to find at least one exact match

for a permutation being probed across all of the corpora. We note that CORE 2017 appears to be

a little more difficult than the other two collections in this respect, since several of our system

configurations tended to have worse overall effectiveness in this case. In Figure 10d each line is

a system where the mean Kendall’s tau across all the permutations is compared. When viewed

from this perspective, it appears to be more difficult for a system to consistently find a close match

for every permutation and this behavior is quite consistent in this respect across corpora, when

enforcing a fixed system configuration. Again some corpora are more difficult than others, and

small clusters of our system configurations are substantially more effective than the others.

5
The low rate of permutations for which it is possible to find an exact match provides further evidence that the corner case

where a very poor query formulation for an “easy” topic still performs worse than a really good query formulation for a

“difficult” topic is not a dominating factor, otherwise this value would be much higher.
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Fig. 10. Ranking of topics analysis across the different corpora.

5.6 Topic Difficulty – Lessons Learned
We have presented evidence showing that topic difficulty is not an intrinsic property of an

information need – meaning that query formulation based on a corpus and retrieval system,

can be combined to sort topics arbitrarily based on a performance goal. While IR researchers have

long been aware of the importance of query terms, the magnitude of the impact relative to other

change to a system, such as the ranker, or even the introduction of query expansion has never been

shown experimentally. ANOVA provides a powerful methodology to do it. While not discussed

in detail in this work, the recent work of Liu et al. [45] show how similar query formulations are

within a topic or when compared across different topics. It is remarkable how much performance

can differ between two formulations of the same information need, with other factors being fixed.

This information can be used to further improve retrieval systems in IR as well as other related

areas such as product, movie, or music recommendation. How can such a finding help researchers

developmore effective retrieval systems? Firstly, it is worth noting that current evaluation paradigms

usually consider a single formulation for each topic. All of the main evaluation campaigns, such

as TREC or CLEF, allow participants to produce a single run for a given set of topics and queries.

Such an arrangement prevents us to observe system behavior with small changes to each query.

Automatic reformulation and query expansion (as shown in Tables 7 and 12) tend to have a large

impact on the performance, one that is consistently greater than the retrieval model. If we consider
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carefully the conclusions reached in this work, we can see the potential value of investigating it

further, in many different scenarios and applications, none of which are happening today.

We believe that multiple formulations are a key omission in our current evaluation campaigns,

and we are hopeful future campaigns will incorporate them into their methodology. The cost of

collecting new data is certainly a limiting factor in every decision, but note that there is a high

“bang-for-buck” here as query formulations for a single topic are all trying to find the same relevant
documents, and there is often higher overlap in the documents retrieved. Query formulations

can easily be collected through click-logs, produced automatically using ontologies or written

directly by the assessors or crowdworkers. This additional information can be used to improve

current evaluation methodology, with a small impact on the cost to develop a collection while

providing substantial benefits. Using the ANOVA framework proposed here, practitioners can study

formulations, systems, collections, and their associated interactions in exhaustive detail. More

comprehensive failure analysis tools allow us to build more reliable systems, and to identify and

eliminate tail cases which lead to poor performance under certain conditions.

Other applications can also benefit from the outcomes in this work. One IR research field which

can benefit from a more theoretically grounded concept definition of “topic difficulty” is QPP. In

QPP evaluation, queries are commonly ranked according to the effectiveness score produced by

the QPP engine when mapped to some targeted evaluation metric such as AP or nDCG. Then, a

correlation measure such as Kendall’s 𝜏 or Spearman’s 𝜌 is computed between the two rankings

and the quality of the QPP approach is derived from the rank correlation. When topic difficulty

is so heavily bounded to the specific query being used, we should ask ourselves whether results

observed for a specific corpus might be entirely different if formulations for the topics can be

changed. Before we can fully understand this, multiple formulations should be considered in the

evaluation. The work done using reference lists in QPP [62, 70] could easily be adapted to explore

this notion further. Building reference lists for multiple formulations of topics would enable us

to develop systems that better generalize with user behavior, as we are not able to know a priori

which formulation a user might choose.

Another area that might benefit is conversational IR. Traditional evaluation in conversational

IR requires sequences of utterances of a conversation between a system and a user. Again, it is

common to have only one conversation per topic, and each utterance represents, individually, a

query in a sequence. Such utterances lack variability that might occur in similar conversations in

different users. As the number of possible formulations of human utterances grows exponentially,

we are often limited only a few different dialogues in a campaign – a problem which has been

previously discussed in the research community [4, 26, 55]. Nevertheless, the same “bang-for-buck”

opportunities exist when expanding the date for each topic. A great deal of information can be

created which is invaluable to practitioners but that have a much lower cost to collection creation

and curation and if additional “new” topics are added. Our work demonstrates the importance of

multiple formulations in the traditional IR, and can easily be extended in conversational IR.

To conclude, the lessons learned from our work have a number of potential applications and

extensions. First, we have empirically observed the effect size of query formulations in IR evaluation,

which is, in itself, an important issue warranting further attention.We show how query formulations

interact with other components commonly found in a typical retrieval pipeline. These interactions

were found often to be significant, and are rarely negligible in size. Their omission from current

practices in IR evaluation should be reconsidered in the research community. If our goal is to model

real performance of systems, collections creators should explore how to best include multiple

formulations of each topic. Their use should also be standard practice for system builders as it

is a valuable tool to perform a detailed performance analysis in complex retrieval software that

is composed of multiple components – all of which can have unexpected interaction which can
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degrade (or improve) the overall retrieval performance. Our isolation of multiple formulations of

topics has allowed us to study in detail the concept of “topic difficulty”, which we now understand

to be a construct of a specific retrieval configuration – the collection, the system and the query

which represents the topic under consideration – and not a property intrinsic to the topic alone. The

malleability of relative performance which can be induced when of multiple query variations of a

topic are available enable “topic difficulty” to be fully controlled in a collection, and raises important

questions in current several of the communities current evaluation practices and potentially in

related fields, such as QPP and conversational IR. That is, the distribution of which topics perform

well or poorly can be arbitrarily reordered using query formulations such that relative system

performances change, as their performance may be better or worse depending on the specific

query choice. The implications of this observation should not be underestimated. The research

community is heavily reliant on test collections and state-of-the-art performance comparisons,

which are routinely used to verify that new approaches outperform current ones. However, if

winning and losing can be manipulated based only on the query being used and everything else is

the same – including the human relevance labels for the topics, are our current practices as reliable

as we need them to be? Many open questions remain, Query formulation and its role in evaluation

warrants further study in the IR community.

5.7 Efficiency and Scalability
While we have discussed several new avenues of future work in Section 5.6, we have not discussed

one of the important challenges we encountered, which is the efficiency and scalability of current

ANOVA modeling techniques. Query formulations and the wide-spread availability of publicly

available retrieval systems such at Terrier allowed us to produce far more data than we could

incorporate into our models. Every factor introduced into a model results in an order of magnitude

increase in the number possible combinations, all of which must be ran and included. For example,

9 rankers, 4 query expansion models, 4 stemmers, stopping (2) on 3 collections requires 864 retrieval

runs, each of which are composed of hundreds (or even thousands) of queries to run (50 topics of

25 query formulations is 1,250 total queries). So, a rather modest number of individual component

choices require retrieval results for 1,080,000 queries total! Unfortunately, that is only the cost

to create the initial dataset. Running the ANOVA model on the resulting data has a significant

computational cost as well, and our current experiments we limited primarily by the RAM available,

with our largest server having 1.5TB of RAM. We are aware of very few other studies using ANOVA

in the IR community using data at this scale. The bottom line is that it is costly to do large-scale

ANOVA analysis, and the current software available to perform ANOVA analysis (Matlab or R)

were not designed to use data of this magnitude. But for IR researchers who are interested in

designing efficient and scalable algorithms, a scalable and efficient ANOVA framework for CUDA

and other GPU related hardware would be a valuable contribution to the community. Remarkable

achievements are possible using GPU hardware in the Deep Learning community. However, most

of these efforts are dedicated to building new NLP/ML models, and not in leveraging it to evaluate

models we create. We can and should be using this new hardware to improve current evaluation

techniques too.

6 CONCLUSION
In this work, we have presented a comprehensive ANOVA analysis that compares the effect sizes

across multiple corpora and retrieval system configurations. We have also generalized previous

model configurations in order to incorporate a new nesting factor which maps an information

need (topic) to multiple query formulations. The removal of the constraint of a 1:1 mapping

between a query and a topic has led to several interesting observations which have important
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implications on the notion of topic difficulty. Themodels were designed to enable us to systematically

analyze multiple component interactions in a single study, several of which have not been possible

before, such as query formulation*system interactions. The configuration shows that component

interactions are strongly influenced by query formulation, which consistently increases the effect

size across multiple component interactions and configurations.

We also propose an analysis methodology, based on a permutation algorithm, to further explore

topic difficulty. Based on this new knowledge, we were able to show conclusive evidence that topic

difficulty is not invariant, and therefore care should be taken when relying on topic ordering to

evaluate the quality of various prediction models, as is common practice for QPP.

Leveraging the lessons learned in our current ANOVA design, our future work will directly

explore QPP methods and how factors impact prediction quality. We would also like to allow latent

factors to emerge more easily, such as the role of unique relevant documents that are retrieved in

each system configuration. Finally, prior work has demonstrated that unique relevant documents

have an important role in evaluation pooling [17, 75] but, no systematic studies on how they

affect system performance have been conducted, or the relationship between topics and query

formulations on unique relevant documents, or how this might change across corpora.
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