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ABSTRACT
Thanks to recent advances in IR and NLP, the way users interact
with search engines is evolving rapidly, with multi-turn conver-
sations replacing traditional one-shot textual queries. Given its
interactive nature, Conversational Search (CS) is one of the scenar-
ios that can benefit the most from Query Performance Prediction
(QPP) techniques. QPP for the CS domain is a relatively new field
and lacks a proper framing. In this study, we address this gap by
proposing a framework for the application of QPP in the CS domain
and use it to evaluate the performance of predictors. We character-
ize what it means to predict the performance in the CS scenario,
where information needs are not independent queries but a series
of closely related utterances. We identify three main ways to use
QPP models in the CS domain: as a diagnostic tool, as a way to
adjust the system’s behaviour during a conversation, or as a way to
predict the system’s performance on the next utterance. Due to the
lack of established evaluation procedures for QPP in the CS domain,
we propose a protocol to evaluate QPPs for each of the use cases.
Additionally, we introduce a set of spatial-based QPP models de-
signed to work the best in the conversational search domain, where
dense neural retrieval models are the most common approaches
and query cutoffs are typically small. We show how the proposed
QPP approaches improve significantly the predictive performance
over the state-of-the-art in different scenarios and collections.
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1 INTRODUCTION
Conversational Search (CS) is the Information Retrieval (IR) par-
adigm where users converse with an automatic agent to satisfy
their information needs. CS allows for an intuitive human-machine
interaction since the user interrogates the machine using natural
language. Rhetorical figures – e.g., anaphoras, ellipses, coreferences
– and complex speech constructs in users’ utterances make CS
challenging. Nevertheless, thanks to recent advances in Natural
Language Processing (NLP) and Neural Information Retrieval (NIR)
and the advent of Large Language Models (LLMs), it is becom-
ing increasingly popular and ubiquitously adopted. CS can benefit
from employing Query Performance Prediction (QPP) techniques
in tasks such as determining the utterance rewriting approach to
adopt, identifying the topic shifts, or determining if the system
needs to ask the user clarifying questions.

QPP is the task of estimating the performance of an IR system
in the absence of human-assessed relevance judgements [5]. It has
been successfully employed in many tasks, such as query sugges-
tion [47], adaptive model selection [36, 42, 47, 48], and pathological
queries discovering [5]. We argue that the QPP for CS cannot be
addressed using the traditional strategies due to the profound dif-
ferences between CS and classical adhoc-ish IR. In a similar fashion
to what was pointed out by Hashemi et al. [18] about Question An-
swering (QA), we can observe that CS involves i) highly precision-
oriented metrics and small cutoff retrieval, while traditional QPP
techniques have been often devised and tested to predict Average
Precision (AP) at large cutoffs; ii) retrieving passages or short doc-
uments, while classical QPP techniques are often designed for long
documents; iii) heavy usage of NIR techniques which have not been
yet explored extensively in the QPP domain; iv) in the CS domain,
utterances are correlated and grouped into conversations, and there-
fore this characteristic should be taken into consideration, at least
when evaluating the QPP models. While a good share of effort has
been devoted to both the CS and QPP tasks alone, at the current
time only a few works studied the application of QPP techniques to
CS. Most of these works rely on the use of well-established classical
QPP methods to choose how the system should interact with the
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user [1] or to determine if the answer provided to the user contains
the relevant information [39], without taking into consideration all
the peculiarities of the CS domain described above. In this work, we
aim at address this gap by proposing a set of predictors explicitly
designed to synergize the best with CSmodels. We start by consider-
ing that most of the modern CS approaches rely on NIR techniques.
Thus, we focus on CS models that exploit documents’ and queries’
dense representations and propose QPP methodologies relying on
measuring how close retrieved documents’ representations are to
the query. We devise two predictors that measure the volume of
the hypercube encompassing the top 𝑘 retrieved documents in re-
sponse to a given query and show that such quantity effectively
correlates with the actual performance achieved. While we stress
the importance of QPP models for the conversational scenario, we
want to point out that, at the current time, it is yet missing a frame-
work describing how to correctly address QPP evaluation in the CS
scenario. Therefore, we detail a set of use cases and devise practical
evaluation protocols to assess the QPP models in each of them.

Our research contributions are the following:

RC1 Identify possible applications of QPP in the CS settings
and relevant figures that practitioners might be interested
in predicting.

RC2 Define how the QPP evaluation should be adapted to
correctly determine and compare the performance achieved
by QPP models for CS.

RC3 Devise a QPP model that relies on the specific charac-
teristics of the CS task, namely the heavy usage of dense
representations and precision-oriented measures.

To deliver these research contributions, we first define three
main possible use cases for QPP models in the CS scenario: i) QPP
as a diagnostic tool to evaluate CS systems in a post-hoc fashion
after the system has been deployed; ii) QPPs as a means to assess
the system’s behavior within the conversation; iii) QPP to predict
“on-line” how well the next user’s utterance will perform.

For each use case we propose an evaluationmethodology capable
of measuring the performance of a QPP model according to its pur-
pose. For the first use case, we define a collection-wise evaluation,
that mimics the current QPP evaluation approach and is suited for
scenarios where each utterance is considered an independent event.
For the second use case, we define a conversation-wise evaluation
approach that allows measuring the coherence within the conversa-
tion, to understand whether there are specific conversation topics
where the IR system is bound to fail. For the third use case, we de-
fine an utterance-wise methodology, that describes how the single
utterance is expected to perform. Finally, we propose a set of QPP
models explicitly designed to work the best in the CS scenario that
exploit morphological characteristics of the embedding space used
to represent conversational utterances and documents. We show
that, depending on the scenario, the proposed QPP techniques can
overcome the current state of the art up to 8.9%.

The remainder of this manuscript is organized as follows: Sec-
tion 2 surveys the main efforts in CS, QPP and QPP applied to
CS. Section 3 introduces our definition of QPP applied to CS and
how to evaluate them. Section 4 formalizes the proposed predictors
while Section 5 details the empirical evaluation. Finally, Section 6
concludes and outlines our future work.

2 RELATEDWORK
2.1 Conversational Search
CS implies a dialogue made of natural language utterances between
a user and a conversational agent. The main challenge in this set-
ting is keeping track of the conversation context [35]. The users
might in fact shift topics throughout the dialogue or make refer-
ences to previously mentioned topics [1, 30], asking for details or
clarifications. Differently from ad-hoc search, CS systems focus on
the reply, might ask clarifying questions and offer the user a single
answer rather than several sources.

Several works focus on rewriting the utterances by reusing con-
text from the dialogue [28–30, 50, 54] so as to build self-explanatory
queries suitable for the search engine. A slightly different line of
research addresses CS systems based on dense retrieval models
[16, 57]. Yu et al. propose a few-shot generative approach to con-
versational query rewriting [56]. The authors develop two methods,
based on rules and self-supervised learning, to generate weak su-
pervision data using large amounts of ad-hoc search sessions. These
data are used to fine-tune GPT-2 to rewrite conversational queries.
Their experiments show that GPT-2 effectively learns to capture
context dependencies, even for hard cases involving long-turn de-
pendencies. Yu et al. also propose ConvDR [57], a query rewriting
model for conversational dense retrieval. It initially uses the ANCE
model [52] to encode both documents and queries with dense repre-
sentations and then, using a teacher-student model, uses the context
and query to learn an enriched representation similar to the one of
the manually rewritten query.

2.2 Query Performance Prediction
QPP consists in estimating search effectiveness in the absence of
human relevance judgments [5]. While its definition suggests that
the primary function for QPP models is being a diagnostic tool to
evaluate IR models with a reduced cost, they also proved useful in
a number of interactive IR tasks. Examples of such tasks include
selecting the best model given the user query [5, 47] or identify-
ing the best query rewritings [12, 42, 47]. Other usages in which
QPPs are particularly effective are as an external signal in rank fu-
sion algorithms [36] and as a tool to diagnose pathological queries
that require the system administrator’s intervention to provide
additional relevant documents or labeling [5].

A common classification for QPP models consists in dividing
them into pre- and post-retrieval predictors [5, 20, 21]. In partic-
ular, pre-retrieval predictors rely on features that are available
prior to the retrieval phase, such as the query terms collection fre-
quency [61] or linguistic features, such as query terms polysemy
and synonymy degrees [31]. Post-retrieval predictors on the other
hand use the similarity between the documents and the query and
so require one (or more) retrieval phases to compute the prediction.

A recently developed line of research in the QPP scenario, in-
volves the usage of dense terms representations to devise QPP
models. Roy et al. [40] experiment with pre-retrieval predictors in
the NIR domain. In particular, they show how the distribution in
the space of word vectors with respect to query vectors correlates
with the performance of the system. They noticed that, also in
this scenario, pre-retrieval QPP alone are not capable of achieving
satisfactory results, and therefore combined it with post-retrieval
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methods, showing performance improvement. Similarly, Arabzadeh
et al. [4] propose, and extend in [3], a set of measures based on
neural embeddings aimed at measuring the specificity of each term
– specific query terms are likely to allow for better identification
of relevant documents. Such measures behave as pre-retrieval pre-
dictors and are shown to correlate with the system’s performance.
Differently from the approaches proposed in this manuscript, both
Roy et al. [40] and Arabzadeh et al. [4] consider pre-retrieval tech-
niques.

2.3 QPP for Conversational Search
The research community has already recognized some of the ad-
vantages that properly applied QPPs can provide to CS [38, 58].
Traditionally, the QPP task in the conversational search domain has
been declined into three distinct lines of research: i) QPPmodels for
QA and passage retrieval; ii) information elicitation; and iii) Query
Rewriting. A contiguous research line concerns the prediction of
user satisfaction in interacting with a conversational agent [24, 33].
Notice that, these works focus on predicting aspects related to
human-computer interaction and, therefore, differ from traditional
QPP which focuses mostly on offline experimentation.

Passage Retrieval and QA. One of the first QPP models that
switches from traditional document-based retrieval to passage-
retrieval is [27]. More in detail, Krikon et al. [27] devise a post-
retrieval predictor that employs named entities to determine if
a passage contains the answer to the user’s question. Similarly,
Roitman [37] breaks down documents into passages and exploits
information in such passages – namely the one with the maximum
retrieval score for the query – to devise a new QPP technique. One
of the seminal approaches of QPP in the CS domain is represented
by Roitman et al. [39]. In particular, [39] propose a method to filter
answers of a conversational system, based on the predicted probabil-
ity that such answers respond to the user information need.More in
detail, multiple classifiers are trained using several sets of features
(traditional LETOR features, pre- and post-retrieval QPP scores,
passage-based calibration scores) to the task considered, achieving
good performance. The same task is also tackled by Tan et al. [45]
and Hasanain and Elsayed [17]. This task has some commonali-
ties with the traditional QPP and is a possible application of QPP
techniques, but it is intrinsically different from the performance
prediction that we tackle in this manuscript. Hashemi et al. [18]
devise a BERT-based approach to carry out QPP in the QA scenario
that outperforms traditional ad-hoc retrieval QPP, showing the
importance of QPP techniques specifically designed for a given IR
task. Even though strictly related, QPP models designed for pas-
sage retrieval and QA do not take into consideration idiosyncrasies
of the CS setting, such as the natural inter-correlation between
utterances: with this work, we aim at filling this gap.

QPPmodels forMixed-Initiative Conversation Agents. QPPmodels
have proved to be an effective tool to help in deciding if and what
information the conversational agent should elicit from the user to
better understand the context.

Pal and Ganguly [32] propose an approach based on preexisting
QPP models to identify which concepts and entities named in a con-
versation (either between two humans or in the utterances issued by

the user) need further context in order to be understood.Arabzadeh
et al. [2] use QPP to predict whether the system needs to ask a
clarifying question to properly understand the user’s query. Their
QPP is based on constructing a coherency network with a LLM and
computing some centrality measures on it.

Aliannejadi et al. [1] exploit the power of QPP in the conversa-
tional domain, to decide which question the system should issue
next to understand what the user is looking for, based on the user’s
previous answers. They use the post-retrieval QPP predictor pro-
posed by Pérez-Iglesias and Araujo [34]. Similarly, Hashemi et al.
[19] use the predictor in [34] to decide which one, among a set of
possible clarifying questions, to submit to the user.

[1, 2, 19, 32] adopt QPP techniques devised for the traditional
ad-hoc IR, we argue that QPP models explicitly devised for the
conversational scenario can further improve the performance of
information elicitation systems.

Query Rewriting. A recent line of research explored the possibil-
ity of applying QPP to decide which is the best approach to query
expansion. For example, Lin et al. [29] use a degenerated QPP sys-
tem (i.e., the score produced by BM25) to decide whether to expand
or not the utterance with additional tokens – if BM25 scores are
low, then there is the need for expansion, vice-versa, the utterance
can be processed without further modifications.

Similar to what was observed for the mixed-initiative scenario,
we consider the development of QPP models explicitly designed
for the CS task beneficial also to adaptive query rewriters.

3 QPP IN THE CS DOMAIN
While multiple sources [1, 38, 58] recognize the advantages that
QPP brings to CS (See Subsection 2.3), defining what it means
to predict performance in the conversational domain is still an
open issue. Furthermore, when switching from single independent
queries to highly correlated utterances grouped into conversations,
it is necessary to determine how to properly assess the performance
of a QPP model for a CS system.

In the remainder of this section, we introduce a categorization
of the possible objectives and types of predictions that we could
carry out in the CS domain and define a unified framework (Sub-
section 3.1). Subsequently, in Subsection 3.2 we discuss possible
evaluation methodologies usable to assess the performance of a
QPP model with respect to the prediction task.

3.1 RC1: QPP Use Cases in CS
Defining what it means to predict the performance of a CS system
is related to how we measure its performance. For example, we
might consider a system to be the best if it is capable of optimizing
the performance of each utterance, regardless of the conversation
it is taken from. Alternatively, we might be interested in predicting
the performance achieved over the entire conversation, to under-
stand more in detail how the system behaves when queried on a
specific topic. Finally, we might be interested in determining how
each utterance will behave with respect to other utterances within
the same conversation, e.g. to counterbalance topic shifts. With this
categorization in mind, we define the following possible use cases
for a QPP model in the conversational search domain.
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3.1.1 Collection-wise prediction. we evaluate the performance over
the entire collection, oncemultiple conversations already happened.
Which signals it employs: past, current and “future” signals – to
predict the performance we are allowed to use signals from subse-
quent utterances.
Effective for: evaluating a system without relevance judgements.
QPP can be used to assess how well the system performed in a
purely offline setting.
Not effective for: adapting the system to a conversation as it hap-
pens: since it exploits “future” signals that are not available on-line,
it is not suited to adapt the system while it runs.

3.1.2 Conversation-wise prediction. We assume that the user has
just issued a query and received a response. We aim at measuring
the performance of the system up to the current moment in the
conversation, either considering the average performance accrued
up to the current point in the conversation, or for the latest utter-
ance.
Which signals it employs: past and current signals, user’s feed-
back on the current utterance, if available or elicited.
Effective for: evaluating a system without relevance judgements
and understanding how the system is performing; if we predict that
the current utterance fails, we could also adapt the system online.
Not effective for: devising general trends in the collection.

3.1.3 Utterance-wise prediction. We aim at predicting the perfor-
mance of the next utterance before the ranked list is presented to
the user.
Which signals it employs: past and current signals that are avail-
able prior to the response being provided to the user.
Effective for: model selection, query suggestion, topic shift detec-
tion, mixed-initiative interactions.
Not effective for: While allowing for a punctual analysis of the
single utterance, it might fail in grasping general patterns that arise
within conversations or are due to specific features of the collection.

3.2 RC2: Evaluation Procedure
3.2.1 Collection-wise evaluation (sota approach). This approach
is devised for the use case in 3.1.1. It corresponds exactly to the
state-of-the-art evaluation procedure applied in QPP. In detail, the
most common strategy to assess whether a QPP is performing
well consists in computing a prediction score for each utterance
(query, in the ad-hoc IR case), which we refer to as 𝑝𝑖 , and the
actual performance achieved on the utterance, indicated as 𝑝𝑖 .
Then, the correlation 𝜌 (𝑝, 𝑝) between the two lists 𝑝 = [𝑝1, ..., 𝑝𝑛]
and 𝑝 = [𝑝1, ..., 𝑝𝑛] is computed. A large correlation suggests a
well-performing QPP. Examples of possible correlations commonly
adopted in the traditional QPP scenario include Pearson, Spearman,
Kendall, and RBO [51]. A possible drawback of adopting this evalua-
tion strategy is linked to the fact that it does not allow encompassing
the natural correlation between utterances derived from the same
conversation. It is well-known [13] that utterances from the same
conversation tend to naturally have more similar performance than
those achieved by utterances for different conversations. When
applying this evaluation methodology straightforwardly, we are

disregarding this aspect and treating each utterance as an indepen-
dent query.

3.2.2 Conversation-wise evaluation (proposed approach). This ap-
proach is devised for the use case in 3.1.2. A natural approach
to extending the classical QPP evaluation to the CS scenario con-
sists in treating each conversation as a single evaluation instance.
Therefore, similarly to the previous case, we can compute 𝑝𝑐,𝑖 and
𝑝𝑐,𝑖 that describe respectively the performance and the prediction
score of the 𝑖-th utterance within the 𝑐-th conversation. Once the
performance and prediction scores lists 𝑝𝑐 and 𝑝𝑐 have been com-
puted, it is possible to measure the correlation between the two and
use this value as a performance indicator for the QPP on the 𝑐-th
conversation. This has the advantage of allowing for a pointwise
evaluation: we can determine on which conversations our predictor
works properly, and carry out failure analysis. Conversely, it also
presents a weakness in terms of “accuracy”: the decreased number
of utterances considered to compute the correlation leads to greater
performance variability within the single conversation. This new
approach allows revising the way in which we can carry out the
statistical comparison of our approach with baselines. Having a
performance score for each conversation allows for carrying out
proper statistical analysis, keeping into consideration the effect of
each conversation (as done for the topics in IR), something that
could have not been done with the traditional evaluation based on
correlations.

3.2.3 Utterance-wise evaluation (proposed approach). This approach
is devised for the use case in 3.1.3. In particular, it is possible to
rely on an utterance-based procedure that allows further breaking
down the QPP performance over different factors, such as the type
of utterance. Moving from a list-wise correlation-based strategy
to an utterance-wise one requires also to change the performance
indicator used to evaluate the QPP. In particular, we cannot rely
anymore on the correlation measures, but we need to switch to
the scaled Absolute Ranked Error (sARE) evaluation [14, 15]. sARE
is a point-wise evaluation measure that allows determining the
performance achieved by the QPP model on a single query. Given
a query 𝑞 and its true performance and prediction scores 𝑝𝑞 and

𝑝𝑞 , sARE is defined as 𝑠𝐴𝑅𝐸 (𝑞) =
|𝑟𝑒𝑞−𝑟

𝑝
𝑞 |

|𝑄 | , where 𝑟𝑒𝑞 and 𝑟
𝑝
𝑞 are

respectively the ranks of 𝑝𝑞 and 𝑝𝑞 , the ordinal positions of 𝑝𝑞 and
𝑝𝑞 if we sorted the list of performances and predicted scores for all
the queries and |𝑄 | is the number of queries. Notice that, akin to
the previous cases, sARE fits both a conversation and collection-
oriented evaluation procedure. In fact, 𝑟𝑒𝑞 and 𝑟𝑝𝑞 can be computed
either with respect to the entire collection or only by considering
utterances within the specific conversation. It is also possible to
devise a global counterpart of the sARE measure, by computing its
average over all queries – this aggregation is called scaled Mean Ab-
solute Ranked Error (sMARE). Being an error, the lower the sARE,
the better performs the evaluated QPP.

The main advantage deriving from this last evaluation method-
ology is that it allows for a very precise breakdown of the perfor-
mances according to different factors. For example, we can treat
separately the performance for the first utterances of each conver-
sation, which are likely to be easier than others from the IR model
perspective, and utterances referring to previous ones.
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4 RC3: HYPER-VOLUME BASED PREDICTORS
One contribution of the proposed framework is that it relies on
the geometric properties of the vector space in which queries and
documents are represented. We do not only focus on similarity
aspects, such as the angle between the query’s and documents’
representations – as typically done in the retrieval phase – but we
focus on topological properties and how such vectors are distributed
in the multidimensional space. In Subsection 4.1 we describe how
dense representations are typically constructed in the CS setting,
focusing on the models that we are going to use in the experimental
evaluation: STAR and ConvDR. Later on, in Subsection 4.2, we
present two predictors that exploit the geometric properties of
the dense representation space to compute a prediction score. To
the best of our knowledge, we are among the first to consider a
geometric-driven post-retrieval predictor based on geometric and
topological characteristics of dense vector representations.

4.1 Dense representations for CS
While IR-related tasks were previously dominated by lexical signals,
the introduction of neural models based on LLMs changed dras-
tically the way in which queries and documents are represented
and matched. We focus in this work on single-representation dense
retrieval models where documents and queries are encoded with
low-dimension vectors within the same embedding space, captur-
ing the semantic relations between documents and queries. In this
setting, document embeddings are stored for efficient access in a spe-
cialized metric index, such as that provided by the FAISS toolkit [23].
Given a query, embedded in the same multi-dimensional space of
the collection documents, online ranking is performed by means
of a top-𝑘 nearest neighbor similarity search based on a distance
function, e.g., L2 or Inner Product. The top-ranked documents are
the ones closer, and thus more similar, to the issued query. We con-
sider different state-of-the-art single-representation models such as
DPR [25], ANCE [53], and STAR [60], but eventually select STAR
for our experiments because the model uses hard negative sampling
during fine-tuning, rather than random sampling, obtaining better
representations in terms of effectiveness w.r.t. ANCE and DPR. Our
CS system uses STAR to encode CAsT queries (original and manu-
ally rewritten) and documents as embeddings with 768 dimensions.
On the other hand, for testing with state-of-the-art automatic query
rewriting techniques, we use CondDR [57] to obtain dense query
representations including the conversation context. ConvDR learns
contextualized embeddings for multi-turn conversational queries
by using the current query together with the previous utterances
in order to build up the context. A few-shot teacher-student learner
tries to close the gap between the obtained dense representation and
the golden-standard one corresponding to the manually rewritten
query. ConvDR, akin to STAR, generates 768-dimensional vectors.

4.2 Performance Prediction
Concerning the notation, we call 𝑣𝑞 the 𝑑-dimensional vector repre-
sentation of the utterance, and 𝐷𝑖 the vector representation of the
𝑖-th document retrieved in response to the information need. As
commonly done for most post-retrieval predictors, only the top-𝑘
documents retrieved are considered in computing the prediction –
we will refer to the set of the top-k retrieved documents as D@𝑘 .

4.2.1 Hyper-cube definition. Given a query 𝑞, we consider the top-
𝑘 documents retrieved to answer it. Given the multi-dimension
representation of the query 𝑣𝑞 and documents 𝐷1, ..., 𝐷𝑘 , we would
like to compute how densely such documents distribute around the
query. If the hyperspace around the query is densely occupied by
retrieved documents, we assume that the model correctly character-
izes the query in a semantic way and understands which documents
are strongly correlated with it. Vice-versa, if the space is loosely
occupied, we can assume that retrieved documents are not mean-
ingful or semantically close to the query itself. Nevertheless, given
the absence of a fixed defined reference space, we cannot compute
a density. Therefore, we consider the volume that encompasses
the query and all the top-k retrieved documents. If such a volume
is small, we can expect a high semantic correlation between the
query and the documents. Contrarily, a large volume might indi-
cate documents poorly coherent with the query. To define a convex
hull around the vectors, we would need as many points as dimen-
sions considered – Notice that our embeddings lie in hyperspace
with 𝑑 = 768 dimensions, and such a high number of documents
required to construct the convex hull is unlikely to be informa-
tive in the QPP domain. A second alternative relies on computing
the volume of the hyper-cube containing all the documents. To do
this, we consider each dimension ℎ of the learned representation
and determine the length of the hyper-cube’s edge laying on ℎ

as 𝑙ℎ = |max({𝐷𝑖 (ℎ), ∀𝑖 ∈ [1, 𝑘]} ∪ {𝑣𝑞 (ℎ)}) − min{{𝐷𝑖 (ℎ), ∀𝑖 ∈
[1, 𝑘]} ∪ {𝑣𝑞 (ℎ)}}| where 𝑘 is the ranked list cutoff, 𝑣𝑞 (ℎ) and
𝐷𝑖 (ℎ) are respectively the values of the ℎ-th dimension for the
query and 𝑖-th document. Finally, the volume 𝜈𝑘𝑞 of the hyper-cube
constructed around the top-k documents for query 𝑞 is computed
as: 𝜈𝑘𝑞 =

∏𝑑
ℎ=1 𝑙ℎ . Notice that, while no specific bound is present

on 𝑙ℎ , it is likely that such values are small, thus it is numerically
more stable to compute the log sum of such value. We define the
first predictor, dubbed Reciprocal Volume (RV), as:

𝑅𝑉𝑘 (𝑞) = − 1∑𝑑
ℎ=1 log(𝑙ℎ)

.

Assuming that each dimension represents a latent aspect of the
query, having a smaller hyper-cube on a certain dimension suggests
that all the retrieved documents are closely related to that query’s
latent aspect. Vice versa, if the cube is particularly big on that
dimension, it is likely that the retrieved documents treat the latent
aspect in a very different way from the query.

Discounted Matryoshka. The reference measure used most often
in conversational search [9, 10] is normalize Discounted Cumula-
tive Gain (nDCG) [22]. Such a measure is based on the model of a
user browsing the ranked list of retrieved documents and accruing
a certain amount of utility proportional to the relevance of the doc-
ument and inversely proportional to its position [6]. Inspired by a
similar rationale, we propose a second predictor, dubbed Discounted
Matryoshka (DM). The DM predictor is defined as follows:

𝐷𝑀𝑘 (𝑞) =
𝑘∑︁
𝑗=1

𝑅𝑉𝑗 (𝑞)
log( 𝑗 + 1) .

Ideally, starting from the first document retrieved, we construct
the hyper-cube containing the document(s) and the query and de-
termine its volume. Each hyper-cube constructed by adding a new
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document contains (or is equal to) the previous one 𝐷𝑀𝑗 (𝑞) ≤
𝐷𝑀 𝑗+1 (𝑞) – and therefore they can be seen as Matryoshka dolls.
If moving from document to document such volume remains lim-
ited – all Matryoshkas are similar and small – we assume that all
top retrieved documents are consistent with the query in all its
dimensions and therefore we could assume a successful retrieval.
Vice versa, if either the hyper-volume is large or we observe a
quick change in the hyper-volume, then we can assume that the
dense representation does not characterize well that part of the
space, and therefore retrieved documents are likely to be not par-
ticularly coherent with the query, which suggests a failed retrieval.
Notice that, the hyper-volume of each hyper-cube used to com-
pute 𝐷𝑀𝑘 (𝑞) is discounted by a discount factor proportional to the
number of points in the space used to construct it. Such a discount
factor is useful for two reasons. First, in CS, the most common
evaluation scenario consists of computing measures at small cutoffs
(e.g., nDCG@3). The discount factor allows us to take into consid-
eration this aspect – by discounting less the hyper-cube volumes
constructed using top-most documents, we enforce that the predic-
tion remains coherent with the most common use case, where just
a few documents are taken into consideration. Secondly, by adding
new points (documents) hyper-volumes are inherently bounded to
grow: the discount factor allows for this growth to be slower.

5 EXPERIMENTAL EVALUATION
This section briefly introduces the QPP state-of-the-art approaches
taken into consideration as baseline, the experimental settings and
our experimental findings.

5.1 State-of-the-art Approaches
We report here a brief description of the state-of-the-art QPP ap-
proaches used as the baselines.

Clarity [7]. It is one of the first proposed post-retrieval predictors.
It relies on calculating 𝜃D@𝑘 , the language model of the first 𝑘
retrieved documents, and comparing it to 𝜃𝐶 , the language model
of the entire corpus, using Kullback–Leibler (KL) Divergence:

𝐶𝑙𝑎𝑟𝑖𝑡𝑦 (𝑞) =
∑︁
𝑤∈𝑉

𝑝 (𝑤 |𝜃D@𝑘 )
𝑝 (𝑤 |𝜃D@𝑘 )
𝑝 (𝑤 |𝜃𝐶 )

,

where𝑉 is the vocabulary and𝑝 (𝑤 |𝜃 ) is the probability of observing
the token𝑤 according to 𝜃 the language model.

Weighted Information Gain (WIG) [62]. This predictor calculates
the difference between the scores of the retrieved documents and
the score that the entire corpus would achieve in response to 𝑞:

𝑊𝐼𝐺 (𝑞) = 1
𝑘
√︁
|𝑞 |

∑︁
𝑑∈D@𝑘

(𝑠 (𝑞, 𝑑) − 𝑠 (𝑞,𝐶)) .

Normalized Query Commitment (NQC) [44]. It computes the pre-
diction score by analyzing the variance of the scores for the top 𝑘
retrieved documents.

𝑁𝑄𝐶 (𝑞) =

√︃
1
𝑘

∑
𝑑∈D@𝑘 (𝑠 (𝑞, 𝑑) − 𝜇D@𝑘 )2

𝑠 (𝑞,𝐶) ,

where 𝜇D@𝑘 = 1
𝑘
·∑𝑑∈D@𝑘 𝑠 (𝑞, 𝑑).

Score Magnitude and Variance (SMV) [46]. Builds on NQC and
WIG by considering both the magnitude of the scores (WIG) and
their variance (NQC)

𝑆𝑀𝑉 (𝑞) =
1
𝑘

∑
𝑑∈D@𝑘

(
𝑠 (𝑞, 𝑑) ·

���ln 𝑠 (𝑞,𝑑 )
𝜇D@𝑘

���)
𝑠 (𝑞,𝐶) .

Utility Estimation Framework (UEF) [43]. This framework can be
instantiated using any of the previously mentioned QPP models. It
consists in reweighting the prediction scores by the correlation be-
tween the ranked list obtained using the query and the one obtained
by considering the language model of the top k documents, in a
Pseudo-Relevance Feedback (PRF) fashion. Called 𝜃𝑞 the language
model constructed using the query, 𝜋 (𝜃,D) the retrieval scores for
the documents in D computed using the language model 𝜃 , and
M(𝑞) the prediction score for the query 𝑞 using a given QPP model
M, UEF approach is defined as follows.

𝑈𝐸𝐹M (𝑞) = 𝜌 (𝜋 (𝜃𝑞,D@𝑘), 𝜋 (𝜃D@𝑘 ,D@𝑘)) · M(𝑞),
where 𝜌 is a similarity function between two lists – the most com-
monly used approach sets 𝜌 to be Pearson’s correlation.

5.2 Experimental Setting
Our experiments are based on 2019, 2020, and 2021 TREC Con-
versational Assistant Track (CAsT)1 datasets. The CAsT 2019 [10]
dataset consists of 20 human-assessed test conversations, while
CAsT 2020 [9] and CAsT 2021 include 25 and 26 conversations
respectively, with an average of 10 turns per conversation. The
CAsT 2019 and 2020 include relevance judgments at passage level,
whereas for CAsT 2021 the relevance judgments are provided at the
document level. The judgments have a three-point graded scale and
refer to passages of the TREC Complex Answer Retrieval (CAR),
and MS-MARCO (MAchine Reading COmprehension) collections
for CAsT 2019 and 2020, and to documents of MS-MARCO, KILT
Wikipedia, and Washington Post 2020 for CAsT 2021. In our ex-
periments we try to predict nDCG@3, the most commonly used
measure in CS [9, 10]. In our experiments, we use dense representa-
tions of original, automatically rewritten, and manually rewritten
queries, where missing keywords or references to previous topics
are resolved by human assessors. Original and manually rewritten
queries are encoded using the STAR model, while the automatically
rewritten ones are obtained by using the ConvDR model. In all the
cases, the dense representations of documents and queries is made
of 768-dimensional vectors. As a reference line, our ConvDR runs
achieve nDCG@3 equal to 0.46 and 0.37 on CAsT 2019 and CAsT
2020 respectively. Conversely, STAR achieves nDCG@3 of 0.38, 0.34,
and 0.34 on CAsT 2019, CAsT 2020, and CAsT 2021 respectively.
For ConvDR we used publicly available weights2. Notice that we do
not report ConvDR results for the CAsT 2021 since, at the current
time, there are no publicly available weights for this dataset. For all
models employing it, the cutoff hyperparameter 𝑘 has been selected
from the set {3, 5, 10, 50, 100, 500}. In particular, all QPP models
have been fine-tuned using the traditional two-fold repeated sam-
pling [11, 44, 58, 59] with 30 repetitions to select hyperparameters.
For those evaluation procedures based on a correlation measure

1Conversational Assistant Track, https://www.treccast.ai/
2https://github.com/thunlp/ConvDR

https://www.treccast.ai/
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(i.e., full-collection and conversation-wise evaluations) we employ
Pearson’s correlation, Kendall’s correlation and Rank-Biased Over-
lap (RBO) [51]. Pearson’s correlation allows us to take into account
the magnitudes of the predictions and performance observed. On
the contrary, Kendall’s correlation takes into consideration only
the ordering of the different queries. Finally, RBO considers only
the ordering, it is top-heavy, awarding more systems capable of
sorting better systems on the upper part of the ranking.

5.3 Results
In paragraph 5.3.1 we begin our empirical analysis by considering a
very simple yet effective baseline to set a common reference point
for the subsequent analyses. After that, we evaluate the proposed
QPPmodels according to the three use cases and evaluationmethod-
ologies devised in Section 3: collection-wise, conversation-wise and
utterance-wise use cases and evaluation protocols.

5.3.1 A baseline predictor. As a first analysis, we are interested in
determining a baseline to understand how challenging the predic-
tive task is in the conversational domain. In particular, we adopt
the utterance classification proposed by Mele et al. [30] as a QPP to
predict the performance of the STAR model when applied straight-
forwardly to original utterances (without any further rewriting). Ac-
cording toMele et al. [30], utterances can be classified into twomain
groups: Self-Explanatory (SE) and non Self-Explanatory (non-SE)
utterances. The former consist in utterances that do not require any
further context to be answered, since they do not contain anaphoras,
ellipses or coreferences. Vice versa, the latter, to be converted into
effective queries, requires some form of rewriting, at least by replac-
ing the pronouns with the entity they refer to. We use the manual
utterance labeling provided by Mele et al. [30] for CAsT 2019 and
CAsT 2020, while we manually annotate utterances for CAsT 2021,
since such annotation is not publicly available. Notice that, while
we used manually annotated labels, Mele et al. [30] propose a strat-
egy to automatically classify utterances into SE and non-SE that
achieves 91% of F-measure, making the task approachable automat-
ically with high effectiveness. To devise a basic predictor from the
utterance labels, we apply the following procedure: we assign a
prediction score of 1 to each utterance labeled as SE and a predic-
tion score of 0 to non-SE utterances. This procedure follows the
simple rationale that, if the utterances contain enough context to
be answered, they are likely to be “simpler” and thus more effective.
Vice versa - utterances that do not contain all the required infor-
mation (non-SE utterances), if used without any further expansion,
are doomed to fail.

Figure 1 reports a visual depiction of the performance, measured
using sARE, of such a trivial predictor to predict the performance of
STAR as a retrieval model, without any further query expansion on
CAsT 2019, CAsT 2020, and CAsT 2021, thus using the plain origi-
nal queries. It is interesting to see that, even though the QPP model
is extremely simple, it is also highly effective, with mean sARE of
0.150, 0.136, and 0.131 on CAsT 2019, CAsT 2020, and CAsT 2021
respectively (Cfr. Table 3 to see the performance of other predictors
in a more realistic scenario). Figure 1 suggests that the approach
is more effective on non-SE utterances, with more observations
(orange crosses) on the left part of the plots. This is also confirmed
numerically considering that, on CAsT 2019, non-SE utterances are

Table 1: Collection-wise performance.

Pearson Kendall RBO
CDR-o CDR STAR CDR-o CDR STAR CDR-o CDR STAR

CAsT 2019

Utt. Lbl 0.135 0.135 0.035 0.110 0.110 0.033 0.535† 0.535† 0.522

Clarity 0.284 0.282 0.296 0.216 0.218 0.224 0.508 0.501 0.505
NQC 0.230 0.422† 0.129 0.189 0.271† 0.105 0.507 0.505 0.510
SMV 0.239 0.408 0.157 0.180 0.257 0.124 0.513 0.507 0.516
WIG 0.287 0.283 0.406 0.188 0.181 0.273 0.505 0.517 0.512
UEF𝐶𝑙𝑟 0.261 0.259 0.286 0.181 0.180 0.196 0.505 0.506 0.516
UEF𝑁𝑄𝐶 0.240 0.379 0.363 0.203 0.259 0.222 0.508 0.497 0.532†

UEF𝑆𝑀𝑉 0.254 0.389 0.363 0.208 0.274† 0.225 0.514 0.507 0.539†

UEF𝑊𝐼𝐺 0.306 0.257 0.280 0.244 0.185 0.201 0.519† 0.504 0.508

RV 0.323 0.323 0.410 0.236 0.236 0.239 0.524† 0.524† 0.522†

DM 0.376† 0.376 0.432† 0.262† 0.262 0.304† 0.523† 0.523† 0.528†

CAsT 2020

Utt. Lbl 0.101 0.101 -0.011 0.088 0.088 -0.013 0.529† 0.529† 0.524†

Clarity 0.230 0.230 0.042 0.135 0.136 0.012 0.499 0.497 0.506
NQC 0.397† 0.478† 0.236 0.299† 0.350† 0.193 0.516† 0.526† 0.505
SMV 0.400† 0.470 0.246 0.296† 0.342 0.179 0.491 0.523† 0.514†

WIG 0.240 0.444 0.237 0.147 0.323 0.172 0.522† 0.490 0.507†
UEF𝐶𝑙𝑟 0.278 0.276 0.228 0.196 0.198 0.179 0.492 0.494 0.495
UEF𝑁𝑄𝐶 0.366 0.420 0.304 0.291 0.309 0.240† 0.506 0.496 0.499
UEF𝑆𝑀𝑉 0.366 0.418 0.307 0.281 0.312 0.238† 0.509 0.501 0.500
UEF𝑊𝐼𝐺 0.287 0.342 0.235 0.206 0.253 0.193 0.510 0.502 0.496

RV 0.241 0.241 0.338† 0.180 0.180 0.230 0.501 0.501 0.505
DM 0.271 0.271 0.325 0.198 0.198 0.240† 0.507 0.507 0.487

CAsT 2021

Utt. Lbl — — 0.154 — — 0.138 — — 0.510

Clarity — — 0.341 — — 0.244 — — 0.518†
NQC — — 0.422 — — 0.327 — — 0.512
SMV — — 0.434 — — 0.339† — — 0.523†
WIG — — 0.468 — — 0.329 — — 0.513
UEF𝐶𝑙𝑟 — — 0.035 — — 0.015 — — 0.507
UEF𝑁𝑄𝐶 — — 0.200 — — 0.089 — — 0.502
UEF𝑆𝑀𝑉 — — 0.199 — — 0.097 — — 0.500
UEF𝑊𝐼𝐺 — — 0.126 — — 0.050 — — 0.515†

RV — — 0.424 — — 0.299 — — 0.518†

DM — — 0.480† — — 0.336† — — 0.531†

predicted with an average sARE of 0.122, against 0.198 for SE. Simi-
larly, on CAsT 2020, the predictor on non-SE utterances achieves
an sARE of 0.099, against 0.232 for SE ones. On CAsT 2021, the
mean sARE performance is 0.109 against 0.199 for SE and non-SE
utterances respectively. This can be explained by the fact that, by
assigning a predicted performance of 0 to a non-SE utterance, the
predictor is likely to guess correctly. Without any form of addi-
tional utterance expansion, non-SE utterances are very likely to
fail, making it reasonable to predict 0. Vice versa, the prediction
for SE utterances is much more complex since they are likely to
achieve a performance in the range [0, 1] – the trivial prediction of
1 is almost always a large upper bound of the performance.

5.3.2 Collection-wise evaluation. Switching to a more in-depth
analysis of the proposed approaches, we start by considering the
evaluation methodology described in 3.2.1. In particular, each ut-
terance is considered an independent event with respect to other
utterances in the collection and the QPP performance measure is
the correlation between the utterances’ observed IR performance
and prediction score. To assess the presence of statistically signif-
icant differences between considered baselines and the proposed
models we employed ANalysis Of the VAriance (ANOVA) [41] with
the model described by equation MD1.

𝑦𝑖 𝑗 = 𝜇 + 𝛼𝑖 + 𝜀𝑖 𝑗 , (MD1)

where 𝑦𝑖 𝑗 represent the observed performance for the 𝑖-th QPP
model measured using any of the previously mentioned correlation
measures on the 𝑗-th fold, 𝜇 is the grand mean, 𝛼𝑖 is the effect of
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Figure 1: sARE performance for the utterance labeling baseline on a trivial prediction task: predicting the performance of a
STAR model that uses straightforwardly original queries without any rewriting/processing.

the 𝑖-th model on the performance and 𝜀𝑖 𝑗 is the unexplained vari-
ance (i.e., the ANOVA model error). To carry out post-hoc pairwise
comparisons, we employ the Tukey Honestly Significant Differ-
ence (HSD) test [49], accounting also for the multiple comparisons
problem. The replicates needed to carry out ANOVA are obtained
using the classical 2-fold samplings. Table 1 reports our experimen-
tal findings. First of all, it is interesting to notice that, when using
STAR vectors, for both CAsT 2019 and CAsT 2021, the DM predictor
is either the best predictor or not statistically significantly different
from the best. This holds for all correlation measures considered.
The high RBO for the utterance labeling baseline is due to the fact
that, by ranking higher self-explanatory utterances, it is more likely
to put in first positions utterances that are in fact “easier” – being
top-heavy, RBO awards this behaviour.

On CAsT 2020, on the other hand, the DM predictors beat the
baselines only when considering Kendall’s and Pearson’s correla-
tions, while failing in doing so on the RBO correlation. In general,
the RV predictor is always lower compared to DM, with a few ex-
ceptions (RBO correlation for CAsT 2019 and Pearson’s correlation
for CAsT 2020). To predict the performance of ConvDR, we consider
two alternatives, the first consists in using the same utterances that
ConvDR uses, namely the original ones (indicated with CDR-o), or
the manually rewritten utterances (indicated with CDR), to make
results more comparable to those observed in STAR. It is important
to notice that while traditional predictors are influenced by the
usage of either original or rewritten queries, this is not the case
for the proposed RV and DM predictors – they rely on the dense
representation of the utterance, regardless of its textual content.
In terms of retrieval, both ConvDR and ConvDR-o are exactly the
same: the difference is the type of utterances used to predict Con-
vDR performance for the traditional lexical QPP baselines. Notice
that, in this sense, the usage of ConvDR and rewritten utterances
represent a non-realistic scenario. Let’s consider the performance of
the predictors of ConvDR with rewritten utterances. We notice that
the proposed predictors tend to fail compared to the baselines in the
majority of the cases with the exception of CAsT 2019 using RBO
as correlation, where the performance is statistically not diverse
from the best method (WIG). In particular, the overall best method
to predict convDR performance is NQC, which is the best or not
statistically worse than the best in 5 evaluation settings out of 6
(the only exception is CAsT 2019 using RBO as correlation mea-
sure). If we consider the most conversational and realistic scenario,

Table 2: Conversation-wise performance.

Pearson Kendall RBO
CDR-o CDR STAR CDR-o CDR STAR CDR-o CDR STAR

CAsT 2019

Utt. Lbl 0.209† 0.209† 0.050† 0.200† 0.200† 0.080† 0.595† 0.595† 0.595†

Clarity 0.226† 0.226† 0.169† 0.175† 0.175† 0.081† 0.604† 0.605† 0.598†

NQC 0.293† 0.455† 0.158† 0.245† 0.338† 0.159† 0.608† 0.610† 0.583†

SMV 0.284† 0.437† 0.188† 0.247† 0.362† 0.174† 0.619† 0.593† 0.589†

WIG 0.248† 0.308† 0.381† 0.236† 0.218† 0.241† 0.598† 0.583† 0.591†

UEF𝐶𝑙𝑡 0.253† 0.253† 0.135† 0.135† 0.135† 0.085† 0.583† 0.570† 0.618†

UEF𝑁𝑄𝐶 0.363† 0.433† 0.223† 0.292† 0.319† 0.144† 0.618† 0.594† 0.619†

UEF𝑆𝑀𝑉 0.372† 0.445† 0.222† 0.300† 0.324† 0.142† 0.626† 0.599† 0.610†

UEF𝑊𝐼𝐺 0.321† 0.282† 0.165† 0.225† 0.160† 0.114† 0.574† 0.539† 0.601†

RV 0.316† 0.316† 0.347† 0.242† 0.242† 0.271† 0.621† 0.621† 0.640†

DM 0.354† 0.354† 0.365† 0.224† 0.224† 0.276† 0.594† 0.594† 0.614†

CAsT 2020

Utt. Lbl 0.111 0.111 0.048† 0.074 0.074 0.044† 0.600† 0.600† 0.596†

Clarity 0.143† 0.140 0.018† 0.121† 0.114 -0.021 0.622† 0.621† 0.634†

NQC 0.362† 0.408† 0.282† 0.277† 0.329† 0.220† 0.592† 0.614† 0.620†

SMV 0.354† 0.402† 0.276† 0.289† 0.337† 0.220† 0.611† 0.624† 0.621†

WIG 0.145† 0.382† 0.234† 0.113† 0.277† 0.147† 0.597† 0.632† 0.617†

UEF𝐶𝑙𝑡 0.267† 0.267† 0.166† 0.225† 0.225† 0.118† 0.589† 0.589† 0.588†

UEF𝑁𝑄𝐶 0.372† 0.405† 0.318† 0.291† 0.329† 0.229† 0.602† 0.600† 0.580†

UEF𝑆𝑀𝑉 0.380† 0.409† 0.310† 0.300† 0.321† 0.215† 0.603† 0.604† 0.574†

UEF𝑊𝐼𝐺 0.240† 0.325† 0.178† 0.169† 0.248† 0.102† 0.602† 0.575† 0.564†

RV 0.269† 0.269† 0.335† 0.238† 0.238† 0.255† 0.586† 0.586† 0.609†

DM 0.311† 0.311† 0.333† 0.258† 0.258† 0.240† 0.588† 0.588† 0.609†

CAsT 2021

Utt. Lbl — — 0.194 — — 0.079 — — 0.498

Clarity — — 0.311† — — 0.244† — — 0.586†

NQC — — 0.537† — — 0.426† — — 0.648†

SMV — — 0.544† — — 0.431† — — 0.654†

WIG — — 0.411† — — 0.335† — — 0.639†

UEF𝐶𝑙𝑡 — — 0.053 — — 0.034 — — 0.575†

UEF𝑁𝑄𝐶 — — 0.204 — — 0.115 — — 0.564†

UEF𝑆𝑀𝑉 — — 0.206 — — 0.123 — — 0.568†

UEF𝑊𝐼𝐺 — — 0.095 — — 0.086 — — 0.558†

RV — — 0.364† — — 0.350† — — 0.597†

DM — — 0.392† — — 0.378† — — 0.635†

ConvDR with original utterances and predictors based on original
utterances, We notice that DM is always the best method (with the
only exception of the RBOmeasure, where it ranks third, behind RV
and the trivial utterance labeling predictor wins, but statistically
they are equivalent). It is interesting to notice that the Utterance
labeling trivial predictor performs always better on ConvDR than
on STAR (See also Table 2). This is because ConvDR, by using orig-
inal utterances, is still influenced by the class of the utterances.
This suggests that, when a system relies on original utterances to
carry out retrieval, the utterance labeling predictor can be used in
combination with other predictors as an orthogonal signal.

5.3.3 Conversation-wise evaluation. We apply now the evaluation
methodology described in 3.2.2. While it would be still possible to
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Table 3: Utterance-wise evaluation using sMARE.

CAsT 2019 CAsT 2020 CAsT 2021
CDR-o CDR STAR CDR-o CDR STAR STAR

Utt. Label 0.259† 0.259† 0.274† 0.272† 0.272† 0.282† 0.319

Clarity 0.276† 0.276† 0.306† 0.290† 0.292 0.324 0.258†

NQC 0.253† 0.232† 0.271† 0.243† 0.235† 0.263† 0.219†

SMV 0.252† 0.233† 0.265† 0.242† 0.238† 0.265† 0.216†

WIG 0.275† 0.274† 0.264† 0.294† 0.246† 0.271† 0.228†

UEFClarity 0.248† 0.302 0.302† 0.259† 0.259† 0.293† 0.314
UEFNQC 0.252† 0.242† 0.295† 0.249† 0.241† 0.264† 0.296
UEFSMV 0.249† 0.238† 0.299† 0.244† 0.241† 0.267† 0.294
UEFWIG 0.267† 0.295 0.297† 0.271† 0.253† 0.293† 0.304

RV 0.248† 0.248† 0.257† 0.259† 0.259† 0.256† 0.238†

DM 0.256† 0.256† 0.248† 0.258† 0.258† 0.256† 0.233†

adopt MD1 in this context, to improve the expressiveness of the
evaluation model, we extend it into MD2 by also considering the
effect that different conversations might have on the performance:

𝑦𝑖𝑘 = 𝜇 + 𝛼𝑖 + 𝜒𝑘 + 𝜀𝑖𝑘 , (MD2)

where, with respect to MD1, 𝑦𝑖𝑘 is the correlation measured on
the 𝑘-th conversation, while 𝜒𝑘 represents the effect of the 𝑘-th
conversation. Table 2 reports the results for this second analysis.
It is possible to observe that the results are less stable, with no
clear winner in all scenarios. Furthermore, all the results appear
to be statistically not significantly different: this highlights strong
variance of the correlation observed for different conversations.
This behaviour is somehow expected: having only 20 to 26 conver-
sations, it is reasonable that our tests are underpowered – similar
phenomena are observable also in the traditional IR scenario when
a small number of topics is considered. This urges to expand the
collections with more conversations. In terms of numerical results,
we observe that, for CAsT 2019 and using STAR as the ranking
function, the DM predictor ranks second if the Pearson correlation
is used, and ranks first if Kendall’s correlation is used. Vice Versa,
if we consider CAsT 2020 and STAR, the best-performing method
when Kendall’s and Pearson’s correlations are used is RV. For CAsT
2021, the method that systematically performs the best is the SMV
baseline. Notice that, the UEF counterpart of SMV is also one of the
best methods for both CAsT 2019 and CAsT 2020 if we consider the
predictions for ConvDR, both using original and rewritten queries.

5.3.4 Utterance-wise evaluation. Finally, we report the results ac-
cording to the evaluation methodology described in 3.2.3. Also in
this case we could consider to use MD1, but we switch to a more
expressive model that includes the individual effect of each query.

𝑦𝑖𝑙 = 𝜇 + 𝛼𝑖 + 𝜐𝑙 + 𝜀𝑖𝑙 , (MD3)

where, with respect to MD1, 𝑦𝑖𝑙 is the sARE measured on the 𝑙-th
utterance, while𝜐𝑙 represents the effect of the 𝑙-th utterance. Table 3
reports the results of the utterance-wise analysis. Notice that, given
that we report the mean sARE, which is an error, the lower the
figure in the table, the better the performance. For CAsT 2019 and
CAsT 2020 we observe similar patterns to those highlighted by
Table 1, with the proposed approaches overcoming all the other
baselines for the STAR model. For the ConvDR model, on the other
hand, the behaviour is less stable, with RV being the best model in
CAsT 2019 if the original utterances are considered. Akin to what
was observed in Table 2, for the ConvDR system, the best models in
the utterance-wise evaluation scenario seem to be SMV and NQC.

Following what was observed in Table 2, we notice that most of
the comparisons are not statistically significant, stressing again the
need for more conversations in a collection. Even though theoret-
ically more suited to the conversational task, both conversation-
and utterance-wise evaluation protocols show that there are no
evident statistical differences between the baselines and there is no
clear winner. This should raise concern within the community that,
without a proper evaluation framework, we are in fact comparing
with weak baselines. The non-negligible risk is that new methods
are deemed significantly better than the baselines due to the wrong
evaluation methodology used, as already observed in neighbouring
areas, including IR [26, 55] and Recommender Systems [8].

6 CONCLUSION AND FUTUREWORK
In this study, we explore the potential of a geometric framework
for performance prediction in the CS domain. The lack of a clear
definition for QPP in conversational settings is addressed, and three
relevant use cases for QPP in CS are identified: as a post-hoc eval-
uation technique, to diagnose anomalies within the conversation,
and to predict the performance of the next utterance. We define an
evaluation procedure for each use case, including a collection-wise
evaluation procedure that mimics current QPP evaluation, as well
as conversation- and utterance-wise evaluation procedures. We
propose two geometric post-retrieval predictors, which measure
the proximity of retrieved documents to the query encapsulating
them within a hypercube. The predictors are applied to two con-
versational models, ConvDR and STAR, on three established con-
versational collections. The results demonstrate that our proposed
methodology outperforms QPP baselines on CAsT 2019 and CAsT
2021 at the collection- and the utterance-wise level. However, the
low statistical power of conversation- and utterance-wise evalua-
tions highlight the need for larger conversational collections and
revisiting the evaluation procedure used to devise the baselines. In
conclusion, the significance of QPP in the CS domain is emphasized,
and our proposed models show promising results in improving QPP
for conversational search. In future research, we plan to investi-
gate how to incorporate in the predictors signals from previous
utterances and their linguistic content.
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