Capitolo 3

Mappe i/u lineari, continue,
invarianti e integrale di
convoluzione

3.1 Rappresentazione mediante convoluzione

Una classe molto vasta di mappe ingresso/uscita lineari, continue e invarianti puo essere
rappresentata mediante un’operazione di convoluzione (eventualmente, come vedremo nel
capitolo 5, in ambito distribuzionale).

Denoteremo con LIRE’C e Ll_f_)c gli insiemi delle funzioni reali di variabile reale, localmente

integrabili®, il cui supporto & rispettivamente compatto a sinistra oppure contenuto in

[0,4+00). Se h € L'¢ e se I'insieme delle funzioni di ingresso U ¢ identificato con L3¢, si

consideri la mappa
A: Up - R us Au=hxu

con

(hwu)(t) = / h(t — 7)u(r)dr (3.1)

—0o0
E ovvio che
i) se il supporto di u(-) € contenuto in [U, +00), il valore (h * u)(t) & nullo per t < U;

ii) poiché la funzione h(-) & nulla per ¢t < 0, la (3.1) puo anche essere riscritta come

+oo +oo
(hoeu)(t) = / h(t — Yu(r)dr = / h(F)ult — 7)dr (3.2)

—0o0 —00

E facile verificare che la mappa A definita da (3.1) (o da (3.2)) &

!Una funzione ¢ localmente integrabile se & sommabile (secondo Lebesgue) su ogni intervallo finito
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causale, come conseguenza dell’ipotesi sul supporto di h. Infatti, per ogni u € Ur e per
t <T e Rsiha

Apruyo = |

—00

t t

h(t — 7)(Pru)(7)dr = / h(t — T)u(r)dr = (Au)(t),

— o0
percio le funzioni Pr(Au) e Pr(A(Pru)) coincidono per ogni valore di ¢.
lineare, come conseguenza della linearita dell’operatore di integrazione;

invariante, poiché per ogni ¢ si ha

Aloau)(t) = / h(t —7)(oau)(T)dT = / h(t — 7)u(t + A)dr

—0o0 — 00

t+A
= [ b+ A - Qu(ds = (Au)(e+ 8) = (oa(Aw) ()

— 00

E utile ricordare che, a livello intuitivo, 'uscita y(t) appare come somma di infiniti con-
tributi u(7)d7, ciascuno pesato dal coefficiente di ponderazione h(t — 7), come riportato
in figura 3.1.1.

Figura 3.1.1

e ESERCIZIO 3.1.1 Si verifichi che, se u e h sono elementi di L'$® e se supp(h) C [H, +00), supp(u) C
[U, 4+0), allora
(i) h * u esiste ed ha supporto contenuto in [H + U, 4+00);
(ii) per ogni t < T, (hxu)(t) = | (Pr—uh) (PT_Hu)> #);
(iii) per ogni scelta di A; e Az in R, si ha

oah*xoa,u=o0a,+a,(h*u).

Cid consente di ridurre lo studio della convoluzione fra due funzioni di L'S® a quello di due funzioni

di Lke.
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e ESERCIZIO 3.1.2 [ MAPPE 1/U A MEMORIA FINITA] se il supporto del nucleo h & contenuto in un
intervallo [0, M], il valore dell’uscita al generico istante ¢ dipende soltanto dai valori della funzione
di ingresso sull’intervallo [t — M, t).

f Soluzione: (h*u)(t) = f;M h(t — T)u(r)dr
Ad esempio, in corrispondenza al nucleo
h(t) = {1 pert € [0, M)
0 altrove
si ha (h*u)(t) = ftt_M u(7)dT.

e KSERCIZIO 3.1.3 Se il supporto di h é contenuto in un intervallo di ampiezza A e quello dell’ingresso
in un intervallo di ampiezza u, allora uscita ha supporto contenuto in un intervallo di ampiezza
A+ p.

e ESERCIZIO 3.1.4 [MAPPE I/U CON RITARDO R] Se supp(h) C [R,+00), con R > 0, allora luscita
y = hxu é ritardata di un intervallo di tempo pari a R (i.e. “inizia” con un ritardo R) rispetto
all’ingresso u che la determina.

3.2 Alcune proprieta delle mappe di convoluzione i/u

Vogliamo analizzare in dettaglio alcuni risultati connessi con la struttura delle mappe
(causali) di convoluzione, eventualmente restringendo i nuclei h a particolari sottoclassi
di Llﬁc e le funzioni di ingresso a particolari sottoclassi di LIRE’C. In particolare, vogliamo
verificare che, in molte situazioni, la mappa di convoluzione fornisca funzioni di uscita
dotate di “maggiore regolarita” delle funzioni di ingresso che le hanno determinate.
Sebbene nelle ipotesi assunte all’inizio del capitolo nuclei e funzioni di ingresso debbano
soddisfare specifiche condizioni sul supporto (il nucleo ¢ nullo per ¢ < 0 e gli ingressi
hanno supporto compatto a sinistra), le proposizioni 3.2,1-4 saranno enunciate in termini
generali, consentendo cioe ai supporti delle funzioni di estendersi da —oo a 4+o00. Vale
comunque la pena di notare che la convoluzione fra due funzioni che siano soltanto local-
mente integrabili, ma prive di restrizioni sul supporto, pud non essere possibile (si pensi,
ad esempio, al caso in cui si abbia h(t) =1, Vt € R e u(t) =sin(t), vVt € R).

Proposizione 3.2.1 Siano u(:) e h(-) funzioni? L'. Allora

y=hxuelL', con [yl <|h]]ul (3-3)

PRrOVA Per ogni t risulta

+oo
< / IRt — )] ()| dr

—0o0

vl = [ b= mutryir

dove 'ultimo integrale puo, per qualche ¢t € R, assumere il valore +oo.
Per valutare ||y||;, poniamo

= [ W< [ ][ e ol iar]a (3.4

—0o0 —00 —00

2f : R — R & una funzione L' se & misurabile e se fj;o |f(T)|dT < oco. Allora si pone ||f|1 :=

ST f(r)dr.
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e notiamo che in (3.4) l'integrale doppio, eseguito in ordine inverso, vale

/+°° u(T)] [/J“X’ h(t — T)Idt] dr = ||ul1||hllx

—00 —0o0

Applicando il teorema di Fubini® alla funzione |h(t — 7)u(7)|, concludiamo che il membro
di destra in (3.4) vale ||ul|1]|h||1 e la proposizione ¢ provata. [ |

Dalla proposizione 3.2.1 e dal punto (ii) dell’esercizio 3.2.1 segue che la mappa ingresso/usci-
ta A definita all’inizio del capitolo produce una funzione di uscita y = hxu che ¢ integra-
bile su ogni intervallo finito (ossia ¢ “localmente integrabile”). Quindi, per ogni scelta di
h € LB‘:C la mappa associata A : u +— h % u fa corrispondere ad ogni ingresso in LI}%C una
uscita in Llﬁc.

La struttura della funzione y(-) risultante dalla convoluzione h % u, con h e u funzioni L!,
puo risultare “poco regolare”: puod essere non continua, non limitata, non convergere a
zero per t — +00 ...

Esempio 3.2.1 (i) La funzione

1
f:]R—>R:tl—>f(t):{(l+t)\/z

0 pert <0

pert >0

¢ una funzione L'. Infatti, poiché 2 arctg\/t & una primitiva di ,per0 < e < M < ocosiha

1
(1+ )Vt
M 1 M
/E m dt = 2arctgV/t (3.5)

e, quando gli estremi di integrazione vanno a 0 e a +00, si ottiene

€

oo 1 M
——dt = lim 2 arctgV/t =.
/0 (1+ t)\/f e—0, M—oo &

€

(ii) Poniamo ora

o= {0 Briso =

|
| >+

Figura 3.2.1

3fff(m17xg)dac1dm2 = fdxlff(xl,mg)dxg = fdzsz(mhxg)dm purché f sia sommabile in uno
qualsiasi dei tre sensi
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Allora u e h sono entrambe funzioni L' e, per la proposizione 3.2.1, anche y(-) € L},_. Tuttavia y
non ¢ limitata, essendo

y(l):/Olh(l—T)u(T)dT:/OlfQ(T)dT:/Ol T / —dr == lnT

(iii) Se h & come al punto (ii), ma si sceglie I'ingresso dato da

i ft—n) (3.7)

n=0

= 0

1
0

i

1
XI f(r) ‘;

Figura 3.2.2

allora u appartiene a L} e y = hx u diverge per t = 1,2,3,.... Infatti, ciascuno degli addendi
di (3.7) & non negativo ed & non negativo il nucleo h, quindi nel calcolo di y i contributi dei vari
addendi si sommano in valore assoluto.

In conclusione, y(-) non ¢ limitata, né continua, né convergente a zero per t — +00.

Il risultato della proposizione 3.2.1 si estende a situazioni piu generali, ovvero a spazi LP,
con 1 < p < oo. L’enunciato della proposizione che segue ha interesse nel caso di mappe
ingresso/uscita causali per le quali il nucleo h appartenga a L}F e 'ingresso appartenga
a L%, p > 1: la conclusione & che l'uscita & ancora una funzione di L’é, ed & ancora
disponibile un confine sulla sua norma.

Proposizione 3.2.2* Seh € L' eu € LP, con 1 < p < co. Allora
y=hxuell, con |yllp <|[hlllulp (3.8)

Prova Per ogni valore di ¢ risulta

+00
wO = |(hxw)t)] < / h(t — 7)fu()|dr
oo 1 1
= —7)|[YPu(r —7)|Y9dr, con = + - = .
/OO = 7) Plur) e = ) Vrdr, con 4 =1 (39)

Nell'ultimo integrale, la funzione f(-) := |h(t — -)|/P|u(-)| & in LP. Infatti v := |ulP € L' e

+oo +oo  p+oo
i f(t)pz/_ /_ \h(t —7)||v(7)|dr dt

e finito, per la proposizione 3.2.1.
D’altra parte, la funzione g(-) = |h(t — -)|"/? & in L9, perche la sua potenza g-esima & in
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L'. Si puo allora applicare alla (3.9) la diseguaglianza di Holder? e concludere che

= [/m |h(t—7>llu(7)|pd7r [/m |(t —T)df

—00 —00

= [ = ltrar] ai (3.10)

—00

Calcolando la norma LY di entrambi i membri di (3.10), otteniamo

oty < i [ [l [ rh<t—7>ru<7>|pdTH’l’ S CHY R,

o0

1 % 1 % 1,1 1
T T Y e o o Y R T Pl TP

A

= |l - ull, < oo

Percio y appartiene a LP, essendo ||y|| una quantita finita, e vale la diseguaglianza fra le
norme (3.8) [ ]

Nella proposizione che segue esamineremo una situazione di grande interesse: quando h
appartiene a L}r e la funzione di ingresso ¢ limitata, anche la funzione di uscita e limitata.
L’importanza di questo risultato e ulteriormente rafforzata da un altro fatto, che sara
dimostrato in un capitolo successivo, e cioe che una mappa ingresso uscita fa corrispondere
a ogni ingresso limitato una uscita limitata solo se il suo nucleo & una funzione di L'.

Si osservi, infine, che dal punto (iii) dell’enunciato risulta che il “passaggio attraverso” un
sistema con nucleo h € L' abbia Ieffetto di regolarizzare ogni funzione limitata u, dato
che h % u risulta ovunque continua.

Proposizione 3.2.3 Indichiamo con L™ lo spazio delle funzioni misurabili essenzialmente
limitate®.
Se h € L' eu € L™, allora

i) y:=h*u€ L>®;
i) [yll< = [[P]lllelloo;
iii) y(t) é continua per ogni t.

PROVA Si ha, per ogni t € R,

+oo
hxultt) < / Bt — )| ju()|dr

— 00

1 1
1Se 1 < p < o0, sef—|—f—1esef6Lp g € L9 allora fg e L' e

|/fng| /\fl\g|d¢ < [/|f|PdT]1/P[/ |g|7dr]"/®

*una funzione misurabile f & essenzialmente limitata se esiste M < oo tale che |f(t)] < M ovunque,
eccetto su un insieme di misura nulla. Porremo allora || f||oc = inf{M : |f(¢)] < M quasi}.
Se f & continua, | fllee = sup,ep /(1)
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+oo
< IUHOO/ |h(t = 7)ldT = ||ullsclPllx

—00

Quindi y appartiene a L ed ¢ ovunque limitata (e non solo quasi ovunque). Inoltre e

verificata la (ii).

Per dimostrare il punto (iii) si puo ricorrere al seguente risultato (cfr. McShane, pg 227)
“Se f(-) € L', allora

im [ \f(t+h) — F(B)dt =0 (3.11)

h—0 J_

ossia || f(-+h) — f(:)][1 — 0 quando h — 0”

Si consideri ora la differenza

+o0
e+ h) =yOl = | [ (e h- ) = b - s
+

IN

/_ TR+ b — ) — h(t — 7)||u(n)|dr

o0

+oo
< ||uHoo/ |h(t +h —7) — h(t — 7)|dT
—00

Poiché h(t — -) ¢ in L', quando h — 0 si pud applicare (3.11) e concludere che y(t + h)
tende a y(t). [ ]

e EsSERCIzIO 3.2.1 Se A : u +— h*u & una mappa ingresso/uscita con h € L%, la condizione u € L%
non implica (h*u)(t) — 0 per t —= oo.

fSoluzione. Si scelga h(t) = e~V ®. wm=3"D®  pporg

T=t

t
y(t) = (hxu)(t) = / e T dr =t =1-c"
0

7=0
tende a 1 per t —= co Quindi l'uscita corrispondente a un ingresso limitato puo non essere in-
finitesima.

e ESERCIZIO 3.2.2 Se, come nel precedente esercizio, A : u — h x u & una mappa ingresso/uscita
con h € L} e u € LY, la condizione u(t) — 0 per t — +oo & sufficiente a garantire che y(t) =
(h*u)(t) — 0 quando t — +oo0.

Possiamo allora concludere che, quando il nucleo di convoluzione appartiene a L}H ogni ingresso
limitato e infinitesimo per ¢ — +o00 produce un’uscita limitata e infinitesima per ¢ — +oo.

fSoluzione. Per ogni € > 0 esistono «, 3 € Ry tali che
—+oo
[ k@ < veza u(r)] <e vr > 8
t

Se supp(u) C [b, +00), si consideri un istante arbitrario t > a + 3 + |b| e si noti che

ol = | [ = numar| < [ e - olutryian
< [ =@l [ jpe= il
< HMOO/*’H) |h(t—r)|dr+e/tia Ih(t — 7)ldr
< Nulle [ I0)ldo + el < ellullc + )
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Infine, per nuclei L?, abbiamo il seguente notevole risultato;

Proposizione 3.2.4 Se h € L? e v € L? allora
i) y:=hxue L™
ii) y(t) e continua per ogni t € R
i) imy— oo y(£) = 0

ProOVA (i) Si applica la diseguaglianza di Cauchy-Schwartz:
+oo
ol =| [ b= ruridr] < el ve e R

Quindi |y(t)| & ovunque confinato superiormente da ||A|2||u||2-
(iii) Fissato € > 0, si possono scegliere a € R sufficientemente grande, in modo che il
“futuro” di u soddisfi la diseguaglianza

+oo 1
| Faull2 = [/ u2(7')d7']5 <e€
(0%

e t > a abbastanza grande in modo che risulti

Mu—TmﬂL:v%mMWMd%<e

t—a

(e}

IPant =)= | [

—00

Applicando ancora di diseguaglianza di Cauchy- Schwartz, si ottiene
I <1 [ b= rumdr 4| [ b= nbrdr] < e(lulz + )

(ii) Si pu‘o ricorrere al seguente risultato (cfr McShane, pg. 230)

“Se f € LP , allora
+oo

lim [f(t+h) — f(t)|Pdt =0

h—0 J_

ovvero || f(-+h) — f(:)|l — 0 quando h — 0”.

Si ha allora, applicando la diseguaglianza di Cauchy- Schwartz,

+oo
e+ h) —y@l < [ Ihle= 7+ ) — (e - lu(rldr

—0o0

< At +h =) = h(t =)z [lull2,
che tende a zero quando h — 0. |

e EsErcIzIO 3.2.3 (i) Se h € L'° & ovunque continua, allora per ogni u € L7°° luscita y :=h*u &
continua;
(ii) se h & ovunque derivabile con derivata continua, allora per ogni v € L'§° Puscita y :=hxu &
derivabile con derivata continua e si ha Dy = (Dh)  u;
(iii) se h ha ovunque derivate continue fino all’ordine m, allora per ogni u € L'3° l'uscita y :=hxu &
dotata di derivate continue fino all’ordine m, date dalla formula D™y = (D™ h) % w.

f Suggerimento per (i). Si utilizzi la proposizione 3.2.3.
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e ESERCIZIO 3.2.4 Sia A la mappa ingresso/uscita che associa ad ugni ingresso v € Ur localmente
integrabile la funzione

Si determini il nucleo di convoluzione h in modo che per ogni u si abbia Au = h * u.

t Soluzione : h = &6V,

3.3 1l teorema di Titchmarsh

Supponiamo che il nucleo di convoluzione di una mappa ingresso/uscita sia una funzione
continua h € Lljr)c, non identicamente nulla.

Il teorema di Titchmarsh fornisce una risposta negativa alla domanda seguente: “Esistono
allora funzioni di ingresso continue cui corrisponde un’uscita identicamente nulla?” o,
equivalentemente: “Esistono due funzioni di ingresso continue e distinte che danno luogo

alla medesima funzione di uscita?”

Teorema 3.3.1 [TITCHMARSH] Se he u sono funzioni continue, con supporto in [0,00) e
nessuna delle due é identicamente nulla, allora h x u non é la funzione nulla |

Per la prova, non facile, si rinvia alla monografia di J.Mikusinski, pp.15 e segg. E chiaro,
inoltre, che nulla cambia se il supporto della funzione continua w appartiene alla semiretta
[—a, +00), dato che h * (0_qu) = o_q(*u).

Il teorema pud essere esteso a un contesto piu vasto ed ha alcune interessanti conseguenze.
Per quanto riguarda una sua estensione, verifichiamo che, se risulta hxu = 0 con h e u in
Llfr’c, allora una almeno delle due funzioni e nulla q.o.

A tale scopo, ricorriamo a due funzioni di test® non nulle ¢ e 1. Poiché entrambe le
funzioni h * ¢ e u * ¢ sono continue (la convoluzione con le funzioni di test “regolarizza”
h ed u), una almeno di esse deve essere nulla, come si evince applicando il teorema di
Titchmarsh a

(h ) % (ux ) = (hu) % (6% 85) = 0.

Se, ad esempio, ¢ nulla u x ¢, allora per ogni altra funzione di test # risulta u x 6 = 0,
altrimenti (u*6) % ¢ non sarebbe nulla (ancora per il teorema di Titchmarsh) e quindi non
sarebbe nulla (ux @) x0 =060 = 0.

Poiché u x 8 = 0 per ogni funzione di test, possiamo scegliere, in particolare, funzioni di
test con valori

_[1 pertela,/pl,
H(t)_{o pert &la—e B+¢, e>0

e altrove con valori compresi fra 0 e 1.

Sovvero due funzioni infinitamente derivabili e a supporto compatto: I'insieme D delle funzioni di test

sara discusso con qualche dettaglio nel capitolo 5.
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figura 3.3.1
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E facile constatare, facendo tendere € a zero, che per ogni scelta di a < [ risulta

/a ’ w(rydr = 0.

Applicando infine il teorema di differenziazione di Lebesgue:

“Se u(-) & localmente integrabile, per quasi ogni ¢ si ha < foi u(r)dr = u(t)”
si conclude che u(t) & nulla per quasi ogni ¢ e quindi ha norma L' nulla.

La discussione precedente prova cosi la

Proposizione 3.3.2 Se h € L' ed esiste T' tale che | Prh|y > 0, allora per ogni u € L3
la condizione h *u = 0 implica che u sia una funzione nulla q.o. |

Come ulteriore applicazione del teorema di Titchmarsh, cerchiamo di rispondere al seguente
quesito.

Data una mappa causale ingresso/uscita .4, che sia rappresentabile mediante un integrale
di convoluzione con nucleo h, esiste un ingresso u che, applicato al sistema, fornisce in
uscita il nucleo di convoluzione h? In altre parole, esiste un “esperimento ingresso/uscita”
che consenta di identificare il nucleo, e quindi di caratterizzare completamente la struttura
di A come risposta ad un particolare ingresso applicato?

E chiaro che dovra essere risolubile per qualche u € Llﬁc I’equazione
h*u=h.
Escluso il caso banale in cui € una funzione quasi ovunque nulla, dall’eguaglianza
h=hxu=hx(uxu)=hx(uxuxu)=...
e dalla proposizione 3.3.2 segue che u soddisfa le uguaglianze

U=UXU=UKXUKU... (3.12)

Si puo dimostrare che, salvo la funzione nulla q.0., non esistono funzioni in LIR‘?C che

soddisfino (3.12) e pertanto, rimanendo in L3¢, nessun ingresso consente di identificare
il nucleo di convoluzione di A. Come vedremo, la soluzione sara trovata ricorrendo a un
ingresso impulsivo, e quindi ampliando gli ingressi ammissibili alle distribuzioni.

Un’ulteriore questione che sorge naturalmente puo enunciarsi in questi termini:
“La classe di mappe ingresso/uscita lineari, invarianti, causali rappresentate dall’integrale
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di convoluzione ¢ sufficientemente ampia da coprire tutti i casi di interesse? Detto altri-
menti, esiste qualche mappa ingresso/uscita A che possiamo ritenere piuttosto “naturale”
e che tuttavia non sia esprimibile nella forma

Au = h*u, Yu € Ug

qualunque sia la scelta della funzione localmente integrabile h : R, — R? ”

A questo proposito, notiamo subito che la mappa identita, i.e. la mappa che associa ad
ogni ingresso un’uscita uguale all’ingresso, non puo ottenersi mediante convoluzione con un
nucleo in Llfr’c. Non esiste infatti nessuna funzione h € LS¢ che soddisfi per ogni u € L°
la condizione

w=hxu (3.13)

Per verificarlo, basta porre u = h in (3.13) e ricordare che, come detto in precedenza,
h = h x h non ammette soluzioni non nulle in Lljr)c. In alternativa, si puo notare che in
(3.13) hxu ¢ in generale pill “regolare” di u. Ad esempio, se v € LS° possiede discontinuita
isolate e non eliminabili, allora, per la proposizione 3.2.3, h * u € una funzione continua,
quindi diversa da u su un insieme di misura positiva.

Figura 3.3.2

Come vedremo pill avanti, la situazione cambia radicalmente quando si lavori in ambito
distribuzionale. Infatti, un teorema generale, dovuto a L.Schwartz, assicura che, sotto
condizioni molto blande, ogni mappa lineare, causale e invariante A possa essere rappre-
sentata dalla convoluzione fra un nucleo distribuzionale h, caratteristico della mappa, e
la distribuzione u che rappresenta l'ingresso. Ad esempio, I'impulso di Dirac § soddisfa
la condizione § x u = w per ogni distribuzione u. Quindi la convoluzione con nucleo §
rappresenta l'operatore identita.

Anche le questione dell’identificazione del nucleo h trova soluzione nell’ambiente delle
distribuzioni, in cui risulta h * 6 = h qualunque sia h: un ingresso corrispondente alla
distribuzione di Dirac (vedremo pilt avanti quale significato operativo si debba attribuire
a cio) produce un’uscita eguale al nucleo di convoluzione della mappa i/u.

figura 3.3.3
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