
Capitolo 3

Mappe i/u lineari, continue,
invarianti e integrale di
convoluzione

3.1 Rappresentazione mediante convoluzione

Una classe molto vasta di mappe ingresso/uscita lineari, continue e invarianti può essere
rappresentata mediante un’operazione di convoluzione (eventualmente, come vedremo nel
capitolo 5, in ambito distribuzionale).

Denoteremo con Lloc
R e Lloc

+ gli insiemi delle funzioni reali di variabile reale, localmente
integrabili1, il cui supporto è rispettivamente compatto a sinistra oppure contenuto in
[0,+∞). Se h ∈ Lloc

+ e se l’insieme delle funzioni di ingresso UR è identificato con Lloc
R , si

consideri la mappa
A : UR → RR : u 7→ Au = h ? u

con

(h ? u)(t) =
∫ t

−∞
h(t− τ)u(τ)dτ (3.1)

È ovvio che

i) se il supporto di u(·) è contenuto in [U,+∞), il valore (h ? u)(t) è nullo per t < U ;

ii) poiché la funzione h(·) è nulla per t < 0, la (3.1) può anche essere riscritta come

(h ? u)(t) =
∫ +∞

−∞
h(t− τ)u(τ)dτ =

∫ +∞

−∞
h(τ)u(t− τ)dτ (3.2)

È facile verificare che la mappa A definita da (3.1) (o da (3.2)) è

1Una funzione è localmente integrabile se è sommabile (secondo Lebesgue) su ogni intervallo finito

1
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causale, come conseguenza dell’ipotesi sul supporto di h. Infatti, per ogni u ∈ UR e per
t < T ∈ R si ha

A(PTu)(t) =
∫ t

−∞
h(t− τ)(PTu)(τ)dτ =

∫ t

−∞
h(t− τ)u(τ)dτ = (Au)(t),

perciò le funzioni PT (Au) e PT (A(PTu)) coincidono per ogni valore di t.
lineare, come conseguenza della linearità dell’operatore di integrazione;
invariante, poiché per ogni t si ha

A(σ∆u)(t) =
∫ t

−∞
h(t− τ)(σ∆u)(τ)dτ =

∫ t

−∞
h(t− τ)u(τ + ∆)dτ

=
∫ t+∆

−∞
h(t+ ∆− ξ)u(ξ)dξ = (Au)(t+ ∆) =

(
σ∆(Au)

)
(t)

È utile ricordare che, a livello intuitivo, l’uscita y(t) appare come somma di infiniti con-
tributi u(τ)dτ , ciascuno pesato dal coefficiente di ponderazione h(t − τ), come riportato
in figura 3.1.1.

Figura 3.1.1

 
• Esercizio 3.1.1 Si verifichi che, se u e h sono elementi di Lloc

R e se supp(h) ⊆ [H,+∞), supp(u) ⊆
[U,+∞), allora
(i) h ? u esiste ed ha supporto contenuto in [H + U,+∞);

(ii) per ogni t ≤ T , (h ? u)(t) =

„
(PT−Uh) ? (PT−Hu)

«
(t);

(iii) per ogni scelta di ∆1 e ∆2 in R, si ha

σ∆1h ? σ∆2u = σ∆1+∆2(h ? u).

Ciò consente di ridurre lo studio della convoluzione fra due funzioni di Lloc
R a quello di due funzioni

di Lloc
+ .
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• Esercizio 3.1.2 [ Mappe i/u a memoria finita] se il supporto del nucleo h è contenuto in un
intervallo [0,M ], il valore dell’uscita al generico istante t dipende soltanto dai valori della funzione
di ingresso sull’intervallo [t−M, t).

] Soluzione: (h ? u)(t) =
R t
t−M h(t− τ)u(τ)dτ

Ad esempio, in corrispondenza al nucleo

h(t) =
n

1 per t ∈ [0,M)
0 altrove

si ha (h ? u)(t) =
R t
t−M u(τ)dτ .

• Esercizio 3.1.3 Se il supporto di h è contenuto in un intervallo di ampiezza λ e quello dell’ingresso
in un intervallo di ampiezza µ, allora l’uscita ha supporto contenuto in un intervallo di ampiezza
λ+ µ.

• Esercizio 3.1.4 [mappe i/u con ritardo R] Se supp(h) ⊆ [R,+∞), con R > 0, allora l’uscita
y = h ? u è ritardata di un intervallo di tempo pari a R (i.e. “inizia” con un ritardo R) rispetto
all’ingresso u che la determina.

3.2 Alcune proprietà delle mappe di convoluzione i/u

Vogliamo analizzare in dettaglio alcuni risultati connessi con la struttura delle mappe
(causali) di convoluzione, eventualmente restringendo i nuclei h a particolari sottoclassi
di Lloc

+ e le funzioni di ingresso a particolari sottoclassi di Lloc
R . In particolare, vogliamo

verificare che, in molte situazioni, la mappa di convoluzione fornisca funzioni di uscita
dotate di “maggiore regolarità” delle funzioni di ingresso che le hanno determinate.
Sebbene nelle ipotesi assunte all’inizio del capitolo nuclei e funzioni di ingresso debbano
soddisfare specifiche condizioni sul supporto (il nucleo è nullo per t < 0 e gli ingressi
hanno supporto compatto a sinistra), le proposizioni 3.2,1-4 saranno enunciate in termini
generali, consentendo cioè ai supporti delle funzioni di estendersi da −∞ a +∞. Vale
comunque la pena di notare che la convoluzione fra due funzioni che siano soltanto local-
mente integrabili, ma prive di restrizioni sul supporto, può non essere possibile (si pensi,
ad esempio, al caso in cui si abbia h(t) = 1, ∀t ∈ R e u(t) = sin(t), ∀t ∈ R).

Proposizione 3.2.1 Siano u(·) e h(·) funzioni 2 L1. Allora

y := h ? u ∈ L1, con ‖y‖1 ≤ ‖h‖1‖u‖1 (3.3)

Prova Per ogni t risulta

|y(t)| =
∣∣∣∣∫ +∞

−∞
h(t− τ)u(τ)dτ

∣∣∣∣ ≤ ∫ +∞

−∞
|h(t− τ)||u(τ)|dτ

dove l’ultimo integrale può, per qualche t ∈ R, assumere il valore +∞.
Per valutare ‖y‖1, poniamo

‖y‖1 =
∫ +∞

−∞
|y(τ)|dτ ≤

∫ +∞

−∞

[ ∫ +∞

−∞
|h(t− τ)||u(τ)|dτ

]
dt (3.4)

2f : R → R è una funzione L1 se è misurabile e se
R +∞
−∞ |f(τ)|dτ < ∞. Allora si pone ‖f‖1 :=R +∞

−∞ |f(τ)|dτ .
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e notiamo che in (3.4) l’integrale doppio, eseguito in ordine inverso, vale∫ +∞

−∞
|u(τ)|

[ ∫ +∞

−∞
|h(t− τ)|dt

]
dτ = ‖u‖1‖h‖1

Applicando il teorema di Fubini3 alla funzione |h(t− τ)u(τ)|, concludiamo che il membro
di destra in (3.4) vale ‖u‖1‖h‖1 e la proposizione è provata.

Dalla proposizione 3.2.1 e dal punto (ii) dell’esercizio 3.2.1 segue che la mappa ingresso/usci-
ta A definita all’inizio del capitolo produce una funzione di uscita y = h ? u che è integra-
bile su ogni intervallo finito (ossia è “localmente integrabile”). Quindi, per ogni scelta di
h ∈ Lloc

+ la mappa associata A : u 7→ h ? u fa corrispondere ad ogni ingresso in Lloc
R una

uscita in Lloc
R .

La struttura della funzione y(·) risultante dalla convoluzione h ? u, con h e u funzioni L1,
può risultare “poco regolare”: può essere non continua, non limitata, non convergere a
zero per t→ +∞ . . .

Esempio 3.2.1 (i) La funzione

f : R→ R : t 7→ f(t) =

8<:
1

(1 + t)
√
t

per t > 0

0 per t ≤ 0

è una funzione L1. Infatti, poiché 2 arctg
√
t è una primitiva di

1

(1 + t)
√
t
, per 0 < ε ≤M <∞ si ha

Z M

ε

1

(1 + t)
√
t
dt = 2 arctg

√
t

˛̨̨̨M
ε

(3.5)

e, quando gli estremi di integrazione vanno a 0 e a +∞, si ottieneZ ∞
0

1

(1 + t)
√
t
dt = lim

ε→0, M→∞
2 arctg

√
t

˛̨̨̨M
ε

= π.

(ii) Poniamo ora

h(t) =
n
f(1− t) per t ∈ (0, 1)
0 altrove

(3.6)

e u(t) = f(t), ∀t ∈ R.

Figura 3.2.1
 

3
R R

f(x1, x2)dx1dx2 =
R
dx1

R
f(x1, x2)dx2 =

R
dx2

R
f(x1, x2)dx1 purché f sia sommabile in uno

qualsiasi dei tre sensi
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Allora u e h sono entrambe funzioni L1 e, per la proposizione 3.2.1, anche y(·) ∈ L1
+. Tuttavia y

non è limitata, essendo

y(1) =

Z 1

0

h(1− τ)u(τ)dτ =

Z 1

0

f2(τ)dτ =

Z 1

0

1

(1− τ)2τ
dτ ≥

Z 1

0

1

4τ
dτ =

1

4
ln τ

˛̨̨̨1
0

=∞

(iii) Se h è come al punto (ii), ma si sceglie l’ingresso dato da

u(t) :=

∞X
n=0

2−nf(t− n), (3.7)

Figura 3.2.2
 

allora u appartiene a L1
+ e y = h ? u diverge per t = 1, 2, 3, . . . . Infatti, ciascuno degli addendi

di (3.7) è non negativo ed è non negativo il nucleo h, quindi nel calcolo di y i contributi dei vari
addendi si sommano in valore assoluto.
In conclusione, y(·) non è limitata, né continua, né convergente a zero per t→ +∞.

Il risultato della proposizione 3.2.1 si estende a situazioni più generali, ovvero a spazi Lp,
con 1 ≤ p ≤ ∞. L’enunciato della proposizione che segue ha interesse nel caso di mappe
ingresso/uscita causali per le quali il nucleo h appartenga a L1

+ e l’ingresso appartenga
a LpR, p > 1: la conclusione è che l’uscita è ancora una funzione di LpR, ed è ancora
disponibile un confine sulla sua norma.

Proposizione 3.2.2∗ Se h ∈ L1 e u ∈ Lp, con 1 < p <∞. Allora

y := h ? u ∈ Lp, con ‖y‖p ≤ ‖h‖1‖u‖p (3.8)

Prova Per ogni valore di t risulta

|y(t)| = |(h ? u)(t)| ≤
∫ +∞

−∞
|h(t− τ)||u(τ)|dτ

=
∫ +∞

−∞
|h(t− τ)|1/p|u(τ)||h(t− τ)|1/qdτ, con

1
p

+
1
q

= 1 (3.9)

Nell’ultimo integrale, la funzione f(·) := |h(t− ·)|1/p|u(·)| è in Lp. Infatti v := |u|p ∈ L1 e

∫ +∞

−∞
f(t)p =

∫ +∞

−∞

∫ +∞

−∞
|h(t− τ)||v(τ)|dτ dt

è finito, per la proposizione 3.2.1.
D’altra parte, la funzione g(·) = |h(t − ·)|1/q è in Lq, perchè la sua potenza q-esima è in
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L1. Si può allora applicare alla (3.9) la diseguaglianza di Hölder4 e concludere che

|y(t) ≤
[∫ +∞

−∞
|h(t− τ)||u(τ)|pdτ

] 1
p
[∫ +∞

−∞
|h(t− τ)|dτ

] 1
q

=
[∫ +∞

−∞
|h(t− τ)||u(τ)|pdτ

] 1
p

‖h‖
1
q

1 (3.10)

Calcolando la norma Lq di entrambi i membri di (3.10), otteniamo

‖y‖p ≤ ‖h‖
1
q

1

[∫ +∞

−∞
dt

[∫ +∞

−∞
|h(t− τ)|u(τ)|pdτ

]] 1
p

= ‖h‖
1
q

1

[ ∫ +∞

−∞
(|h| ? |u|p)(t)dt

] 1
p

= ‖h‖
1
q

1

[
‖ (|h| ? |u|p )‖1

] 1
p ≤ ‖h‖

1
q

1

[
‖h‖1 · ‖|u|p‖1

] 1
p = ‖h‖

1
q

+ 1
q

1 ‖|u|p‖
1
p

1

= ‖h‖1 · ‖u‖p < ∞.

Perciò y appartiene a Lp, essendo ‖y‖ una quantità finita, e vale la diseguaglianza fra le
norme (3.8)

Nella proposizione che segue esamineremo una situazione di grande interesse: quando h
appartiene a L1

+ e la funzione di ingresso è limitata, anche la funzione di uscita è limitata.
L’importanza di questo risultato è ulteriormente rafforzata da un altro fatto, che sarà
dimostrato in un capitolo successivo, e cioè che una mappa ingresso uscita fa corrispondere
a ogni ingresso limitato una uscita limitata solo se il suo nucleo è una funzione di L1.
Si osservi, infine, che dal punto (iii) dell’enunciato risulta che il “passaggio attraverso” un
sistema con nucleo h ∈ L1 abbia l’effetto di regolarizzare ogni funzione limitata u, dato
che h ? u risulta ovunque continua.

Proposizione 3.2.3 Indichiamo con L∞ lo spazio delle funzioni misurabili essenzialmente
limitate5.
Se h ∈ L1 e u ∈ L∞, allora

i) y := h ? u ∈ L∞;

ii) ‖y‖≤ := ‖h‖1‖u‖∞;

iii) y(t) è continua per ogni t.

Prova Si ha, per ogni t ∈ R,

|h ? u|(t) ≤
∫ +∞

−∞
|h(t− τ)||u(τ)|dτ

4Se 1 < p <∞, se
1

p
+

1

q
= 1 e se f ∈ Lp, g ∈ Lq allora fg ∈ L1 e

|
Z
fgdτ | ≤

Z
|f ||g|dτ ≤ [

Z
|f |pdτ ]1/p[

Z
|g|qdτ ]1/q

5una funzione misurabile f è essenzialmente limitata se esiste M < ∞ tale che |f(t)| < M ovunque,
eccetto su un insieme di misura nulla. Porremo allora ‖f‖∞ = inf{M : |f(t)| ≤M quasi}.
Se f è continua, ‖f‖∞ = supt∈R |f(t)|.
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≤ ‖u‖∞
∫ +∞

−∞
|h(t− τ)|dτ = ‖u‖∞‖h‖1

Quindi y appartiene a L∞ ed è ovunque limitata (e non solo quasi ovunque). Inoltre è
verificata la (ii).
Per dimostrare il punto (iii) si può ricorrere al seguente risultato (cfr. McShane, pg 227)

“Se f(·) ∈ L1, allora

lim
h→0

∫ +∞

−∞
|f(t+ h)− f(t)|dt = 0 (3.11)

ossia ‖f(·+ h)− f(·)‖1 → 0 quando h→ 0”
Si consideri ora la differenza

|y(t+ h)− y(t)| =
∣∣∣ ∫ +∞

−∞
[h(t+ h− τ)− h(t− τ)]u(τ)dτ

∣∣∣
≤

∫ +∞

−∞
|h(t+ h− τ)− h(t− τ)||u(τ)|dτ

≤ ‖u‖∞
∫ +∞

−∞
|h(t+ h− τ)− h(t− τ)|dτ

Poiché h(t − ·) è in L1, quando h → 0 si può applicare (3.11) e concludere che y(t + h)
tende a y(t).

• Esercizio 3.2.1 Se A : u 7→ h ? u è una mappa ingresso/uscita con h ∈ L1
+, la condizione u ∈ L∞R

non implica (h ? u)(t)→ 0 per t→=∞.

]Soluzione. Si scelga h(t) = e−t)δ
(−1)(t), u(t)=δ(−1)(t). Allora

y(t) = (h ? u)(t) =

Z t

0

e−(t−τ)dτ = eτ−t
˛̨̨̨τ=t

τ=0

= 1− e−t

tende a 1 per t →= ∞ Quindi l’uscita corrispondente a un ingresso limitato può non essere in-
finitesima.

• Esercizio 3.2.2 Se, come nel precedente esercizio, A : u 7→ h ? u è una mappa ingresso/uscita
con h ∈ L1

+ e u ∈ L∞R , la condizione u(t) → 0 per t → +∞ è sufficiente a garantire che y(t) =
(h ? u)(t)→ 0 quando t→ +∞.
Possiamo allora concludere che, quando il nucleo di convoluzione appartiene a L1

+, ogni ingresso
limitato e infinitesimo per t→ +∞ produce un’uscita limitata e infinitesima per t→ +∞.

]Soluzione. Per ogni ε > 0 esistono α, β ∈ R+ tali cheZ +∞

t

|h(τ)|dτ < ε, ∀t ≥ α, |u(τ)| < ε, ∀τ ≥ β

Se supp(u) ⊆ [b,+∞), si consideri un istante arbitrario t > α+ β + |b| e si noti che

|y(t)| =

˛̨̨̨ Z t

b

h(t− τ)u(τ)dτ

˛̨̨̨
≤
Z t

b

|h(t− τ)||u(τ)|dτ

≤
Z t−α

b

|h(t− τ)||u(τ)|dτ +

Z t

t−α
|h(t− τ)||u(τ)|dτ

≤ ‖u‖∞
Z t−α

b

|h(t− τ)|dτ + ε

Z t

t−α
|h(t− τ)|dτ

≤ ‖u‖∞
Z t−b

α

|h(σ)|dσ + ε‖h‖1 ≤ ε(‖u‖∞ + ‖h‖1)
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Infine, per nuclei L2, abbiamo il seguente notevole risultato;

Proposizione 3.2.4 Se h ∈ L2 e u ∈ L2 allora

i) y := h ? u ∈ L∞

ii) y(t) è continua per ogni t ∈ R

iii) limt→+∞ y(t) = 0

Prova (i) Si applica la diseguaglianza di Cauchy-Schwartz:

|y(t)| =
∣∣∣ ∫ +∞

−∞
h(t− τ)u(τ)dτ

∣∣∣ ≤ ‖h‖2‖u‖2, ∀t ∈ R.

Quindi |y(t)| è ovunque confinato superiormente da ‖h‖2‖u‖2.
(iii) Fissato ε > 0, si possono scegliere α ∈ R sufficientemente grande, in modo che il
“futuro” di u soddisfi la diseguaglianza

‖Fαu‖2 = [
∫ +∞

α
u2(τ)dτ ]

1
2 < ε

e t > α abbastanza grande in modo che risulti

‖Pαh(t− ·)‖2 = [
∫ α

−∞
h2(t− τ)dτ ]

1
2 = [

∫ +∞

t−α
h2(σ)dσ]

1
2 < ε

Applicando ancora di diseguaglianza di Cauchy- Schwartz, si ottiene

|y(t)| ≤ |
∫ α

−∞
h(t− τ)u(τ)dτ |+ |

∫ ∞
α

h(t− τ)h(τ)dτ | ≤ ε(‖u‖2 + ‖h‖2)

(ii) Si pu‘o ricorrere al seguente risultato (cfr McShane, pg. 230)
“Se f ∈ Lp , allora

lim
h→0

∫ +∞

−∞
|f(t+ h)− f(t)|pdt = 0

ovvero ‖f(·+ h)− f(·)‖p → 0 quando h→ 0”.
Si ha allora, applicando la diseguaglianza di Cauchy- Schwartz,

|y(t+ h)− y(t)| ≤
∫ +∞

−∞
|h(t− τ + h)− h(t− τ)||u(τ)|dτ

≤ ‖h(t+ h− ·)− h(t− ·)‖2 · ‖u‖2,

che tende a zero quando h→ 0.

• Esercizio 3.2.3 (i) Se h ∈ Lloc
+ è ovunque continua, allora per ogni u ∈ LRloc l’uscita y :=h?u è

continua;

(ii) se h è ovunque derivabile con derivata continua, allora per ogni u ∈ Lloc
R l’uscita y :=h?u è

derivabile con derivata continua e si ha Dy = (Dh) ? u;

(iii) se h ha ovunque derivate continue fino all’ordine m, allora per ogni u ∈ Lloc
R l’uscita y :=h?u è

dotata di derivate continue fino all’ordine m, date dalla formula D(m)y = (D(m)h) ? u.

] Suggerimento per (i). Si utilizzi la proposizione 3.2.3.
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• Esercizio 3.2.4 Sia A la mappa ingresso/uscita che associa ad ugni ingresso u ∈ UR localmente
integrabile la funzione

y(t) =

Z t

−∞
u(τ)dτ

Si determini il nucleo di convoluzione h in modo che per ogni u si abbia Au = h ? u.

] Soluzione : h = δ(1).

3.3 Il teorema di Titchmarsh

Supponiamo che il nucleo di convoluzione di una mappa ingresso/uscita sia una funzione
continua h ∈ Lloc

+ , non identicamente nulla.
Il teorema di Titchmarsh fornisce una risposta negativa alla domanda seguente: “Esistono
allora funzioni di ingresso continue cui corrisponde un’uscita identicamente nulla?” o,
equivalentemente: “Esistono due funzioni di ingresso continue e distinte che danno luogo
alla medesima funzione di uscita?”

Teorema 3.3.1 [Titchmarsh] Se he u sono funzioni continue, con supporto in [0,∞) e
nessuna delle due è identicamente nulla, allora h ? u non è la funzione nulla

Per la prova, non facile, si rinvia alla monografia di J.Mikusinski, pp.15 e segg. È chiaro,
inoltre, che nulla cambia se il supporto della funzione continua u appartiene alla semiretta
[−a,+∞), dato che h ? (σ−au) = σ−a(?u).

Il teorema puó essere esteso a un contesto più vasto ed ha alcune interessanti conseguenze.
Per quanto riguarda una sua estensione, verifichiamo che, se risulta h ? u = 0 con h e u in
Lloc

+ , allora una almeno delle due funzioni è nulla q.o.
A tale scopo, ricorriamo a due funzioni di test6 non nulle φ e ψ. Poiché entrambe le
funzioni h ? φ e u ? ψ sono continue (la convoluzione con le funzioni di test “regolarizza”
h ed u), una almeno di esse deve essere nulla, come si evince applicando il teorema di
Titchmarsh a

(h ? φ) ? (u ? ψ) = (h ? u) ? (φ ? ψ) = 0.

Se, ad esempio, è nulla u ? φ, allora per ogni altra funzione di test θ risulta u ? θ = 0,
altrimenti (u?θ)?φ non sarebbe nulla (ancora per il teorema di Titchmarsh) e quindi non
sarebbe nulla (u ? φ) ? θ = 0 ? θ = 0.
Poiché u ? θ = 0 per ogni funzione di test, possiamo scegliere, in particolare, funzioni di
test con valori

θ(t) =
{

1 per t ∈ [α, β],
0 per t 6∈ [α− ε, β + ε], ε > 0

e altrove con valori compresi fra 0 e 1.

6ovvero due funzioni infinitamente derivabili e a supporto compatto: l’insieme D delle funzioni di test
sarà discusso con qualche dettaglio nel capitolo 5.
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figura 3.3.1

È facile constatare, facendo tendere ε a zero, che per ogni scelta di α < β risulta∫ β

α
u(τ)dτ = 0.

Applicando infine il teorema di differenziazione di Lebesgue:
“Se u(·) è localmente integrabile, per quasi ogni t si ha d

dt

∫ t
α u(τ)dτ = u(t) ′′

si conclude che u(t) è nulla per quasi ogni t e quindi ha norma L1 nulla.

La discussione precedente prova cos̀ı la
Proposizione 3.3.2 Se h ∈ Lloc

+ ed esiste T tale che ‖PTh‖1 > 0, allora per ogni u ∈ Lloc
R

la condizione h ? u = 0 implica che u sia una funzione nulla q.o.

Come ulteriore applicazione del teorema di Titchmarsh, cerchiamo di rispondere al seguente
quesito.
Data una mappa causale ingresso/uscita A, che sia rappresentabile mediante un integrale
di convoluzione con nucleo h, esiste un ingresso u che, applicato al sistema, fornisce in
uscita il nucleo di convoluzione h? In altre parole, esiste un “esperimento ingresso/uscita”
che consenta di identificare il nucleo, e quindi di caratterizzare completamente la struttura
di A come risposta ad un particolare ingresso applicato?
È chiaro che dovrà essere risolubile per qualche u ∈ Lloc

R l’equazione

h ? u = h.

Escluso il caso banale in cui è una funzione quasi ovunque nulla, dall’eguaglianza

h = h ? u = h ? (u ? u) = h ? (u ? u ? u) = . . .

e dalla proposizione 3.3.2 segue che u soddisfa le uguaglianze

u = u ? u = u ? u ? u . . . (3.12)

Si può dimostrare che, salvo la funzione nulla q.o., non esistono funzioni in Lloc
R che

soddisfino (3.12) e pertanto, rimanendo in Lloc
R , nessun ingresso consente di identificare

il nucleo di convoluzione di A. Come vedremo, la soluzione sarà trovata ricorrendo a un
ingresso impulsivo, e quindi ampliando gli ingressi ammissibili alle distribuzioni.

Un’ulteriore questione che sorge naturalmente può enunciarsi in questi termini:
“La classe di mappe ingresso/uscita lineari, invarianti, causali rappresentate dall’integrale
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di convoluzione è sufficientemente ampia da coprire tutti i casi di interesse? Detto altri-
menti, esiste qualche mappa ingresso/uscita A che possiamo ritenere piuttosto “naturale”
e che tuttavia non sia esprimibile nella forma

Au = h ? u, ∀u ∈ UR

qualunque sia la scelta della funzione localmente integrabile h : R+ → R? ”

A questo proposito, notiamo subito che la mappa identità, i.e. la mappa che associa ad
ogni ingresso un’uscita uguale all’ingresso, non può ottenersi mediante convoluzione con un
nucleo in Lloc

+ . Non esiste infatti nessuna funzione h ∈ Lloc
R che soddisfi per ogni u ∈ Lloc

R

la condizione

u = h ? u (3.13)

Per verificarlo, basta porre u = h in (3.13) e ricordare che, come detto in precedenza,
h = h ? h non ammette soluzioni non nulle in Lloc

+ . In alternativa, si può notare che in
(3.13) h?u è in generale più “regolare” di u. Ad esempio, se u ∈ L∞+ possiede discontinuità
isolate e non eliminabili, allora, per la proposizione 3.2.3, h ? u è una funzione continua,
quindi diversa da u su un insieme di misura positiva.

Figura 3.3.2

 
Come vedremo più avanti, la situazione cambia radicalmente quando si lavori in ambito
distribuzionale. Infatti, un teorema generale, dovuto a L.Schwartz, assicura che, sotto
condizioni molto blande, ogni mappa lineare, causale e invariante A possa essere rappre-
sentata dalla convoluzione fra un nucleo distribuzionale h, caratteristico della mappa, e
la distribuzione u che rappresenta l’ingresso. Ad esempio, l’impulso di Dirac δ soddisfa
la condizione δ ? u = u per ogni distribuzione u. Quindi la convoluzione con nucleo δ
rappresenta l’operatore identità.
Anche le questione dell’identificazione del nucleo h trova soluzione nell’ambiente delle
distribuzioni, in cui risulta h ? δ = h qualunque sia h: un ingresso corrispondente alla
distribuzione di Dirac (vedremo più avanti quale significato operativo si debba attribuire
a ciò) produce un’uscita eguale al nucleo di convoluzione della mappa i/u.

-δ
A -h

figura 3.3.3
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