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Computation of reachable and observable realizations
of spatial filters

E. FORNASINIt and G. MARCHESINITZ

The input—output behaviour of a two-dimensional linear filter is defined by a formal
power series in two variables. If the power series is rational, the dynamics of the
filter is deseribed by updating equations on finite dimensional local state spaces. The
notions of local reachability and observability are defined in a natural way and an
algorithm for obtaining a reachable and observable realization is given.

In general reachability and observability do not imply the minimality of the
realization. Nevertheless the dimension of a minimal realization is the least rank
in a family of Hankel matrices.

1. Introduction

In the past few years there has been an increasing interest in two-
dimensional filters (Anderson and Jury 1974, Shanks ef al. 1972, Habibi 1972,
Attasi 1973, Powell and Silvermann 1974, Roesser 1975). This type of filter is
extensively used in processing two-dimensional sampled data, such as seismic
data sections, digitized photographic data, and gravity and magnetic maps.

The aim of this paper is to afford the algebraic realization problem of
spatial filters defined by their input-output map. This problem has been
attacked by the authors (Fornasini and Marchesini 1975) from a system
theoretic point of view defining the state via Nerode equivalence classes.
Additional results in this direction will be developed here mainly with regard
to the computation of reachable and observable realizations. The connection
between minimality and observability and reachability will also be discussed.

2. Realization of two-dimensional filters

We will consider two-dimensional digital filters with scalar inputs and out-
puts taken from an arbitrary field K. The input-output representation of
such a filter is given by

ST U, U Y, ¥, F) (1)

where T'=Z x Z (partially ordered by the product of the orderings) is the
discrete plane, U and Y are one-dimensional vector spaces over the field K, %
and & are the space of truncated formal Laurent series in two variables over K
(whose precise description will be given below), and F: #—% is the input—
output map.
A typical element of % or % will be written
o}
r= Y, ; (r, 2%2,0)2,%,f, for some integer k
3

where (r, z,%2,7) denotes the coefficient of z,iz,’.
3 &1 %2 1“2
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622 B. Fornasini and G. Marchesing

The input-output map F: %—% is assumed to satisfy the following

axioms :
(i) lineartty
(ii) two-dimensional shift invariance :
F(z)izr) =22 F(r), 1, jeZ
(iii) two-dimensional strict causality :
(g, 21%257) = (g, 21297), 1<ty J <ty
implies
(Fuy, 2y20) = (Fug, 21%yf), 1<, J<ly Vg, e

Under assumption (iii) it is easy to verify that the impulse response F'(1) is a
‘ strictly causal * power series, i.e.

F(l)= ;ij (£(1), zlizzj)zlizaj

More formally we can say that
s = F(I)E(ZIZZ)K[[ZU 22}] éI{C[[ZD 22]]

where K[[z;, 2;]] denotes the ring of formal power series in two variables and
K [[zy, 25]] is the ideal of * strictly causal ® power series.
From (i) and (ii) it follows that

F(u)=su, Yue¥

that is, two-dimensional filters (in their input-output representation) are in
one-to-one correspondence with formal power series K [[zy, z,]]-

A double indexed, linear, stationary, finite dimensional dynamical system
¥ is defined by a pair of equations of the form (Fornasini and Marchesini 1975)

2(h+1, k+1)= Ag(h, k) + Aya(h+ 1, k) + Ago(h, k+ 1)+ Bu(h, k) }
(2)

y(h, k)= Cux(h, k)

where 4K =0,1, 2, CeK™, BeK™<1 and x belongs to some finite
dimensional vector space X = K™ (local state space).

The solution of eqns. (2) for A0, k>0 is uniquely determined by u and by
the values z(h, 0), k=1, 2, ..., and «(0, k), k=0, 1, 2, ... (initial local states).

Let now z(k, 0)=a(0,k)=0, k, k=0,1,... and associate the monomial
z(h, k)2t 2,k e K[z, 2,]] with the local state x(h, k).

From (2) it follows that for each ueK[[z, 2,]]

ee]

2o, i @k, k)zyzt = A, ( %h, k 2(h, k)zlhzzk) “1%g

0

[eo]
+ 4, ( Zh, e 2(h, k)21h22k> %
0

+ 4, ( Yo i wlh, k)21hz2k> 2o+ (2129) Bu
0
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and then

(I — Agzizy— Aiz — Ay2)Zy 1 20(h, k)2y"25" = (212,) Bu
The polynomial (I — Agzz,— A2, — Ayz,) belongs to K™*"[z;, z,] and has an
inverse in the ring of formal power series K"*"[[zy, z,]]. Its inverse is given by

({— Agzyzg— Az — Agze) ' = (Agzaza+ A1z + Agz,)

z

o8

With the aid of this inverse we can relate the state to the input. In fact we
have

Eh, welh, )2tz = (I — Agzyz— 4121 — Ayze) H2y25) Bu
This yields at once the input—output relation

y=C ¥ a(h, k)e,t2* = O(1 — Agzi2o— Ay21 — Agze) " 212,) Bu
Ik

The series
C(I — Ayzizg — A2y — Ag25)H2q25) B
is called the transfer function of Z.

We recall that a formal power series seK[[z,2,]] is rational if there exist
polynomials p, geK[z,71, 2,7'] with degp<deggq, such that gs=p. The
polynomial ¢ is called,a denominator of s.

Then transfer function (2,2,)C(f — A z12,— A2, — A52,) 1B belongs to
(2,2) K [(21, 22)1 2 K [ (24, 2,)], where K[(z;,2,)] denotes the ring of rational
power series in two variables and K [(z;, z,)] is the ideal of causal rational power
series.

Definition
A doubly-indexed dynamical system Z=(4,, Ay, 4,, B, C) 15 a zero-state
realization of a two-dimensional filter & represented by a series seK [[zq, 2,]] if

§=(212,)O(I — Ayz12, — 412 — Ag2,) 1B (4)

The dimension of a realization X is the dimension of the local state space X.

The minimality of the realization is naturally related to the dimension of
X in the sense that a realization T is minimal when dim £’ <dim ¥’ for any
Y’ which realizes %.

Proposition 1.1

Let % be represented by seK [[z;, 25]]. Then % is realizable by a double-
indexed dynamical system if and only if seK [(z,25)].

Proof
The necessity is a trivial consequence of (3). The sufficiency follows from

the construction below.
Let

n—1 n
_ g oy _
§= Zij Apy_y, n—jf1 ?2 3 Zij b’nfj“l 2577 bg=1
0 0

412
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The matrices 4,, 4, A,cKn*"*, BeK"*x1, (eKn* defined by
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Consequently the doubly-indexed dynamical system Z=(d4,, 4,, 4,, B, () is
a (not necessarily minimal) zero-state realization of .

3. Reachability and observability

From now on we shall assume that the formal power series s characterizing
the input-output map of the filter % is rational. Hence there exists a realiza-
tion given by a doubly-indexed dynamical system X = (A4, 4;, 4,5, B, C):

ah+1,k+1)= Az, k)+ Ax(h+ 1, k) + Ayx(h, k+ 1) + Bu(h, k)
y(h, k) =Cz(h, k)
such that
8= (2125)0(] — A2y2,— Az, — Ayz,) B

We shall now extend the notations of reachability and observability for
discrete-time systems to provide equivalent notions of local reachability and
observability for two-dimensional filters. We say that a local state zeX is
‘ reachable * (from zero initial states) if there exist an input ueK[[z,, 2,]] and
integers 4>0, j>0 such that x(i, j)=% when X starts from initial states
x(h, 0)=2(0,k)=0, h, k=0,1,.... Since doubly-indexed dynamical systems
are assumed to be stationary, we can introduce the following definitions :

Definition 1

A state zeX 1is reachable if x:((zlzz) ik (A 2129+ Aq2, + A gz, Bu, 1) for
some ue.
Definition 2

The reachable local state space is

[=2]
XR:{CE = ((2122) Y (Agziza+ A1z + A,2,)* Bu, 1), ue%}
0

and the realization L =(4,, 4,, 4,, B, C) is 1-reachable if X = X®.
The reachable local state space X® is spanned by the columns of the matrix
R, =[M,B M\;B MyB ...]

where
w .
M= ( Y (Aoziza+ 412+ A2,)k, zlq'zzj)
0

Since dim X®R=rank R, the realization L= (4,, 4, 44, B, C) is l-reachable

if and only if R is full rank.
The notion of indistinguishable states is also extended in a very natural way.

Definition 3
A state zeX is indistinguishable from the state 0 in X if

@0
;1- C(A 2120+ A1z + Ag2y)'2=0
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Notice that the left-hand term in the above relation represents the zero-input
response of £ determined by (0, 0)=x.

Definition 4
The indistinguishable local state space s

Xlé{x : zeX, ¥ C(dgzza+ Alzl—!—AZzz)fx:O}
0

Since the space XT is the null space of the infinite matrix :

C0 My,

C My,

!
[l

¢ M,

the realization T =(4,, 4, 4,, B, C) is 1-observable if Xt={0}, that is if O,
is full rank.

The matrices R, and O, contain an infinite number of elements. Never-
theless the evaluation of their ranks, which is essential to reachability and
observability analysis, can be confined to check the rank of two submatrices
ReKm®* and OeK™**" given by

R=[M,B M B.. M, . Bl

and

O My
O={ U My,
O Mps s
This statement will be proved in Lemma 3.1 and Proposition 3.1.

Lemma 3.1
Let A,, A, A, belong to K™<" and let

28]
Mrz'i:( Y (Agzze+ 41z + Ag)t, zlizzj)’ i, jEZ
0

be the coefficients of z,iz,7 in the series (I — Agzzg— Ayz— Ag2y) 7" Then there
exist byeK, i, 1=0,1,2, ..., m, by, #0 such that

7

0

for all (b, k)¢{(1, 1), (1, 2), ..., (m, n)}.

The scalars by; can be asswmed as the coefficients in the polynomial

det (Jz, 12,1 — Ay — Ayz,7 1 — A2y )
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Proof
Since

(2125) T adj (Jz; 121 — Ao — Azt — A ™)
det (Iz;7 22, — Ag— Az — A2y 7Y)

1 n
- —7s —8
- Er, s N rszl 2z s

n
Yij bazi 207
0

o0
Zh (Ag2y2,+ Ayzy + Agzo) =
0

b,,=1, N, cKnx»

nn

it follows that
. . s n
T M 22y Zohk by M2y = Elrs N, 2,2,
Equating the coefficients of the same powers in both sides one gets the proof.

Proposition 3.1
Let M;; as wn Lemma 3.1. Then

span (M, 3, jeZ)=span (M, 4, j=0, 1, ..., n—1) &4
Proof
It is sufficient to prove that if 7, s are non-negative integers and either
r=n or s=n, then
Myed, i<r, j<s, (1, 7)#(r,8)
implies
M, eHl

In fact by Lemma 2.1

n

;1’}' ]l-{i—n-%r. j*?’b+sb'ij =0

so that

n

1
ﬂfrsz %b— ;z’, i ﬂf'i—n—br, jfﬂ“’r‘sbij
" G iy,
Remark 1
The above result can be refined when r>n and s<n. In fact

M,espan (M, =0, ...,n—1, =0, ..., §)

Remark 2

The Cayley—Hamilton theorem is a particular case of Proposition 3.1 when
A g =10

Applying Proposition 3.1 we can write rank R, =rank R, rank O, =rank O,
which proves the following :
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Proposition 3.2
A realization ¥ is 1-reachable (1-observable) if and only if R (0) is full rank.
The matrices R and O are called reachability matriz and observability matrix
associated with the realization X =(4,, 4,, 4, B, C).

4. Computation of reachable and observable realizations

So far we have seen that reachability and observability of a realization are
strictly connected with the ranks of the reachability matrix R and the observa-
bility matrix O. We are now concerned with the following problem : suppose
that we obtained by some algorithm (see § 2) a realization X =(4,, 4, 4,, B, C)
of dimension n and we would like to construct a 1-reachable and 1-observable
realization, starting from X. To solve this problem we introduce two algorithms
which act independently to give a l-reachable or a l-observable realization.
Of course the alternate application of these provides realizations which are
eventually both 1-reachable and 1-observable.

Let us assume that X = (A4, 4,, 4,, B, 0) is a realization of dimension n of
a given filter £, and let R be the reachability matrix of . Assume rank =
r<n. The algorithm for constructing a 1-reachable realization of dimension
r is based on the following two steps.

Step 1

Construct a matrix TeG1(K, n) having the last n —r rows orthogonal to the
space spanned by the columns of R. Consider then the realization (A, 4,
A,, B, () characterized by

Ay=TA, T
A =T 4,1
A,=TA,T!
B=TB
=01

The matrix 7' induces a change of basis in X. The first » elements of this
new basis are a basis for X,

Step 2
Write A,, 4,, A, in partitioned form :

Ay A0
Ak= 3 A‘i](kleerrv kzos ls 2

-~

Auy® Ay, ®

and partition B and C conformably :

~

B,
B= , C=[C, 6,1, B, 0,TeKr™
0
Then (4,, 4, 4, B, (') and (:’Ill“”, A, M, 4,®, B, C)) realife the same
filter, and (A,,©, 4,,®, 4,,®, By, () is l-reachable. In fact, let z(h, k) be
the state reached by the effect of an input ue#, and assume as a basis in X
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the basis corresponding to (4,, 4;, 45, B, ). With respect to such a basis the
last n—r components of x(h, k) are zero and the system

An(m A‘lzm) @y (h, k) ‘411(1) A‘mm xy(h+1, k)
+
Ay© ‘422(0) 0 *“1‘21(1) ‘422(1) 0

All(z) filz(z) xy(h, k+1) _Bl x(h+1,k+1)
+ + u(h, k)=
i 0 0

& —xl(h: k)
y(h, k) =[Cy Cy] :'
0

realizes the same input—output map as :
Ay, O, (h, k) + Ay Wy (h+1, k) + Ay, @ (b, k+1) +Bu(h, ky=2,(h+1, k+1)
y(h, k) = Cyes (b, )

Assume now rank O’ =7 <n. The algorithm for obtaining a 1-observable
realization is also based on two steps and is substantially the same as the above
reachability algorithm, although the proof of the second step is based on
somehow different reasonings.

Step 1

Construct a matrix Q-'eG1(K, n) having the last n—r' columns orthogonal
to the space spanned by the rows of 0. The realization (4,, 4;, 4,, B, )
defined by

A,=QA4,Q71

4,=04,97

“21'2 =Q4,0™"
B=QB
=09

satisfies
CI — Agzrpg— A2y — Agzy) 1B
=0 - dzy2— A2y — A,z B
=Z,,0M ;B2
In the associated observability matrix

0 M,

é Mﬂ—l, n—1

the elements in the last n — 7" columns are zeros.
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Step 11
Write 4,, 4,, 4,, B, C in partitioned form as in step 2 above, and notice

that C=[C, 0], C,eK™'. To show that (A,,9, 4,,®, 4,,®, B,,C)) is a
realization we have to prove that

2,00, Beyizgd = C(I — Agzazy— Ay2y— Ayz,) B

=0y ([ — A1, %2, — 41, WV2 — 4,,%2,)716,;

namely that
O, B=CM B, i j=0,1,..
Observe that for ¢, j >0
OMy=OM,_, ,d,+CM, , A+00,, 4,

CoMy=C M+ AW+ O M*y A0 +0 M, ;1 4,@

and assume by induction that the first ' elements of CM, , , CM, ; .,

0M, , ;, coincide with C\M*,_, ,C.M* ., C.M* | . respectively,
Then

A‘—ll(l) “21"12(1)
OM,_y, ;4,=[C:M*_; ; 01| . =[0M*,_, ; 4;,D]

Ay ™ Ay ®
and similarly
o,

ON"‘HZ'E—]., j—r‘{U = [élﬂ-{*i—l, -1 511({” *]

ﬁzz[élﬂf*i,jq A~11(2) * |

from which it is clear that the first +* elements in CJ7,; are the same as in

C %, Of course, the last n—7" elements are zero because of the structure
of 0. '

Evidently the result that we have proved can also be stated in the following
form :

Proposition 4.1

Let X=(4,, 4;, 4., B, C) be any realization of . Then a l-reachable and
1-observable realization can be constructed in a finite number of steps from X
following the procedure above.

Corollary
Every minimal realization is completely 1-reachable and 1-observable.

Remark. As we shall see in §6, in general the converse of the above
corollary does not hold.
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5. Filters characterized by recognizable series
The Hankel matrix associated with a series seK[[zy, z,]] is given by

i (S, 1} (S’ Zl) (8» zz) (33 zlz) (33 ZIZQ) (37 222) """
(Ss 21} (‘Ss 212) (S, 2122) (8: 213) """"

(8,25) (8, %:%5) cevens

In Fliess (1970) it is proved that the rank of #(s) is finite if and only if s
is rational and a denominator g of s can be factorized as g =¢,9, with ¢;€K [2);
g.cK[z,71]. The series satisfying this property are the elements of the ring
K[(2,)]®K[(2,)] & Kr¢<[(2,, 2,)] called the ring of * recognizable series’.

A series ¢ is recognizable (Fliess 1970) iff there exist an integer m>1 and
four matrices BeKmxt (CeKwm A, A.eKmm with 4,4,=A4,4,, such that

=]
§= OZ.”' GAIZAZJ.BZIFLZZJ

This fact can be stated in a more formal way saying that s is recognizable
iff there exist an integer m = 1, a representation u on K™ of the commutative
monoid generated by z, and z,, two matrices CeK™ and BeK™*! such that

§=2;;(Cp(z'2) B, 21'29)20 %)

The integer m is the dimension of the representation and one proves that
rank of #(s) gives the dimension of the minimal representation.

If we assume that the series s, characterizing the two-dimensional filter &,
is recognizable, we can exploit the above-mentioned properties of this class of
series for getting an interesting subclass of realizations of .

Proposition 5.1

Let s belong to K 7¢°[(z,, 2,)] and let s be represented by (5). Then (— Az A
A,, 4,, B, C) is a realization of the filter &.  Vice versa, let (4, Ay, 44, B, C)
be a realization of & satisfying — Ay=A,A,=A,4,. Then the filter & s
characterized by a series s belonging to K *°¢[(zq, z5)].

Proof
By (5) we have

[c o] o o]
s =(2125)C ( ;z’j AliAejzlizgj) B =(z2,)C EDL- (A2, + Azzz'“ﬁlflzﬁzz)iB

= (2429)C(I — Aq2y — Agzo + A1212,) B

This proves that (— 4,4,, 4, 4,, B, () is a realization of & . The converse
is immediate.

The realizations satisfying the condition 4,= — 4,4,= — 4,4, are called
‘ representations ’ of &. As will evident, the study of this subclass of realiza-
tions is particularly simple, the Hankel matrix associated with the series
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characterizing the filter has the same structural properties as in the linear
system theory, and reachability, observability and minimality are also related
in the same way. In fact we have :

(i) When % is characterized by a recognizable series s, the matrices R
and O, associated with a representation (—A4,4,, 4,, 4,, B, C) assume the
form '

o0

R=[B A,B A,B AB A,4,B A2B ..]
o -
C 4,
0=|0 4,
O A2
C 4,4,

C A2

so that :
‘%((zlzz)—ls) = OwRuo

(ii) The rank of 5#(s), seK ;¢°[(2;2,)], provides the dimension of a minimal
realization in the class of representation. Moreover, if (—4,4,, 4,, 4,, B, C)
and (—A4,4,, A,, A,, B, 0) are two minimal representations of dimension
m=rank J#(s), then there exists a non-singular matrix TeKm<m such that

TA,T1=4, i=1,2
TB=B
CT-1=C

Property (i) was pointed out in Attasi (1973) and Fornasini and Marchesini
(1975). The following proposition is a direct consequence of (i) and (ii).

Proposition 5.2
Let seK *¢°[(zy, z,)]. Then a representation (— A4, 4., 4, B, C) 1is
minimal iff the reachability and observability matrices are full rank.

Proof

Assume that O, and R_ are full rank. Then rank O_=rank R =
rank #°(s) which is the dimension of the minimal representation.

Conversely, if (— 4,4,, 4,, 4,, B, C) is a minimal representation of dimen-
sion n, then n=rank 5#(s)=rank O_R .

Consequently rank O_ =rank E_=n.
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6. Minimality of realizations

As it was remarked at the end of §4, l-reachability and l-observability
properties of a realization do not imply the minimality of the realization.

This can be proved by means of the following example.

Example

Assume seRr¢[(z, z,)] be given by

142,42,
142+ 2542429

8= (2%,)

Therefore the formal power series expansion of (z,2,)71s is expressed by

o]
(L+2zi+2) Yi (= Df(zi+2zp+2z)f =1 —2izp t2iz? + 2%+ ...
0
Since rank J#((z,2,)"%s)>2, the dimension of minimal representations is
greater than two. Hence the filter characterized by s admits 1-reachable and
1-observable realizations (i.e. the minimal representations) with dimension
greater than two.
However, these minimal representations do not constitute minimal realiza-
tions. In fact the doubly-indexed dynamical system X =(4,, 4,, 4,, B, C)
with

0 0 0 0 -1 0 1
A4,= g A= , A,= , B= , C=[1 1]
0 0 0 -1 1 0 0

is a realization with dimension two.

From the above remarks it appears that the Hankel matrix 2#(s) is not
relevant for evaluating the dimension of minimal realizations of s. In fact,
when s is rational, but not recognizable, rank #(s) is infinite, and for s recog-
nizable rank 5#(s) furnishes solely the dimension of minimal representations,
which are not necessarily minimal as realizations.

In the sequel we will associate with the commutative series s a family of
non-commutative power series in three variables whose Hankel matrices have
finite rank. We will prove that the minimal rank of these matrices is the
dimension of minimal realizations of s.

Sinece rational series in non-commutative variables are recognizable (Fliess
1970), for any non-commutative rational series reK{(wx,, x,, ¥3)> there exist
an integer m, a representation p: X—K™*™ two matrices BeK™! and
CeKm guch that

r= Y Cu(w)Bw

weX*

where X* is the free monoid generated by x, x,, 2.
This is equivalent to saying that any non-commutative rational power series
r can be expressed as

r= Y, C(Auw, + Agxy + Ays)) B=C(I — Aoy — Ay, — Ayx;) ' B
1:
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where A,=p(x;), A,=pl(x,), 4d=p(x;) and 4, 4, 4; do not necessarily
commute.
The dimension of the minimal representation of r is given by rank #(r ( )
Define the algebra morphism ¢ : K{(x,, x5, 23)>—K[[2, 22]] by (k)
VkeK, ¢(z,) =2, d(xs) =24, d(x3) =22, Since

¢: O —Ayzy— Agry— Agey) ' BoCO( — Ayzy — A2y — A212,) ' B (5)

all rational series in the commutative variables z; and z, are obtained by
varying A4,, 4,, 4y, B, C and the map ¢ is onto K[(z;,2,)]. Then we can
associate a commutative series ¢(r)eK[(z,, z,)] with each non-commutative
series re K{(wx;, x,, x3)>. By (5) each representation of r induces a realization of

p(r).
The following diagram

K (xq,xz,xB) -i-- K[(z?,ng]

e

K (x.l,x?_,xa)

ker ¢

commutes and ¢ is an isomorphism. Consequently, given seK [(z,2,)], a
minimal realization of s is a minimal representation in the class of representa-
tions of -1

One has thus arrived at the following proposition :

Proposition 6.1
Let s belong to K [(z1, 25)]. Then the dimension of minimal realization of s
18 given by
min rank 5#(r)
redx(s)

7. Conclusions

In this paper we introduced the realization of two-dimensional filters and
we discussed the related concepts of reachability and observability. We have
presented an algorithm for obtaining a reachable and observable realization
starting from a generic one.

In general, the reachability and observability properties do not guarantee
that we are dealing with a minimal realization, as we proved by means of an
example. If we restrict ourselves to the subclass of realizations, called ‘ repre-
sentations ’, essentially characterized by commutative matrices, the Hankel
matrix associated with the recognizable series plays the same rule as in linear
system theory. In this case l-reachable and 1-observable representations are
also minimal and their dimension is given by the rank of the Hankel matrix.

If we consider the whole class of realizations of a rational power series s, the
dimension of minimal realizations is not related to the rank of 5#(s). Never-
theless we can associate the commutative series s with a family of non-
commutative recognizable power series whose representations provide all the
realizations of s. Hence the problem of determining minimal realizations of s can
be solved looking for minimal representations of non-commutative power series.
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