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Abstract

The input=-output behaviour of a two-dimensional 1li-
near filter is defined by a formal power series in two
variables. If the power series is rational, the dynamics
of the filter is described by updating equatiosms on fi-
nite dimensional local state spaces. The class of reall
zations considered in this paper is constituted by dou—

- ble indexed dynamical systems of reduced structure. The
notions of local reachability and observability are de-
fined in a natural way and an algorithm for obtaining a
reachable and observable realization is given.

The minimality of the realizations is not guarantee
by reachability and observability. In general the dimen
sion of minimal realizations depends on the ground field
and does not coincide with the rank of the Hankelmetrix.
Nevertheless the dimension of a minimal realization is
the least rank in a family of Hankel matrices.

L. Introduction

Spatial filters 1-6 are extensively used in proces-—
sing two-dimensional sampled data, such seismic datasec
tions, digitized photographic data, and gravitational
and magnetic maps.

The algebraic realization theory of spatial filters
has been formulated by the authors in some published
papers’»8,11  In this contribution we will derive addi-
tional results mainly with regard to a reduced structu-
re of the updating equation for the local states. We
shall make use of examples to evidentiate some intere—
sting aspects of reachability, observability and ninima
lity properties of filter realizatioms.

2 Realization of two-dimensional filters

We will consider two—dimensional digital filters
with scalar inputs and outputs taken from an arbitrary
field K, The input-output representation of such a fil-
ter is given by

L, v, 7,9, B) (1)

where T=7Z x2 (partially ordered by the product of the
orderings) is the discrete plane, U and Y are one-~dimen
sicnal vector spaces over the field X, % and % are the
space of truncated formal Laurent series in twe varia=-
bles over K (whose precise description will be given be
low), and F: % =% is the imput-output map.

A typical element of & or &% will be writteam

T = (xr, zlz )z’izg_ i for some integer k

k1 +
where (r, zlzz) denotes the coefficient of 2122'

The input-output map F:% +% is assumed to satisfy
the following axioms:
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i) linearity

ii) two dimensional shift invariance:

F(zlzz) = z;z2 F(r) ., i,jez

iii) two dimensional strict causality:

ij : :
(ul’z}.ZZ) (u ,zlzz) i<ty, j<g,

implies:
(Ful,ziz%) = (F’Jz,z?l'z%), iitl, jitz, ?Ezl, uzs"fl

Under assumption iii) it is easy to verify that the im-
pulse respanse F(1} is a "strictly causal" power series,
i.e..

= idy,1,
F(1) 1;.3. F(), 223)28

More formal}.y we can say that:

s = F(l) € (z1 ?)KLLzl,z ]] K [Lzl,zzj]]
of formal power series

where K[[zlu)l] denotes the r1‘1§
is the ideal of “stric-

in two variables and K [21922

tly causal” power serics.

From i) and ii) it follows that:

F(u) = su, Vac¥

that is, two—dimensional filters (in their-output repre
sentation) ars in one-to—-one correspondsnce with format
power series KCLLzl,zz ]

Definition. A double indexed, linear, staticnary, fi-
nite dimensiomal dynamical system I is defined by apair
of equations of the form:

x(h+l, k+1) = A 1% (h+1,k) +Ax(h Jk+1) +Bulh,k)  (2)

yv(h,k) = Cx(h,k)

where As ek ™, i=1,2, ¢ s!(lxn BekK™! ang x belongs
to some flm_te dlme.nsmnal vector space X=K2 {local sta
te space). :

The solution of equations (2) for %>0, k>0, is u-
niquely determined by u and by the valwes =(h,0), h =
= 1,2,..., and x(0,k), k = 0,1,2,..., {initizl local sta
tes). =

Remark. In 2 prewvious paper? we formelated the reali-’
zation problem of spatial filters using Herode equiva-
lence and we obtaimed a local state space descriptionin
which the state x(h+#1,k+1) linearly depends onx(h+l,k),
x(h,k+1) and x(b,k). Then the associated updating equa-
tion has the following form: -

716

(Bt e b ST i) S B e o b o i b i) L Sl e et B N R ST e e

T T T T . e e o Vi . sy AW AR S £ 05 e



T T A Gl s

o e I R Sl 0 Sl st it iz i

x(h+1,k+1) = on(h,k) +'Alx(h+1,k)+A2x(h,k+1)+Bu(h,Ic)

This kind of realization allowed us to analyze in a
simple way the properties of filters charactarized by re
cognizable power series,

Let now x(h,0) =x(0,k) =0, h,k=0,1,... ard associa

te the monomial x(h,k) z%z?gi{ﬂ“ [I:zl,zz'_ij with the lo-

cal state x(h,k).

From (2) it follows that Ffor each ugKizl,zzjz

e h k s h k

ih,kx(h’k‘)zle = Al(f;h,kx(h'k)zlzz)zl +

T :
Az(gh’kx(h,k)zlzz)zz +(z,z,)Bu

and then

(I-A,z,=-A,2.)L .x(h !-"‘zhz:k = (z.z,)}Bu

1%L “2%27%p kM2 2% 12 :

The po  mial (I-Ajz;-a,z,} belongs to K™[z3,z5] and
has an inverse in tha ring 6f formal power series KOXD 21,22
Its inverse is given by:

_1 <o .
(1-Ajzy = 8g2)) 7 = I, (&)2, +4,2,)"
o

With the aid of this inverse we can relate the state to
the input. In fact we have:

hk _ .o _ =

zh,kx(h’k)zlz2 = (I Ayzy Azzz) (zlzz)Bu

Tnis yields at cnmce the input—output relation:
=C I x(hk)2leE = €(T-A 2z ~a,2,) L(z,2,)Bu
y 1KJ2 5y 171 ~%2%2 1%2
h,k
The series
-1
C(I—Alzl-Azzz) (zlzz}}! (3)

is called the transfer function of I.

‘We .all that a formal power seriesseK [zlzﬂ] is
rational if there exist polymomials p,qe K[z »27L1] with
ceg p <deg q, such that gs=p. The polynam'_a} q 1s cal-
led a denominator of s.

Then the transfer fungtion (zyz;) C(I~.~"11z--—A2z3_)"IB
belongs to (zllz?_)i{[(zl,zzhii- Kcig;i,zz)J,:fhere: KL(Zl’ZZ?]
denotes the ring of_! rational power series in two varia-
bles and K [.(z]_ozz)_i is the ideal of causal rational po-
ver saries.

definition. A double indexed dynamical system [ =
< (AE_,AQ,B,C) is a zero-state realization of a two=-di=-
:;l:l‘ls.’l_cnal filter & representad by a seriess e K, [[zl,zzﬂ
:

s = (zlzz)C(I—AlzlvAzzz)-lB )

The dimension of a realization I is the dimension of
he local state space X.

The minimality of the realizatien is naturally rela
ed to the dimension of X in the sense that a realiza-
ion § is minimal when dim I <dim I' for amy I’ which
ealizes S,

Definition 2.

Proposition 2.1. Let ¥be representedbys ¢ K. [[zl,zﬂj.
Then # is realizable by a double indexed dynamical sy~
stem if and only if s e K, [(z25)].

Proof. The necessity is a trivial consequence of (3).

The proof of the sufficiency part isbased onthe fol
lowing observation due to B.F. Wyman [__persona_l_ communi
cation /, i.e. if there exist ALA LA, € KL F ¢ goXl]
T e EIX0 guch that:

sl o e
8= (2)2))C(1 -4 2,2, ~A;z) ~4y2,) B

then the double indexed dynamical system I = (A1, &5,
B, C), where:

: ) B
A = , A, = ,B=||,c=[¢ o
O 0 - I (0] o]

is a zero-state realization of &

An explicit procedure for comstructing Eo,ﬁl ,,:_\2,5,(_.‘.
starting from the transfer function is available in the
literature/»%,

A different proof appealing to Hankel matrices of

non commutative power series will appear shortlym.

3. Reachability and Observability

From now on we shall assume that the formal power se
ries s characterizing the input-output map of the fil-

-ter & is rational. Hence there exists a realization gi-

ven by 2 doubly indexed dynamical system I = (AI 4, ,8,C):

x(h+1l,k+l) = Alx(h+1,k) +A2x(h,k+1) +Bu(h,k)

y(h,k) = C x(h,k)
such that:
s= (z.2,)C(I-4Az, Az )_lB
1%2 121 “85%) "B

We shall now extend the notions of reachability and
observability for discrete-time systems tc provide equi
valent notions of local reachability and observability
for two~dimensional filters. We say that a local state
XeX is "reachable" (from zero initial states) if there
exist an input usK[lzl,zz-ﬂ and integers i > 0, j >¢©
such that x(i,j) =X when { starts from initial states
x(h,0) =x(0,k) = 0, h,k=0,1,... . Since doubly indexed
dynamical systems are assumed to be stationary, we can
introduce the following definitions:

Definition 1. A state x e X is reachable if x =

=((z}_zz) Ekmlzl +A2z2)kBu,1) for some u g ¥.

The reachable local state space is

IR = {x:zx = ((zlzz);k(alzl+A2z2)k8u,l), ue¥}
o o

and ;ﬁhe realization [ = (A1,A9,B,C) is L-reachable if
X = ¥,

The Teachable local state space ® is spanned by the
columms of the matrix

= Moo® HioB Moi3 "]
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Lemma 3.1.

T TR TR R R SR s.ad.\,en«m
where is follows that
= k ij n
M.. = (I (A 2z, +A.z.) , 27z5) 738 -h_-k =L,
i " MR 1%2 2o M52 {:}hk e irs“rszl zy

Since dim XR = rank R_, the realization I = (Al' AZ;
B, C)}) is L-reachable if and only if R, is full rank.

The notion of indistinguishable states is alsoexten
ded in a very natural way.

Definition 3.

A state xeX indistinguishable from the
state 0 in X if -

-] -
i
g]..(l(llxl'z.1 +A222) x =0
Notice that the left hand term in the above relatiom re
presents the zero—input response of I determined by x(0,0)=x.

Definition 4. The indistinguishable local state space is

{x xeX, Z C(A +A zz)lx = 0}

11
Since the space xlis the null space of the infinite matrix:

C
C Mg
Q0 =

© CMO].-’

the realization T = (Ay,A;,B,C} is L-observable if =
= {0}, that is if 0, full ramk.

The matrices R, and O, contain an infinite number of
elements.

Nevertheless the evaluation of their ranks, whichis
essential to reachability and observability analysis, can
be confined to check the rank of two submatrices R e Kp¥n2
and 0 ¢ KN2X0 given by: '

B = E"ooB Vyh win Wy n—lB:[

and
C MOO s
o4 MlO
0= .
¢ n-1,n-1

This statemert will be proved in Lemma 3.1 and Proposition 3.1.

Let A, A belomg to K0 and let

-]
- h o g
Mij (Eh(A121+A222) . 2122) i,jeZ

.

be the coefficients of z%z? in the series (I-Alz]_-Azzz}-l.
Then there exist b eK, 4,j=0,1,2,...,m, b # 0 such
that
n
B35 Mion,j-uPiy = ©
for all (h,k) ¢ {(1,1),(1,2),..., (n,m)}
The sczlars bjj; can b% .aisumed as the 1c:oe:ffix::'.r:er:.ts
in the polynomial det(Iz1 2y —Alzz - A,z ).
Proof. Since
o h, (z1 2} adJ (Iz1 2 -A z -A.zz
zhtAlz1 +h,z,) =
o det(Iz A,Lz2 Azz
1 n xn
e i~ = - N
T s Bt bnn 1, B ek
1_‘| 1_1 Z) %y

I

Equating the coefficients of the same powers in both u
des ome gets the proof.

Proposition 3.1. Let Mij as in Lemma 3.1. Then
span(M ,1,_1 EZ) = span(H .,1 j=0,1,...,n-1) -l
Proof. It is sufficient to prove that if r,s are non

negative integers and either r>n or s >n, then
Mij e, i<r, j<s, (i,j) # (r,s)

implies M., 44 In fact by Lemma 3.1

n

iijui-nﬂ,j-n+sbij =9
so that

Hs ™ ‘ —ii,j Mi—n-tvz‘,_'i—n+aib:|'.j

(i,j)#(n,n) '

Remark 1. The above result can be refined when r > n
and s < n. In fact

Hrsaspan(}!ij, i=0,i0e, 01, j=0,...8)
Remark 2. The Cayley-Hamilton theorem is a particular

case of Proposition 3.1 when A1 = O.

Applying Proposition 3.1 we ‘can write rankR_ =rankR,
rank O, =rank O, which proves the following

Proposition 3.2. A realization I is L-reachable (L-ob-
servable) if and only if R (0) is full rank.

The matrices R and 0 are called reachability matrix
and observability matrix associated with the realization
= (4;,4,8,0).

4, Computation of reachable andobservzble realizations

So far we have seen that reachability and observabi
lity of a realization are strictly cennected with the
ranks of the reachability matrizx R and the observability
matrix 0. We are now concerned with the following pro-
blem: suppose that we have a realization E= (Al,Az,B,C)
of d@imension n and we would like to construct a L-rea-
chzble and L-observable realization, starting fromZ. To
solve this problem we introduce two algorithms which act
independently to give a L-reachable or a L-observable
realization. Of course the alternate application of the
se provides realizations which are eventually bothL-rea
chable and L-observable.

Let us assume that I = (A3,4,B,C} is a realizationm
of dimension n of a given filter I, and let R be the rea
chability matrix of I. Assume rank R = r<n., The algo-
rithm for comstructing a L-reachable realization cf di-
mension r is based on the following two steps.

Step 1. Construct a matrix Te Gl(n,K) having the Iast
n—-r rows orthogonal to the space spanned by the columns
of R. Consider then the realization (AL’AZ’B C) charac-
terized by

718
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c(I —Alzz -Azzz) B =

O

7oL e R B S RL Pa S T s i b K A e, o1
S— . -T_i
o hant & =T(1-4z; ~Kyz,) 715 -
B =T78B .
" - =.. C M..B zlzi
8 ooyl Iyj C 3B zied
The matrix T induces 2 change of basis in X. The

first r elements of this new basis are a basis for XR.

Step 2.  Write &}, &, in partitioned form:

A(k) 2
11 12
A = iR k=1,2
AT im0 00 * ' *
a3 Mgl :
and partition B and C conformably:
B o
= 1 - PO T | rxl
B.= o 1 C=E:1 {:2_3, B, cle‘x

Then (4, Ay ,B,C) and (n(i) Kfi), By, 61) realize

the same filter, and (A{l} Agi), il’ Cl) is L-reacha-

le. In fact, let x(h,k} be ths state resached by the ef
fect of an input uce%, and assume as a basis in X the
basis corresponding to {&;, %, 8, C). With respect to
such a basis the last n-r components of x(h,k) are zero
and the system

, () (7 .
xl(h+l,&+151 11 12 xl(h+},k)
= +
2 2D
. - & | 9

RO AT & k)] [B
u(h,k)

'-(2) ={2)
21 Baa ]

= G x, (h,k)
y(h,k) = [C1 Cz] irl ]
L O

realizes the same input-output map as

x, (h+1,k+1) = A(U L0110+ D5 (1, k01 48 Lu(h,k)

y,k)  =Cix; (hk)

Assume now rank 0' = r'<n. The algorithm for obtaining
a L-observable realization is also based on two steps
and is substantially the same as the above reachablllty
algorithm, although the procf of the second step is ba-
sed on somehow different reasonings.

Step I. Construct a matrix qle Gl(n,X) having the
last n~r" columns orthogenal to the space spanned by the
rows of 0. The realization (AI,AQ, ,C) defined by

"QA]_Q..l
=1
'QA2Q
=Q3
aCQ—I‘

(o1 m.r-?.r«b'

satisfies

719

In the associated observability matrix

n-1,n-1

the elements in the last n-r' columns are zeros.

Step II. Write 51 Kz B,C in _partitioned_form as in
step 2 above, and notice that C = [@1 61, C1 S

show that (Ag%), Ai%), B

1’ Cl) is a realization we have
to prove that

E .5 2led = 8(1-K 2, K25 =
E..C M..B z c(1 Alzl A222)B

= ¢ (- A(l) (2) 2,)” 3 4

namely that

CM,.B=CM

54 1 jBl i,j = 0,1,...

Observe that for i,j>0

& Hij 7 Ml =1,3 l"‘c h ,J*lAZ
e ME . a(D (2)
CpMfy = Oy AL O AN

and assume by induction that the flrst r! elements of
[« Ml-l i ‘D M ,j-1» coincide with C]_Ml 1,j° CIM -1 TE
spectlvely. Then

a1 ;a1
5 % w Ui 3 T PO
CH ;A= [1“;-1,3 % 3 l:clMi-l,J 441
21 22
and similarly
Y * (2)
Sy s Ay = |G A *]

grgm which it is clear that the first r' elements in
C Mj; are the same as in clvl . 0f course the last n-r'
elements are zero because of the structure of 0.

Evidently the result that we have proved can alsobe
stated in the following form:

Progosition 4.1. Let I = (A1,4,B,C) be any realiza-
tion of %. Then a L-reachable and L~observable realiza-
tion can be constructed in a finite number of steps from
L following the procedure above.

Corollary. Every minimal realization is completely
L-reachable and L-observable.
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Remark. As we shall see in section 5, in general the
converse of the above corollary does not hold,

5. Examples of realizations

As it was remarked at the end of section 4, L-rea—
chability and L-observability properties of a realiza—
tion do not imply the minimality of the realization.

The following exawples prove this fact and further—
more they give some -insights into the gemeral problemof
the dependence of the realization on the field K.

Example 1. Let K be a field of and

characteristic O
consider the filter: ‘
1-2z7

z. . 2

= SRy e
217 %2

The following doutle indexed dynamical systems

El = (A](ll)’ Az(l)' B(i): c(l)):
-10 01 1
(1) 1y . (1) _ 1) |: ]
A = g = , B = » C =11 O

anid gy W Gl P, A, BTRL elB)y
5 1 6 000 0
(2) @) _i_ @) _
2P =l 0 1|, aP=f-20 1}, 8P =1,
010 010 0

¢® - l:—1 1 czl

are L~reachable and L-observable realizations of s over
the field K. However Iy is not a minimal realization.

Example 2. Consider the filter
» 1
=)
1 2

and assume K=C. It is easy to check that s has a mini-
mal realization of dimension 2 givenbyI;= (A](_l), A;._SI),

(1), ¢c(1)) with
e ’ . o ’ B(l)= ' ’ C‘(l)-E (ﬂ
1 0 -io0 ol

We now show that if we assume K=R, the filter s is
ne longer realizable in dimension 2.

S

Neis

First make the following observation. If I= (Al,Az,'

B,C) is a realization of a filter characterized ,L by a
strictly causal power series s = L, .{s,zlzi)z’-zi, the
i,3 1 1

dynamical systems I = (Al,B,C) and I, = (AQ,B,C) reali

ze the formal power series in one indeterminate
& ¥ uatayel 3 3y
5, = gi(s,zlzz)zl and 8, = ij(s, zlzz)z2

respectively. In this example

720
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slﬂzl‘*z:{*zsl-b...

P

Iy T By *

2

s +

e

=5

A minimal realization of s; and s; is given by

z-E J,§=l|::.5-[10].

Hence the class of minimal realizaticns of sj and ss
over R is

1

2= (> 5, P15, Er), PGl 2R} .

Suppose now that I = (A;,A7,B,C) realizes sin dimen-
sion 2 over R. Hence (4;,B,C) and (42,5,C) are minimal
realizations of s; and sy and consequently they belong
to . Then we can find Se GI1(2,R) such that

s'lAls =k S lB=35,08=2C

1,.8,5,5)

and check that I= (S‘IAls,S‘1A23,5'13,65)=(§15- .

still realizes the filter s.

Since (S-lﬁzsl-B,E) must realize sy, : there exists

TeGl(2,R) such that

1 (s 8,91 = & (5)
T =8 6)
CT =C (7)
From (6) and (7) we have
i 0 'z
T = o e I’ ty, R (&)
22
Then the structure of S_IAQS follows from (5) and

(8):

ot
- 22
S lAZS = " tzzsIR -
1o
22
Since T realizes s, we have also
- 22, mesoeml -1 IVE =
0 = (s,zjz,) = C(A S "A)5+5 "A,5 A)B
- -1
ek
Hence
2 A L
t22 1

which contradicts the assumption T e G1(2,R).

6. Minimality of realizations

From the examples given in sectien 5 it appears ve-
ry clearly that the minimality problem for double inde-
xed dvnamical systems shows some peculiar aspects which
do not aliow us to derive the realization theory of twe
dimensional filters by simply generalizing linear sy-

e A e e S e i b e I LRy e S b B
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stems theory.

One of the first key points failing in this context
is the rule played by the Hankel matrix. In linear sy~
stem theory the Hankel matrix associated with a rational
series can be obtained multiplying the {infinite) obser
vability matrix by the (infinite) reazchability matrix
and its rank gives the dimension of minimal realiza-
tions. These properties do not hold for twe~dimensional
filters as we shall show below.

Let s ei(c[_f:zl,zgjj ,and let s'=(z; zz)"ls. Then the
Hankel matrixz.#(s) associated with s is given by’

(si1) (s',zl) (5',22) (s',zi} (s’,zlzz)(s',z%)...
S (s',zI)Fs',zi) (s',zlzz)(s',zg) (s',zizz)(s',zlzg).
(5':22)(5',2122)(3',23) (s',zizl)(s',zlzg)(s',zg)...

(S'szz)(s',z%) (s',z%izz}(s',za) (s',zizz)(s',zizg).

has been prr:nred9 that the rank of #Y{s) is finite
if and only if s is rational and a denominator q of s
can be factorized as q=qqqy with q eK[le],qzeK[zzlj.
The series satisfying this property are elements of the
ring K{(zl)] @K[(ZZ) b grec [(z}_,zz)] called the ring of
"recognizable series'.

The following remarks are a consequence of the abo-~
ve mentioned characteristic property of recognizable se
ries and give an account of what is the situation with
Hankel matrix for two-dimensional filters:

i) if s is rationmal but s ¢ K°°[(2y,23)], then rank
J¥(s) =w, However there exist finite dimensicnal rea
lizations of s (see Proposition 2.1);

ii) if ssKrec[(zl,zz)], then rank.#(s) is finite. Ho-
wever the dimension of minimal realizations of s
does not coincide with rank#(s) as the following
example shows. Assume s ¢ KF€¢[(zq,23)] be givenby:

1+Zl+22

s = (z,2,) s——m————
172 1+z]_+::2+zlz2

terefore the formal power series expansion of
(zlzz)'ls is expressed by:

= k k
g = (l+zl+zz) zk(—l) (zl+z2+z}_z2
- 2.2
1 2122+2122+z

and the Hankel matrix is then:

1 0 0 0-1 0 0 1 1 ..uu.
0 0-1 011 0 .ouun
0-1 0 1 .....

HE=lo 0 1 ...
-1 1 1 aueas
0 0 seane

Note that rank #(s) > 2. Nevertheless a minimal rea
lization of dimension 2 does exist, i.e. L = (47,
47,B,C):
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o 0 -1 0 1

A= L - B= C=|1 1}.

1 !A2 b w' » [ 1
0 -1 1 0 0

iii) Since the rank of the matrix O,R, is finite, in ge
neral #(s) # O,R,. Links between #7s) and OoR, ha-
ve been clarified in a different context,7,8,

In the sequel we will zgsociate with the commutati-
ve series s a family of nom commutative power series in
two variables whose Hankel matrices have finite rank. We
will prove that the minimal rank of these matrices is
the dimension of minimal realizations of s.

A non commutative power series r in two indetermina
tes x1,x) over a a fieldbelongs to the ring of recogni-
zable series rsK((x-]*,xz}> if there exist anintegerm,
a representation p: X +K¥®, two matrices Bekaxl and
Ce KLX® guch that

r= L Cu(w)Bw
WE

where X is the free moncid generated by XysKye

This is equivalent to say that any non commutative
recognizable power series r can be expressed as:

f .
- i, _ B . -1
r = iic(alxl-bAzxz) B = C(I Alxl Azxz) B
where A = nixy), Ay = w{xz), (A;, Ay do not necessari-
1y commute). o

The dimension of the minimal representation of r is
given by rank #(r)9. s

Define the algebra morphismé: K<(x1,x2)>—>K[[z1,zﬂ:]
by ¢(k) =k, VkeK, ¢(xq) =27, $(xp) =29. Since

-1 -1
B2 C(I-AXI-AZXZ) B-‘-E(I-Alzl—Azzz) B, (9)

all rational series in the commutative variables z] and
z, are obtained by varying A1,A9,B,C, and the map ¢ is
onto K[(zbzzﬂ. Then we can associate a commutative sg
ries ¢(r) sK[(zl,zz)] with each non commutative series
reK< (x1,%x9) >. By (9) zach representation of r indu-
ces a realization of ¢(r}. :

The following diagram

K< (xlsxz} > —L_-b K[:(zlxzz):l

K< (xl,xz) >
ket ¢
commtes and § is an isomorphism.  Consequently given
s eKg E(zl,zz):] , minimal realizations of s correspond to

minimal Tepresentations im the class of representations
of §~1(s).

One has thus arrived at the following Proposition:
Proposition 6.1. Let s belong to Ke[(z1.23)] . Then the
dimension of minimal realization of s is given by:

min rank . ¥(r) .
res (s)
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7. Conclusions

In this paper by pursuing the idea of introducing a
state space model of two-dimensional filters, the reali
zation problem has been further 1nvest1§ated along the
directions outlined in previocus works?s

The c¢lass of realizations introduced in this paper
is characterized by a local state updat1ng equation of
the following form:

x(h+1,k+l) = Alx(h+1,k) +A2x(h,k+l) +Bu(h,k)

After defining the concepts of reachability and ob-

servability, we have presented an zlgorithm for obtai-

~ ning a reachable and observable realization starting from
a generic one. '

The minimality of the realizations is not guarantee
by reachability and observability. In general the dimen
sion of minimal realizations depends on the field K and
does not coincide with the rank of #{(s). Nevertheless we
can associate the commutative series s with noa com-
mutative recognizable power series whose representations
provide all the realizations of s. Hence the problem of

determining minimal realizations of s can be solved loo

king for minimal representations of non commutative po-
wer series.
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