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Abstract. Amyotrophic Lateral Sclerosis (ALS) is a severe chronic dis-
ease characterized by progressive or alternate impairment of neurologi-
cal functions, characterized by high heterogeneity both in symptoms and
disease progression. As a consequence its clinical course is highly uncer-
tain, challenging both patients and clinicians. Indeed, patients have to
manage alternated periods in hospital with care at home, experiencing
a constant uncertainty regarding the timing of the disease acute phases
and facing a considerable psychological and economic burden that also
involves their caregivers. Clinicians, on the other hand, need tools able
to support them in all the phases of the patient treatment, suggest per-
sonalized therapeutic decisions, indicate urgently needed interventions.

The goal of iDPP�CLEF is to design and develop an evaluation infras-
tructure for AI algorithms able to:

1. better describe disease mechanisms;

2. stratify patients according to their phenotype assessed all over the
disease evolution;

3. predict disease progression in a probabilistic, time dependent fash-
ion.

* These authors contributed equally.
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1 Introduction

Amyotrophic Lateral Sclerosis (ALS) is a neurological disease that causes the
progressive degeneration of the motor neurons that control voluntary muscles,
resulting in an increasing impairment of motor and vital functions and leading
to death usually within 4-5 years from the diagnosis. Likely resulting from a
complex interplay of genetic and environmental factors, ALS is characterized by
high heterogeneity in both symptoms and disease progression, especially in the
early stages of the disease. This heterogeneity is partly responsible for the lack of
effective prognostic tools in medical practice, as well as for the current absence
of a therapy able to effectively slow down or reverse the disease course. On
the one hand, patients need support for facing the psychological and economic
burdens deriving from the uncertainty of how the disease will progress; on the
other, clinicians require tools that may assist them throughout the patient’s care,
recommending tailored therapeutic decisions and providing alerts for urgently
needed actions.

In order to improve the current diagnostic and prognostic situation, we should
design and develop Artificial Intelligence (AI) algorithms be able to:

– stratify patients according to their phenotype, assessed all over the disease
evolution;

– predict the progression of the disease in a probabilistic, time dependent
fashion;

– better describe disease mechanisms.

The Intelligent Disease Progression Prediction at CLEF (iDPP�CLEF) lab5

aims to design and develop an evaluation infrastructure for driving the devel-
opment of such AI algorithms. By “evaluation infrastructure”, we mean ex-
perimental collections, evaluation protocols, evaluation measures, ground-truth
creation protocols, and so on. Indeed, in this context, it is fundamental, even if
not so common yet, to develop shared approaches, promote the use of common
benchmarks, and foster the comparability and replicability of the experiments.
Differently from previous challenges in the field, iDPP�CLEF addresses in a
systematic way some issues related to the application of AI in clinical practice
in ALS. Therefore, in addition to defining the risk scores based on the proba-
bility that an event will occur in the short or long term period, iDPP�CLEF
also addresses the issue of providing information in a more structured and un-
derstandable way to clinicians.

The paper is organized as follows: Section 2 presents related challenges; Sec-
tion 3 describes its tasks; Section 4 discusses the developed dataset; Section 5
explains the setup of the lab and introduces the participants; Section 6 intro-
duces the evaluation measures adopted to score the runs; Section 7 analyzes
the experimental results for the different tasks; finally, Section 8 draws some
conclusions and outlooks some future work.

5 https://brainteaser.health/open-evaluation-challenges/idpp-2022/

https://brainteaser.health/open-evaluation-challenges/idpp-2022/
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2 Related Challenges

To the best of our knowledge, within CLEF, there have been no other labs on
this or similar topics before.

Outside CLEF, there have been a recent challenge on Kaggle6 in 2021 and
some older ones, the DREAM 7 ALS Prediction challenge7 in 2012 and the
DREAM ALS Stratification challenge8 in 2015.

The Kaggle challenge used a mix of clinical and genomic data to seek in-
sights about the mechanisms of ALS and difference between people with ALS
who progress faster versus those who develop it more slowly. The DREAM 7
ALS Prediction challenge [12] asked to use 3 months of ALS clinical trial infor-
mation (months 0–3) to predict the future progression of the disease (months
3–12), expressed as the slope of change in ALS Functional Rating Scale Re-
visited (ALSFRS-R) [5], a functional scale that ranges between 0 and 40. The
DREAM ALS Stratification challenge asked participants to stratify ALS patients
into meaningful subgroups, to enable better understanding of patient profiles and
application of personalized ALS treatments.

Differently from these previous challenges, iDPP�CLEF focuses on explain-
able AI and on temporal progression of the disease.

3 Tasks

iDPP�CLEF 2022 is the first edition of the lab and consists of pilot activities
aimed both at an initial exploration of ALS progression prediction and at un-
derstanding of the challenges and limitations to refine and tune the labs itself
for future iterations.

In particular, iDPP�CLEF targets two kinds of activities:

1. preliminary and exploratory pilot tasks on disease progression prediction;
2. position papers on the explainability of the prediction algorithms.

Overall, this mix provides participants with the opportunity to make some
hands-on experience with these data and provide feedback about the task design
as well as to brainstorm on how to evaluate this kind of algorithms and, in
particular, assess their explainability.

3.1 Pilot Task 1: Ranking Risk of Impairment

As shown in Figure 1, this task focuses on ranking of patients based on the
risk of impairment in specific domains. More in detail, we use the ALSFRS-R
scale to monitor speech, swallowing, handwriting, dressing/hygiene, walking and
respiratory ability in time and ask participants to rank patients based on time
to event risk of experiencing impairment in each specific domain.

6 https://www.kaggle.com/alsgroup/end-als
7 https://dreamchallenges.org/dream-7-phil-bowen-als-prediction-prize4life/
8 https://dx.doi.org/10.7303/syn2873386.

https://www.kaggle.com/alsgroup/end-als
https://dreamchallenges.org/dream-7-phil-bowen-als-prediction-prize4life/
https://dx.doi.org/10.7303/syn2873386
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Fig. 1: Task 1: from patients to ranking of patients based on time of event risk.

More in detail, participants are asked to rank subjects based on the risk of
early occurrence of

– Task 1a: Non-Invasive Ventilation (NIV) or (competing event) Death9,
whichever occurs first;

– Task 1b: Percutaneous Endoscopic Gastrostomy (PEG) or (competing event)
Death, whichever occurs first;

– Task 1c: Death10.

For each of these tasks, participants are given a dataset containing 6 months
of visits and are asked to rank patients on the risk of occurrence of one of the
above events after month 6.

In particular, for each sub-task, we ask for two types of submission from
participants:

– submissions using only data available until Time 0, i.e. the time of the first
ALSFRS-R questionnaire;

– submissions using data available until Month 6.

Indeed, from the clinicians point of view, it is of interest to understand what
they can say the first time they see the patient (Time 0) and what they can say
if they collect additional data for the following 6 months.

3.2 Pilot Task 2: Predicting Time of Impairment

As shown in Figure 2, this task refines Task 1 asking participants to predict when
specific impairments will occur (i.e. in the correct time-window). In this regard,

9 Death is considered a competing event since a patient might incur death before
experiencing the event of interest; the models should account for that.

10 For the tasks 1c and 2c, death is not a competing event anymore but the focus of
the models’ predictions.
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Fig. 2: Task 2: from patients to time of impairment.

we assess model calibration in terms of the ability of the proposed algorithms to
estimate a probability of an event close to the true probability within a specified
time-window.

In particular, participants are asked to predict the time of the event. Where
the event is

– Task 2a: NIV or (competing event) Death, whichever occurs first;

– Task 2b: PEG or (competing event) Death, whichever occurs first;

– Task 2c: Death.

As in the previous case, for each sub-task, we ask two type of submissions
from participants:

– submissions using only data available until Time 0, i.e. the time of the first
ALSFRS-R questionnaire;

– submissions using data available until Month 6.

3.3 Position Papers Task 3: Explainability of AI algorithms

This task is not an evaluation challenge but rather a discussion on how to make
these prediction algorithms explainable, also in a visual way.

Therefore, this task called for position papers to start a discussion on AI
explainability including proposals on how the single patient data can be visual-
ized in a multivariate fashion contextualizing its dynamic nature and the model
predictions together with information on the predictive variables that most influ-
ence the prediction. We evaluated proposals of different visualization frameworks
able to show the multivariate nature of the data and the model predictions in
an explainable, possibly interactive, way.

Even if this task is not an evaluation challenge, authors of the papers were
welcome to use the datasets provided by iDPP�CLEF, if they wished to give
examples of their algorithms and solutions, or to explore the submissions made
by other participants in iDPP�CLEF and apply their explainability techniques
to them.
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Table 1: Main features of the iDPP�CLEF dataset.

Section Sub-section Variables

Baseline Patient Sex, Date of Birth
ALS Onset Date, Site
Diagnosis Date, Regions affected, Diagnostic Delay,

FVC, BMI at diagnosis

Follow-up

Progression scores ALSFRS-R, Rate of disease progression
Tests Hematologic tests, Muscle strength as-

sessed by manual testing, Respiratory
function tests

Therapy ALS treatments
Other Regions affected, Upper and lower motor

neuron signs, Cognitive and neurophysio-
logical changes

Clinical Events History BMI premorbid, Family history, Comor-
bidities, Previous surgery and trauma

Interventions Date of NIV, Date of PEG, Date of Tra-
cheostomy

Survival Date of death

Lifestyle Lifestyle Working activity, Physical activity, History
of smoking, Marital status, Education level

4 Dataset

iDPP�CLEF developed a dataset containing patient records from two clinical
institutions in Turin, Italy, and in Lisbon, Portugal.

The dataset is fully anonymized, meaning that all the information which
might reveal the identity of a patient, e.g. place of birth or city of residence, are
removed; we also avoided absolute dates and made everything relative to Time

0, i.e. the date of the first ALSFRS-R questionnaire [5].
Table 1 summarizes the main features and variables available in the dataset.

The following data are available for both the training and the test sets:

– the first available ALSFRS-R questionnaire at Time 0 (both single question
scores and total score).
Thus, for example, time-of-onset and time-of-diagnosis are expressed as rel-
ative delta with respect to Time 0 in months (also fractions);

– the slope of the ALSFRS-R score between time-of-onset and Time 0 as:

slope =
48−ALSFRS-R-score (Time 0)

Time 0− TimeOnset

– all the other static data, with a complete list available at http://brainteaser.
dei.unipd.it/challenges/idpp2022/assets/other/static-vars.txt

– visits , containing either other ALSFRS-R questionnaires or Spirometry, i.e.
Forced Vital Capacity (FVC). The complete list of variables for each visit

http://brainteaser.dei.unipd.it/challenges/idpp2022/assets/other/static-vars.txt
http://brainteaser.dei.unipd.it/challenges/idpp2022/assets/other/static-vars.txt
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is available at http://brainteaser.dei.unipd.it/challenges/idpp2022/assets/
other/visits.txt.

We ensured that, for each patient, there are 6 months of data, so that pre-
dictions can be made using either only data available at Time 0 or all the data
available until month 6.

The following data are available only for the training set:

– Time of event (NIV, PEG, or DEATH); or
– Censoring time, i.e. time of the last available visit if none of the previous

events occurs;

according to the following format:

0x4bed50627d141453da7499a7f6ae84ab 1 PEG 20.5

0x4d0e8370abe97d0fdedbded6787ebcfc 1 PEG 18.3

0x5bbf2927feefd8617b58b5005f75fc0d 1 DEATH 17.6

0x814ec836b32264453c04bb989f7825d4 0 NONE 37.4

0x71dabb094f55fab5fc719e348dffc85 1 PEG 8.2

...

where:

– Columns are separated by a white space;
– The first column is the patient ID, a 128 bit hex number (should be con-

sidered just as a string);
– The second column indicates whether the one of the above events occurred

(1) or not (0);
– The third column is the occurred event. It comes from a controlled vocabu-

lary and it can be either NIV, PEG, DEATH, or NONE;
– The fourth column is the time of the event, or the censoring time, from Time

0 in months.

Training and test datasets follow a (roughly) 80%-20% proportion; more
details about the split into training and test are provided below.

Both Task 1 and Task 2 use the same datasets but we prepared a separate
dataset for each of the sub-tasks to make it simpler for participants to focus
on a specific event to be predicted. Table 2 provides details about the created
datasets.

Creation of the datasets The full dataset contained approximately 4,800
records linked to patients, with around 20,000 ALSFRS-R questionnaires in to-
tal and 5,500 records concerning spirometries. The original data contain minor
inconsistencies and typos. Therefore, we first process the data, removing records
that are likely wrong or do not provide essential information to enable prediction.
In terms of patient records we removed those presenting an unordered sequence
of events (i.e., onset after diagnosis or diagnosis after death). Such event se-
quences are likely due to typos and other human errors, which result in wrong
records that might introduce noise and spurious information in the final dataset.

http://brainteaser.dei.unipd.it/challenges/idpp2022/assets/other/visits.txt
http://brainteaser.dei.unipd.it/challenges/idpp2022/assets/other/visits.txt
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Table 2: Training and test datasets.
Training

Sub-task Patients ALSFRS-R Spirometry Outcome

Sub-task a 1,454 3,668 1,189
– NIV: 675 patients (46.42%)
– DEATH: 636 patients (43.74%)
– NONE: 143 patients (9.83%)

Sub-task b 1,715 4,264 1,506
– PEG: 501 patients (29.21%)
– DEATH: 969 patients (56.50%)
– NONE: 245 patients (14.29%)

Sub-task c 1,756 4,366 1,536
– DEATH: 1,486 patients (84.62%)
– NONE: 270 patients (15.38%)

Test
Sub-task Patients ALSFRS-R Spirometry Outcome

Sub-task a 350 872 273
– NIV: 162 patients (46.29%)
– DEATH: 152 patients (43.43%)
– NONE: 36 patients (10.29%)

Sub-task b 430 1,049 361
– PEG: 120 patients (27.91%)
– DEATH: 251 patients (58.37%)
– NONE: 59 patients (13.72%)

Sub-task c 494 1,220 414
– DEATH: 417 patients (84.41%)
– NONE: 77 patients (15.59%)

Furthermore, a patient record was dropped if one or more of the following
pieces of information were absent:

– onset or diagnosis dates;
– death date in records associated with dead patients;
– at least six months of historical ALSFRS-R questionnaires before an event

(NIV, PEG, or (competing event) Death).

We adopt the filtering strategy mentioned above to grant that every record in
the final dataset contains enough information to allow proper predictions.

Concerning the ALSFRS-R questionnaires, we removed those records that
had one or more of the following problems:

– duplicate records;
– missing date;
– one or more of the ALSFRS-R items missing;
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– ALS Functional Rating Scale (ALSFRS) questionnaires with the old formu-
lation (thus with items from 1 to 9, plus the old 10th item). We include only
records referring to ALSFRS-R.

Furthermore, if one or more of the ALSFRS-R sub-scores or the total ALSFRS-R
score do not agree with the sum of the associated ALSFRS-R items, we replace
the value reported in the original dataset with the sum of the linked items.
Finally, regarding the spirometries, we removed duplicated records, records with
a missing date, and FVC percentage value.

Figure 3 illustrates a set of - synthetic - patients and their clinical history,
describing whether they satisfy the conditions to be inserted into the dataset. By
construction, the first ALSFRS visit (blue bullets) is considered as Time 0, while
the moment of the previous spirometries (yellow bullets) and subsequent visits
is indicated as the difference in months with respect to the reference ALSFRS.

– Patient 1 is inserted into the dataset, having a proper sequence of visits,
questionnaires and events (at least six months of information before the first
event).

– Patient 2, on the other hand, cannot be included in the dataset since they
do not have enough information.

– For Patient 3, we observe that only four months passed between the first
ALSFRS and the first event. Thus, even though we have 6 months of overall
information (first spirometry to event), we cannot retain the record.

– Patient 4, regardless of the fact that they have a single ALSFRS, can be
included in the dataset since the distance between the first ALSFRS and the
event is above six months.

– Both patients 5 and 6 need to be excluded from further analyses: the former
does not have six months of information before the first event, while the latter
does not have enough history, regardless of the spirometry taken before the
first ALSFRS.

– Patients 7 and 8, on the other hand, can be considered: the former has
a proper clinical history, while the latter, even though he or she have a
“censoring” event – marked with a question mark, has more than six months
of history.

Split into training and test Each of the three available datasets (sub-task
a, b, and c) was split into a training set and a test set, with proportions 80%
and 20%, respectively. The data were split stratifying the subjects according to
outcome time and to the specific outcome type (death, NIV, none for sub-task
a, death, PEG, none for sub-task b, and death, none for sub-task c). Stratifying
by these two variables is instrumental to the fairness of the challenge as it forces
an equal distribution of their levels across the two subsets. The simplest method
to verify whether stratification has been performed correctly is to compare the
distribution of the stratification variables (outcome time and outcome type) in
each training/test pair. From the literature, certain variables are known to be



10 Guazzo et al.

-1-2-3-4 32 765410 1058 11

1

2

3

4

5

6

7

8 ?

EVENT

ALSFRS-R

SPIROMETRY

Months

Fig. 3: Sequences of events that allow (or forbid) a patient to be considered as
suitable to belong to the dataset. Events grayed out refer to those events hap-
pened after another and thus ignored. Visits grayed out refer to visits happened
after the first six months.

particularly relevant in predicting events related to ALS progression [6], there-
fore, even though they were not included in the stratification criteria, we verified
that sex, age at onset, onset site, ALSFRS-F slope, and the number of available
visits in the first 6 months were also equally represented in the training and test
sets. Table 3 reports, as an example, the comparison of the variables’ distribu-
tions in the training (second column) and test (third column) sets for sub-task a.
The comparison for the other two sub-tasks are shown in the extended overview
[8]. Since the distributions are similar, we concluded that the training/test split
provided to the participants met best-practice quality standards.

5 Lab Setup and Participation

In the remainder of this section, we detail the guidelines the participants had to
comply with to submit their runs and the submissions received by iDPP�CLEF.

5.1 Guidelines

Participating teams were provided with the following guidelines:

– The runs should be submitted in a textual format in the participant reposi-
tory, both described below;

– Each group can submit a maximum of 5 runs for each sub-task, thus amount-
ing to maximum 15 runs for each of Task 1 and Task 2;

– For each task, participants are asked to submit two types of runs: either
using only the information available at Time 0 or using all the information
available in the first 6 months.
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Table 3: Sub-task a, comparison between training and test populations. Contin-
uous variables are presented as median [1st - 3rd quartiles] ; discrete variables as
count (percentage on sample total), for each level.

Training Test

Number of subjects 1454 350

Outcome type
Death: 636 (44%)
NIV: 675 (46%)

Censoring: 143 (10%)

Death: 152 (43%)
NIV: 162 (46%)

Censoring: 36 (10%)

Outcome time 17.75 [11.14-30.99] 20.72 [11.25-36.76]

Sex
M: 743 (51%)
F: 711 (49%)

M: 188 (54%)
F: 16 (46%)

Age at onset 64.89 [55.66-70.76] 64.76 [56.66-71.58]

Onset site

Bulbar: 449 (31%)
Axial: 3 (0.002%)

Generalized: 4 (0.003%)
Limbs: 998 (68%)

Bulbar: 105 (30%)
Axial: 0 (0%)

Generalized: 0 (0%)
Limbs: 242 (70%)

ALSFRS-R slope 0.43 [0.24-0.79] 0.41 [0.23-0.80]

Number of available visits 2.00 [2.00-3.00] 3.00 [2.00-3.00]

Runs should be uploaded using the following name convention for their iden-
tifiers:

<teamname>_T<1|2><a|b|c>_<train>_<freefield>

where:

– teamname is the name of the participating team;
– T<1|2><a|b|c> is the identifier of the task the run is submitted to, e.g. T1b

for Task 1, sub-task b;
– train is data window used to train the algorithm. It can be either M0, if only

the data available at Time 0 have been used, or M6 if all the data available
in the first 6 months have been used;

– freefield is a free field that participants can use as they prefer.

For example, a complete run identifier may look like

upd_T2b_M6_survRF

where:

– upd is the University of Padua team;
– T2b means that the run is submitted for Task 2, sub-task b;
– M6 means that the algorithm has been trained using all the data available in

the first 6 months;
– survRF suggests that participants have used survival random forests as a

prediction method.
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Participant Repository Participants are provided with an individual git
repository for all the tasks they take part in. The repository contains the runs,
resources, and possibly the code produced by each participant in order to pro-
mote reproducibility and open science. The repository is organised as follows:

– submission: this folder contains the runs submitted for the different tasks.
– score: this folder contains the performance scores of the submitted runs.
– code: this folder contains the source code of the developed system.
– resource: this folder contains any additional resources created during the

participation.
– report: this folder contains the template for participant report.

The submission and score folders are organized into sub-folders for each task
as follows:

– submission/task1: for the runs submitted to the first task. Similar structure
for the other tasks.

– score/task1: for the performance scores of the runs submitted to the first
task. Similar structure for the other tasks.

The goal of iDPP�CLEF is to speed up the creation of systems and re-
sources for ALS progression prediction as well as openly share these systems
and resources as much as possible. Therefore, participants are more than en-
couraged to share their code and any additional resources they have used or
created.

All the contents of these repositories are released under the Creative Com-
mons Attribution-ShareAlike 4.0 International License11.

Task 1 Run Format Runs had to be submitted as a text file with the following
format:

0x4bed50627d141453da7499a7f6ae84ab 0.897 0 PEG upd_T1b_M6_survRF

0x4d0e8370abe97d0fdedbded6787ebcfc 0.773 1 PEG upd_T1b_M6_survRF

0x5bbf2927feefd8617b58b5005f75fc0d 0.773 2 DEATH upd_T1b_M6_survRF

0x814ec836b32264453c04bb989f7825d4 0.615 3 NONE upd_T1b_M6_survRF

0x71dabb094f55fab5fc719e348dffc85 0.317 4 PEG upd_T1b_M6_survRF

...

where:

– Columns are separated by a white space;
– The first column is the patient ID, a 128 bit hex number (should be con-

sidered just as a string);
– The second column shows the prediction score that generated the ranking.

It is expected to be a floating point number in the range [0, 1]. This score
must be in descending (non-increasing) order;

11 http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/
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– The third column is the rank of the patient by her/his risk of impairment,
starting from 0. This is expected to be a strictly increasing integer number.
It is important to include the rank so that we can handle tied scores (for a
given run) in a uniform fashion;

– The fourth column is the predicted event. It comes from a controlled vocab-
ulary and it can be either NIV, PEG, DEATH, or NONE. Note that, since each
sub-task is focused on the prediction of a specific event (NIV, PEG, or DEATH),
this column will contain that event or the competing event DEATH or NONE;

– The fifth column is the run identifier, according to the format described
above. It must uniquely identify the participating team and the submitted
run.

Task 2 Run Format Runs had to be submitted as a text file with the following
format:

0x4bed50627d141453da7499a7f6ae84ab 6-12 PEG upd_T2b_M6_survRF

0x4d0e8370abe97d0fdedbded6787ebcfc 18-24 PEG upd_T2b_M6_survRF

0x5bbf2927feefd8617b58b5005f75fc0d 24-30 DEATH upd_T2b_M6_survRF

0x814ec836b32264453c04bb989f7825d4 >36 NONE upd_T2b_M6_survRF

0x71dabb094f55fab5fc719e348dffc85 >36 PEG upd_T2b_M6_survRF

...

where:

– Columns are separated by a white space;
– The first column is the patient ID, a 128 bit hex number (should be con-

sidered just as a string);
– The second column shows the prediction window in months. Possible values

are taken from a controlled vocabulary as follows:

• 6-12: the event will happen in the range of months (6, 12];
• 12-18: the event will happen in the range of months (12, 18];
• 18-24: the event will happen in the range of months (18, 24];
• 24-30: the event will happen in the range of months (24, 30];
• 30-36: the event will happen in the range of months (30, 36];
• >36: the event will happen in the range of months (36,+∞).

– The third column is the rank of the patient by her/his risk of impairment,
starting from 0. It is important to include the rank so that we can handle
tied scores (for a given run) in a uniform fashion;

– The fourth column is the predicted event. It comes from a controlled vocab-
ulary and it can be either NIV, PEG, DEATH, or NONE. Note that, since each
sub-task is focused on the prediction of a specific event (NIV, PEG, or DEATH),
this column will contain that event or the competing event DEATH or NONE;

– The fifth column is the run identifier, according to the format described
above. It must uniquely identify the participating team and the submitted
run.
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Table 4: Teams participating in iDPP�CLEF 2022.
Team Name Description Country Repository Paper
BioHIT National Centre for Scien-

tific Research Demokritos
(NCSR Demokritos)

Greece https://bitbucket.org/
brainteaser-health/
idpp2022-biohit

–

CompBioMed Department of Medical Sci-
ences, University of Turin

Italy https://bitbucket.org/
brainteaser-health/
idpp2022-compbiomed-unito

Pancotti et al. [16]

FCOOL Faculty of Sciences of the
University of Lisbon

Portugal https://bitbucket.org/
brainteaser-health/
idpp2022-fcool

Branco et al. [2] and
Nunes et al. [15]

LIG GETALP Laboratoire
d’Informatique de Greno-
ble, Université Grenoble
Alpes

France https://bitbucket.org/
brainteaser-health/
idpp2022-lig-getalp

Mannion et al. [14]

SBB University of Padua Italy https://bitbucket.org/
brainteaser-health/
idpp2022-sbb

Trescato et al. [18]

Table 5: Break-down of the runs submitted by participants for each task and
sub-task. Participation in Task 3 does not involve submission of runs and it is
marked just with a tick.

Team Name Total Task 1 Task 2 Task 3
a b c a b c

BioHIT 18 3 3 3 3 3 3 –

CompBioMed 40 8 8 6 6 6 6 –

FCOOL 15 – – – 5 5 5 ✓
LIG GETALP 23 4 4 4 4 4 3 –

SBB 24 4 4 4 4 4 4 –

Total 120 19 19 17 22 22 21

5.2 Participants

Overall, 43 teams registered for participating in iDPP�CLEF but only 5 of them
actually managed to submit runs for at least one of the offered tasks. Table 4
reports the details about the participating teams.

Table 5 provides breakdown of the number of runs submitted by each partic-
ipant for each task and sub-task. Overall, we have received 120 runs which are
roughly broken down evenly among the different tasks.

6 Evaluation Measures

iDPP�CLEF adopted several state-of-the-art evaluation measures to assess the
performance of the prediction algorithms, among which:

– ROC curve and/or the precision-recall curve (and area under the curve)
to show the trade-off between clinical sensitivity and specificity for every
possible cut-off of the risk scores;

https://bitbucket.org/brainteaser-health/idpp2022-biohit
https://bitbucket.org/brainteaser-health/idpp2022-biohit
https://bitbucket.org/brainteaser-health/idpp2022-biohit
https://bitbucket.org/brainteaser-health/idpp2022-compbiomed-unito
https://bitbucket.org/brainteaser-health/idpp2022-compbiomed-unito
https://bitbucket.org/brainteaser-health/idpp2022-compbiomed-unito
https://bitbucket.org/brainteaser-health/idpp2022-fcool
https://bitbucket.org/brainteaser-health/idpp2022-fcool
https://bitbucket.org/brainteaser-health/idpp2022-fcool
https://bitbucket.org/brainteaser-health/idpp2022-lig-getalp
https://bitbucket.org/brainteaser-health/idpp2022-lig-getalp
https://bitbucket.org/brainteaser-health/idpp2022-lig-getalp
https://bitbucket.org/brainteaser-health/idpp2022-sbb
https://bitbucket.org/brainteaser-health/idpp2022-sbb
https://bitbucket.org/brainteaser-health/idpp2022-sbb
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– Concordance Index (C-index) to summarize how well a predicted risk score
describes an observed sequence of events.

– E/O ratio and Brier Score to assess whether or not the observed event rates
match expected event rates in subgroups of the model population.

– Specificity and recall to assess, for each interval, the ability of the models of
correctly identify true positives and true negatives.

– Distance to assess how far the predicted time interval was from the true time
interval.

To ease the computation and reproducibility of the results, scripts for com-
puting the measures are available in the following repository: https://bitbucket.
org/brainteaser-health/idpp2022-performance-computation.

The next two sections provide details about the adopted measures for each
Task.

6.1 Pilot Task 1: Ranking Risk of Impairment

The runs submitted for Task 1 were evaluated by means of Harrel’s concordance
index (C-index) [11], area under the receiver operating characteristic curve (AU-
ROC) [10], and the Brier score (BS) [3]. The 95% confidence intervals of the
C-index and the AUROC were also considered [17].

The C-index has an advantage over the other considered metrics (i.e., AU-
ROC and BS) in that it can be used to evaluate model discrimination on the
test sets regardless of censored data – data for those patients that did not in-
curred either the relevant event (NIV or PEG) or the competing event (Death).
According to the best practices in the field [13], before computing the C-index,
a final censoring time equal to the last time-to-event in the training was set on
each test set. This ensured consistency between Task 1’s final results and those
that might have been obtained by the participants during model development.

The AUROC and BS were computed at various prediction horizons (PHs).
Specifically, seven clinically relevant PHs were considered, namely: 12, 18, 24,
30, 36, 48, and 60 months after the baseline. For each PH, the corresponding
version of the test set comprised: all patients who experienced an event before
the PH, and all patients who experienced an event or were censored after the
PH as censored patients (and were, thus, censored at that PH). As the status of
patients censored before the PH was, by definition, unknown, they were excluded
from performance evaluation at that PH.

To contextualize the results obtained by the participants, each run was com-
pared to the empirical lower bound established by the average performance of
100 random classifiers (i.e., such that their output was a random continuous
number, uniformly sampled in the range [0, 1]).

6.2 Pilot Task 2: Predicting Time of Impairment

To evaluate the predictions of Task 2, the selected evaluation metrics were:
the specificity, the recall, and a measure of distance between the predicted and
correct time intervals.

https://bitbucket.org/brainteaser-health/idpp2022-performance-computation
https://bitbucket.org/brainteaser-health/idpp2022-performance-computation
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Confusion matrices were computed to derive specificity, i.e., the number of
correct negative predictions divided by the total number of negatives, and recall,
i.e., the ratio of correct positive predictions over the total predicted positives. To
do so, the outcome times reported in the column Time of the published test sets
were mapped to the corresponding interval (“6-12”, “12-18”, “18-24”, “24-30”,
“30-36”, or “>36” months). A conformance check was performed on the partic-
ipants’ predicted times: predictions in the time interval “0-6” were reassigned
to the interval “6-12”, i.e., the closest allowed interval. The confusion matrices
reported the predicted time interval vs the true time interval, independently of
the predicted event.

A measure of distance between the predicted and correct time intervals,
in months, was also considered (AbsDist). To compute the AbsDist, all the
time intervals were replaced with the mean value of each interval (i.e., “6-12”
was replaced with 9, “12-18” with 15, “18-24” with 21, “24-30” with 27, “30-
36” with 33, and “>36” with 39). The difference between the predicted values
and the true values was then computed as meanV aluepredicted time interval −
meanV aluetrue time interval. The obtained differences were, by construction, in
the range [−36;+36] where a smaller modulus corresponds to more accurate pre-
dictions. Negative values correspond to a events that occur before the predicted
time and positive values to events that occur after. Finally, the AbsDist was
obtained by averaging the differences absolute values.

To contextualize the results obtained by the participants, each run was com-
pared to the performance of several synthetic runs, with the following charac-
teristics:

– min interval : a run in which the predicted time intervals are identical for all
subjects, and fixed at the first possible time interval, i.e. “6-12”;

– max interval : a run in which the predicted time intervals are identical for all
subjects, and fixed at the last possible time interval, i.e. “>36”;

– interval 18 24 : a run in which the predicted time intervals are identical for
all subjects, and fixed at the time interval “18-24”;

– random interval : 100 randomly generated runs, but with the same distribu-
tion as the test set distribution (i.e., such that their output was sampled
among the labels “6-12”, “12-18”, “18-24”, “24-30”, “30-36”, “>36” follow-
ing the same distribution of the true intervals);

– inverse distr interval : 100 randomly generated runs, but with an inverse
distribution compared to the test set distribution (i.e., such that their output
was sampled among the labels “6-12”, “12-18”, “18-24”, “24-30”, “30-36”,
“>36” following the inverse distribution of the true outcome);

– corr interval : 100 correlated runs, with correlation coefficient to the true
intervals ∼ 0.7.

7 Results

For each task, we report here the analysis of the performance attained by the
runs submitted by the Lab’s participants according to the metrics described in
Section 6.
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Fig. 4: Sub-task a C-index computed for all submitted runs. The bars in the plot
show the 95% confidence intervals. The average C-index of 100 random classifiers
is reported in the last row.

7.1 Pilot Task 1: Ranking Risk of Impairment for ALS

Here, only the C-index, the 12-month and 48-month AUROCs, and the 12-month
and 48-month BSs obtained for all participants runs submitted for Task 1’s sub-
task a are shown. Results for all sub-tasks and all PHs are shown in the extended
overview [9].

Figure 4 shows the C-index with its 95% confidence intervals computed for
all runs submitted for sub-task a and for the 100 random classifiers (last row). As
expected, the random classifiers yielded an average C-index of around 0.5. Runs
submitted by the BioHit team were comparable to those obtained by the random
classifiers. All runs submitted by other participants significantly outperformed
the random classifiers (C-index > 0.625) with team CampBioMed leading the
pack (C-index > 0.7).

Figure 5 shows the AUROC with its 95% confidence intervals computed
for all runs submitted for sub-task a at the 12-month PH. The average 12-
month AUROC of the 100 random classifiers is reported in the the last row.
The 12-month AUROC confirmed the results obtained when considering the C-
index. Again, as expected, the random classifiers yielded a 12-month AUROC of
around 0.5. Runs submitted by the BioHit team showed a discrimination that
was comparable to the one of the random classifiers, and all runs submitted by
other participants significantly outperformed the random classifiers (12-month
AUROC> 0.675) with some runs of team CampBioMed and team SBB achieving
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Fig. 5: Sub-task a AUROC computed for all submitted runs with a 12-months
PH. The bars in the plot show the 95% confidence intervals. The average 12-
months AUROC of 100 random classifiers is reported in the last row.

excellent results (12-month AUROC > 0.8) when all the information available
in the first 6 months was considered (M6 runs).

Figure 6 shows the BS computed for runs submitted for sub-task a at the 12-
month PH. The average 12-month BS of the 100 random classifiers is reported in
the last row. The random classifier yield a 12-month BS of around 0.325 as the
random probability values were, on average, well distributed in the range [0, 1].
Runs submitted by the CampBioMed team showed the best calibration at this
PH (12-month BS < 0.225), while those submitted by the SBB team showed the
worst one (12-month BS > 0.675), mainly due to a consistent overestimation of
the event probability. Other participants’ runs had 12-month BSs comparable
with the random classifiers as their models did not correctly predict the event
probability but neither showed consistent overestimation trends.

Figure 7 shows the AUROC with its 95% confidence intervals computed
for all runs submitted for sub-task a at the 48-month PHs. The average 48-
month AUROC of the 100 random classifiers (again, expectedly, around 0.5)
is reported in the the last row. The 48-month AUROC confirmed once again
the results obtained with the C-index and 12-month AUROC. Runs submitted
by the BioHit team had comparable discrimination to the random classifiers,
while all runs submitted by other participants significantly outperformed them
(48-month AUROC > 0.7). Runs that used all the information available in the
first 6 months (M6 runs) submitted by the CampBioMed team were the best
performing ones also at this PH (48-month AUROC > 0.8).
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Fig. 6: Sub-task a BS computed for all submitted runs with a 12-months PH.
The random classifier average 12-months BS is reported in the last row with its
95% confidence intervals.

Figure 8 shows the BS computed for runs submitted for sub-task a at the 48-
month PH. The average 48-month BS of the 100 random classifiers is reported
in the last row. The random classifiers yielded a 48-month BS of around 0.325
as the random probability values were, as in the 12-month case, on average, well
distributed in the range [0, 1]. All GBSA runs submitted by the CampBioMed
team, which had good calibration with a PH of 12 months, led to a poorer
calibration at 48 months (48-month BS > 0.75). All other runs submitted by the
participants significantly outperformed the random classifiers by showing good
calibration at this PH (48-months BS < 0.25).

Overall, for Task 1 sub-task a, runs submitted by the CampBioMed team
were the best performing across the board; meanwhile, runs submitted by the
BioHit team led to the lowest discrimination, but still yielded acceptable cali-
bration at a long PH (48 months). Finally, the SBB and LIG GETALP teams
obtained comparable results when considering runs obtained using all the infor-
mation available in the first 6 months (M6 runs); meanwhile, when using only
the information available at time 0 (M0 runs), runs submitted by the SBB team
showed worse discrimination than those submitted by the LIG GETALP teams.

7.2 Pilot Task 2: Predicting Time of Impairment for ALS

Figures 9, 10, and 11 show the specificity-recall plots for three select time inter-
vals (“6-12”, “12-18”, and “18-24”) of Task 2’s sub-task a, including all partici-
pants’ runs and all the synthetic runs. Results for all time intervals and sub-tasks
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Fig. 7: Sub-task a AUROC computed for all submitted runs with a 48-months
PH. The bars in the plot show the 95% confidence intervals. The average 48-
months AUROC of 100 random classifiers is reported in the last row.

are presented in the extended overview [9]. The graph shows the specificity on
the x-axis (from 1 to 0, left to right), and the recall on the y-axis (from 0 to 1,
bottom to top). The ideal classifier would have specificity = 1 and recall = 1,
and would therefore be located in the upper left corner: as a general guidance,
the closer a run is to the upper left corner, the better the classification obtained.

In all graphs, the synthetic runs with constant predictions, fixed at the mini-
mum or maximum allowed interval, are located in the two extreme corners of the
plot. In detail, the max interval run is located in the lower left corner with speci-
ficity = 0 and recall = 1, while the min interval run, in the upper right corner,
has specificity = 1 and recall = 0. As expected, the 100 runs with 70% corre-
lation form a cloud in the upper left corner, while the 200 randomly generated
runs, 100 with the same distribution and 100 with the inverse distribution always
remain in the lower left sector, with 1 > specificity > 0.5 and 0 > recall > 0.5.

For the “6-12” interval, represented in Figure 9, the team with the best clas-
sification performance according to specificity and recall was the FCOOL team,
whose five submitted runs yielded specificity ≃ 0.72 and recall = 0.612. One run
from the CompBioMed team also performed well, with specificity = 0.839 and
recall = 0.561. In contrast, the other runs submitted by the CompBioMed team
were in line with those of the other participants, with rather high specificity but
low recall.

Figure 10 reports the results for the “12-18” interval. Again, the Comp-
BioMed team outperformed the other teams with a run with specificity = 0.581
and recall = 0.545. The second best run in this time window was from the LIG
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Fig. 8: Sub-task a BS computed for all submitted runs with a 48-months PH.
The random classifier average 48-months BS is reported in the last row with its
95% confidence intervals.

GETALP team, with specificity = 0.668 and recall = 0.509. Similar results were
obtained by two runs of the SBB team, which reached specificity ≃ 0.64 and
recall ≃ 0.44.

The SBB and LIG GETALP teams obtained the best performance in the
interval “18-24”, as shown in Figure 11. Specifically, the SBB team submitted
three runs with specificity ≃ 0.66 and recall ≃ 0.47, while LIG GETALP one
with specificity = 0.697 and recall = 0.479. The other teams, as in the other
time intervals, obtained higher specificity scores to the detriment of recall, thus
positioning themselves in the lower left quadrant.

Figure 12 shows the AbsDist computed for all runs submitted for sub-task a.
The average AbsDist of the synthetic runs is reported as well. As expected, the
max interval run led to the worst result (AbsDist > 17 months), as most subjects
have a true time interval smaller than the maximum one. Runs random interval,
min interval, and inverse corr interval led to comparable distance values (Abs-
Dist 12− 13 months). Runs submitted by the BioHit team had AbsDist values
comparable with the synthetic run interval 18 24 (AbsDist 10 − 11 months),
suggesting that their models might predict the average time interval for most
subjects. All runs submitted by the other teams significantly outperformed the
aforementioned synthetic runs (AbsDist 7− 9 months) with CampBioMed team
leading the pack. Finally, the corr interval run led to the smallest AbsDist value
(AbsDist < 4 months). Note, however, that this run was included only as an ar-
bitrary reference, and its distance value was not strictly expected to be reached
by any participant.
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Fig. 9: Specificity-recall plot, sub-task a, time interval 6-12.

Predicting the correct event time interval proved to be a challenge for all
teams, especially in terms of recall. However, almost all teams were able to
obtain good AbsDist values as, on average, their models, despite not being able
to precisely identify the correct time interval, tended to predict an interval that
was immediately before or after the true one.

As observed for Task 1, runs performed better when considering all the infor-
mation available in the first 6 months (M6 runs) rather than only the information
available at time 0 (M0 runs).

7.3 Approaches

In this section, we provide a short summary of the approaches adopted by par-
ticipants in iDPP�CLEF. There are two separate sub-sections, one for Task
1 and 2 focused on ALS progression prediction and the other for Task 3, on
eXplainable AI (XAI) approaches for such kind of algorithms.
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Fig. 10: Specificity-recall plot, sub-task a, time interval 12-18.

Task 1 and 2 BoiHIT explored the use of logistic regression, random forest
classifiers, XGBoost, and LightGBM. Decision trees and boosting approaches
were preferred due to their ability to deal with both categorical and numeri-
cal/continuous features and the interpretability they offer. Even if LightGBM
was the model with the best performance, BoiHIT found out that this kind of
approaches might not be appropriate for time dependent problems and that time
to event analysis methods, such as survival analysis, might yield better results.

CompBioMed [16] considered three main approaches. The simplest one con-
sisted on fitting a standard survival predictor separately for each event as out-
lined above for independent events, called Naive Multiple Event Survival (NMES).
Another was the recently developed Deep Survival Machine (DSM), based on
deep learning and capable of handling competing risks. Finally, they also pro-
posed a time-aware classifier ensemble method, that also handles competing
risks, called Time-Aware Classifier Ensemble (TACE). All the above approaches
achieved comparable performance among them. Only the TACE models ap-
peared to be slightly worse than the rest in when using 6 months of data. More-
over, no clear advantage of the DSM models, that specifically handles competing
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Fig. 11: Specificity-recall plot, sub-task a, time interval 18-24.

risks, was observed with respect to the NMES models, which treat all events, as
if they were independent.

FCOOL [2] proposes a hierarchical approach, with a first-stage event predic-
tion, followed by specialized models predicting the time window to a particular
event. The procedure is three-fold: first, it creates patient snapshots based on
clustering with constraints, thus organizing patient records in an efficient man-
ner. Second, it uses a pattern-based approach that incorporates recent advances
on temporal pattern mining to the context of classification. This approach per-
forms end-stage event prediction while allowing the entire patient’s medical his-
tory to be considered. Finally, exploiting the predictions from the previous step,
specialized models are learned using the original features to predict the time
window to an event. This two-stage prediction approach aimed to promote ho-
mogeneity and lessen the impact of class imbalance, in comparison to performing
one single multilabel task.

LIG GETALP [14] employed Cox’s proportional hazards model to the task
of ranking the risk of impairment, using the gradient boosting learning strategy
The output of the time-independent part of the survival function calculated by
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Fig. 12: Sub-task a AbsDist computed for all submitted and synthetic runs. The
AbsDist of corr interval, inverse distr interval, and random interval is the aver-
age with 95% confidence intervals computed on the corresponding 100 randomly
generated runs.

the gradient boosting survival analysis method is then mapped to the interval (0,
1), via a sigmoid function. To estimate the time-to-event, LIG GETALP used a
regression model based on Accelerated Gradient Boosting (AGB). This being a
standard regression model, it does not take censoring into account and Mannion
et al. uses class predictions based on the Task 1 survival model to “censor” the
time-to-event predictions.

SBB [18] considered three survival analysis methods, namely: Cox, SSVM,
and RSF. They were chosen to represent a broad spectrum of baseline models
including parametric (SSVM), semiparametric (Cox), linear (Cox, SSVM), and
nonlinear (RSF) models. The Cox model and the RSF can only output risk
scores, which can be used to address Task 1 by ranking ALS patients according
to their risk of impairment, but do not provide a straightforward solution to
predicting Task 2’s time of impairment. To extend these approaches to Task 2,
the predicted time of impairment for a given patient was selected as the median
predicted time to impairment, i.e., the time at which the estimated survival
function crossed the 0.5 threshold. Instead, the SSVM can be used either as a
ranker or a time regressor depending on how the risk ratio hyperparameter is set
during model training. Here, the SSVM was initially trained as a time regressor
to address Task 2 directly. Then, its predicted times were converted into risk
scores in the range [0-1], as requested by the challenge rules, via Platt scaling.
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Task 3 Nunes et al. [15] proposes a novel approach that generates semantic
similarity-based explanations for patient-level predictions. The underlying idea is
to explain the prediction for one patient by considering aspect-oriented semantic
similarity with other relevant patients based on the most important features used
by ML approaches or selected by users. To build rich and easy to understand
semantic-similarity based explanations, Nunes et al. developed five steps: (1)
the enrichment of the Brainteaser Ontology [1] through integration of other
biomedical ontologies; (2) the semantic annotation of patients (if not already
available); (3) the similarity calculation between patients; (4) selection of the
set of patients to explain a specific prediction; and (5) the visualization of the
generated similarity-based explanations.

Buonocore et al. [4] trained a set of 4 well-known classifiers to predict death
occurrence: Gradient Boosting (using XGB implementation), Random Forest,
Logistic Regression and Multilayer perceptron. For the XAI methods Buonocore
et al. focused our attention on three different methods for post-hoc, model-
agnostic, local explainability, selecting SHAP, LIME and AraucanaXAI. Then,
Buonocore et al. evaluated and compared XAI approaches in terms of a set of
metrics defined in previous research on XAI in healthcare: identity : if there are
two identical instances, they must have the same explanations; fidelity : concor-
dance of the predictions between the XAI surrogate model and the original ML
model; separability : if there are 2 dissimilar instances, they must have dissimi-
lar explanations; time: average time required by the XAI method to output an
explanation across the entire test set. The quantitative evaluation of the three
different XAI methods did not reveal definitive superior performance of one of
the approaches, albeit SHAP seems to be the better overall performing algo-
rithm. However the explainability evaluation metrics are not all that is needed
to thoroughly assess the multifaceted construct of what constitutes a “good”
explanation in XAI in healthcare.

8 Conclusions and Future Work

iDPP�CLEF is a new pilot activity focusing on predicting the temporal progres-
sion of ALS and on the explainability of the AI algorithms for such prediction.

We developed 3 datasets containing anonymized patient data from two med-
ical institutions, one in Turin and the other in Lisbon, for the prediction of NIV,
PEG, or death.

Out of 43 registered participants, 5 managed to submit a total of 120 runs,
evenly spread across the offered tasks. Participants adopted a range of ap-
proaches, including various types of survival analysis, also using deep learning
techniques. For the XAI of the prediction algorithms they used both semantic-
similarity based techniques and state-of-art post-hoc and model-agnostic XAI
approaches.

For this initial iteration of the lab, iDPP�CLEF focus on ALS progression
prediction. Possible, future cycles will be extended to Multiple Sclerosis (MS),
another chronic disease, impairing neurological functions. Moreover, we plan to
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extend the datasets to also include data from environmental sensor, e.g. con-
cerning pollution.
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